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Abstract: Complex systems are usually represented as an intricate set of relations
between their components forming a complex graph or network. The understanding of their
functioning and emergent properties are strongly related to their structural properties. The
finding of structural patterns is of utmost importance to reduce the problem of understanding
the structure–function relationships. Here we propose the analysis of similarity measures
between nodes using hierarchical clustering methods. The discrete nature of the networks
usually leads to a small set of different similarity values, making standard hierarchical
clustering algorithms ambiguous. We propose the use of multidendrograms, an algorithm
that computes agglomerative hierarchical clusterings implementing a variable-group
technique that solves the non-uniqueness problem found in the standard pair-group
algorithm. This problem arises when there are more than two clusters separated by the
same maximum similarity (or minimum distance) during the agglomerative process. Forcing
binary trees in this case means breaking ties in some way, thus giving rise to different
output clusterings depending on the criterion used. Multidendrograms solves this problem
by grouping more than two clusters at the same time when ties occur.
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1. Introduction

The analysis of structural regularities in the connectivity of complex systems has been a major field of
research since the beginning of the so-called “theory of complex networks” [1,2]. The most outstanding
approach has been known as community detection, that aims to analyze the mesoscale of complex
networks [3,4]. The definition of community in networks is quite qualitative, a community is a set
of nodes with more connections between them than with the rest of the network nodes. The success of
this approach relies on the findings that have been proved to reproduce some known knowledge about
explicit communities in networks. However, less works have concentrated on the finding of other kinds
of regularities in networks. Particularly interesting is the detection of similarities between nodes [5]
in a network. Similarities can arise from different measures that represent diverse target patterns, for
example, we can search for patterns in local connectivity, or patterns in global connectivity, defining
a local distance or global information respectively. Here we concentrate on the hierarchical clustering
of nodes in a network, based on their connectivity (local/global) similarities. In general, many pairs of
nodes will share the same value of similarity, and then the problem of clustering according to a hierarchy
becomes non-unique.

Hierarchical clustering methods are widely used to classify data items into a hierarchy of clusters
organized in a tree structure called a dendrogram. Agglomerative hierarchical clustering [6] starts from
a distance matrix between items, each one forming a singleton cluster, and gathers clusters into groups
of clusters, the process being repeated until a complete hierarchy of partitions into clusters is formed.
There are different types of agglomerative methods such as single linkage, complete linkage, unweighted
average, weighted average, etc. which only differ by the definition of the distance measure between
clusters. To name just a few, uses of hierarchical clustering include the classification of organisms
from different populations or species [7], the determination of sets of genes with similar profiles of
expression [8,9], and the classification of proteins according to sequence similarity [10,11].

Except for the single linkage case, all the other agglomerative hierarchical clustering techniques suffer
from a non-uniqueness problem, sometimes called the ties in proximity problem, when the standard
pair-group algorithm is used. This problem arises when there are more than two clusters separated
by the same minimum distance during the agglomerative process. The standard approach consists of
choosing any pair of clusters, breaking the ties between distances, and proceeds in the same way until a
final hierarchical classification is obtained. However, different output clusterings are possible depending
on the criterion used to break ties, and very frequently the results of a hierarchical cluster analysis depend
on the order of the observations in the input data file.

The ties in proximity problem is well-known from several studies in different fields, for example
in biology [12,13], psychology [14], or in chemistry [15]. Generally speaking, the problem will
arise whenever using discrete values to represent similarity between elements and eventually also with
continuous valued functions. The existence of possible ties makes the number of binary dendrograms
eventually grow exponentially with the number of elements. This problem is usually ignored by software
packages [16,17], while some other packages just warn against the existence of ties in data sets.

Here we make use of multidendrograms, a variable-group algorithm [18] that solves the
non-uniqueness problem found in the standard pair-group approach. In Section 2 we describe the
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variable-group algorithm, which groups more than two clusters at the same time when ties occur.
In Section 3 we show several case studies where we use multidendrograms. Finally, in Section 4, we
give some concluding remarks.

2. Multidendrograms Algorithm

Agglomerative hierarchical procedures build a hierarchical classification in a bottom-up way, starting
from a distances (or weights) matrix between n individuals. The standard pair-group algorithm has the
following steps:

(1) Initialize n singleton clusters with one individual in each of them. Initialize also the distances
between clusters with the values of the distances between individuals.

(2) Find the minimum distance separating two different clusters.
(3) Select two clusters separated by such minimum distance and merge them into a new supercluster.
(4) Compute the distances (Depending on the criterion used to compute the distances, different

agglomerative hierarchical clusterings are obtained: single linkage, complete linkage,
unweighted average, weighted average, unweighted centroid, weighted centroid, and Ward’s
method are the most commonly used.) between the new supercluster and each of the other clusters.

(5) If all individuals are not yet in the same cluster, then go back to Step 2.

The ties in proximity problem arises when there are more than two clusters separated by the same
minimum distance in Step 3 of the algorithm. To ensure uniqueness in the agglomerative hierarchical
clustering, multidendrograms implement a variable-group algorithm [18] that groups more than two
clusters at the same time when ties occur. Its main properties are:

• When there are no ties, multidendrograms give the same result as the pair-group algorithm.
• It always gives a uniquely determined solution thanks to the implementation of the

variable-group algorithm.
• In the multidendrogram representation of the results, the occurrence of ties during the

agglomerative process can be explicitly observed, and a subsequent notion of the degree of
heterogeneity inside the tied clusters is obtained.

