The transverse structure of Lie flows of codimension 3

By

Blas Herrera and Agustí Reventós

1. Introduction

This paper deals with the problem of the realization of a given Lie algebra as transverse algebra to a Lie foliation on a compact manifold.

Lie foliations have been studied by several authors ([E.H.S], [E.N], [F], [H.M], [M], [Ma], etc.). The importance of this study was increased by the fact that they arise naturally in Molino’s classification of Riemannian foliations [M].

To each Lie foliation are associated two Lie algebras, the Lie algebra \mathfrak{g} of the Lie group on which the foliation is modeled and the structural Lie algebra \mathfrak{k}. The latter algebra is the Lie algebra of the Lie foliation \mathcal{F} restricted to the closure of any one of its leaves. In particular, it is a subalgebra of \mathfrak{g}. We remark that although \mathfrak{k} is canonically associated to \mathcal{F}, \mathfrak{g} is not.

Thus two interesting problems are naturally posed: the realization problem and the change problem.

The realization problem is to know which pairs of Lie algebras $(\mathfrak{g}, \mathfrak{k})$, with \mathfrak{k} subalgebra of \mathfrak{g}, can arise as transverse and structural Lie algebras, respectively, of a Lie foliation \mathcal{F} on a compact oriented manifold M.

This problem is closely related to the following Haefliger’s problem [Ha]: given a Lie subgroup Γ of a Lie group G, is there a Lie G-foliation on a compact manifold M with holonomy group Γ? E. Ghys [Gh] and G. Méglioz [Mg] also studied this problem and they gave necessary conditions for a pair (G, Γ) to be realizable.

Our formulation of the realization problem is a little different: We shall say that the pair (\mathfrak{g}, q) is realizable if there is a compact oriented manifold endowed with a Lie foliation transversely modeled on \mathfrak{g} and with structural Lie algebra of dimension q. We also say that \mathfrak{g} is realizable as transverse to a Lie foliation.

This formulation of the realization problem has been considered in [Li], [H], [G, R] and [HLLR] making a very detailed study of Lie flows of codimension 3 (cf. §8). But a complete classification was not obtained because of the following open question:

Communicated by Prof. K. Ueno, September 10, 1996
Research supported by the DGYCIT, PB90-0686 PB93-0661