The algorithm has been encapsulated in a public application MultiDendrograms [19] that allows the
tuning of many graphical representation parameters, and the results can be easily exported to file. A
summary of other characteristics are: graphical user interface including data selection, hierarchical
clustering options, layout parameters, navigation across the dendrogram, etc.; command-line direct
calculation without graphical interface; works both with distances and weights matrices; calculation of
ultrametric matrix and deviation measures such as cophenetic correlation coefficient, normalized mean
squared error, and normalized mean absolute error; save dendrogram details in text and Newick tree
format; and export dendrogram image as JPG, PNG and EPS.

3. Applications

We make use of MultiDendrograms to group nodes in networks according to different criteria. In
particular, we will show the results of the analysis in three different cases: (i) when grouping according
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to structural vertex similarity, that evaluates common neighbors; (ii) when grouping nodes according to
their common participation in modules or communities; and (iii) when grouping nodes corresponding to
a distance matrix dataset.

3.1. Case Study: Vertex Similarity in Networks

The idea of classifying vertices in a network according to their similarity in connectivity is a very
promising way to unravel missing functional relations or simply to infer missing edges in a certain
structure [5,20,21]. Imagine, for example, a social network where two nodes have exactly the same
acquaintances, it is very likely that these two nodes also present similitudes beyond this specific
connectivity profile, that can indicate other common interests. When using the connectivity of the
network to assess the similarity of nodes, we usually refer to it as structural similarity. Here we make use
of two different definitions that Jaccard and Leicht provided in the literature to evaluate this similarity.
Following [5] let us denote by Γi the set of first neighbors nodes of node i, and |·| to denote the cardinality
of a given set of elements. The Jaccard similarity [22] is defined as

σJaccard
ij =

|Γi ∩ Γj|
|Γi ∪ Γj|

(1)

which encompasses the fraction of common neighbors between two elements. The similarity measure
proposed by Leicht et al. [5] is

σLeicht
ij =

|Γi ∩ Γj|
|Γi||Γj|

(2)

In this definition the normalization is given by the expected number of neighbors between any two nodes.
We use a synthetic and a real-world network to apply our algorithm. First, we have investigated

the hierarchical scale-free network proposed by Ravasz and Barabasi [23]. We have implemented a
25 nodes version of the structure whose symmetries are totally pertinent to scrutinize the validity of
multidendrograms, Figure 1a. Any hierarchical clustering algorithm will differentiate levels in the
agglomerative process without having a reason other than pure chance. Multidendrograms, however,
correctly identifies the ties and represent them coherently. Second, we have analyzed the classical
social network of the Zachary’s karate club [24], accounting for the study over two years of the
friendships between 34 members of a karate club at a US university in 1970. The network in
question was divided, at the end of the study period, in two groups after a dispute between the
club’s administrator and the club’s instructor, which ultimately resulted in the instructor leaving
and starting a new club, taking about half of the original club’s members with him, Figure 1b.
The analysis of this data has been a paradigmatic benchmark to test the accuracy of community
detection algorithms. Note that vertex similarity, which in principle is not a method intended to find
communities, finds correctly the real splitting reported in the literature. Moreover, the topological
symmetries are easily identifiable in nodes 15, 16, 19, 21 and 23 that turn out to be a big tie discovered
by the multidendrogram.



Entropy 2013, 15 5468

Figure 1. (a) Ravasz-Barabasi hierarchical network of 25 nodes; (b) Zachary’s karate club
network [24]. Multidendrograms obtained using Leicht and Jaccard similarities, respectively.
The similarities between clusters are calculated with the standard unweighted average
method (equivalent to the unweighted pair group method with arithmetic mean, UPGMA,
but using variable groups instead of pairs, see [18]).
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3.2. Case Study: Modular Node Similarity in Networks

The fingerprint of the modular structure is ubiquitous in real-world complex networks. The standard
approach is based on the optimization of a quality function, modularity, which is a relative quality
measure for a partition of a network into modules. The analysis of modules at different resolution
levels is nowadays a common practice when assessing the significance of the mesoscale of complex
networks [3], and consists in the optimization of the modularity of the graph Wr for different values of
the resolution parameter r. Denoting Qr the modularity of the network at resolution r, it reads [3]

Qr =
m∑
s=1

(
2wss + nsr

2w +Nr
−
(
ws + nsr

2w +Nr

)2
)

(3)

where N is the number of nodes, m the number of communities, wss the internal strength of module s,
ws its total strength, ns its size, and 2w the total strength of the network.

The topological scale determined by maximizing Q at which the detection of modular structure
has been attacked more frequently corresponds to r = 0. For positive values of r, we have access
to the substructures underneath those at r = 0, and for negative values of r we have access to the
superstructures. A detailed analysis can be found in [25,26]. The screening of the full mesoscale, i.e.,
the range of values of r for which we detect different modular configurations from individual nodes
to the whole network, provides a good representation of the internal structural patterns of the network.
However, these patterns vary with the resolution parameter, and it is difficult to assess what is the true
structure of the network. Here, we propose to analyze the mesoscale using a similarity measure for every
pair of nodes, which consists in the evaluation of the fraction of the mesoscale that two nodes appear
together into the same module. Denoting Vr the set of values of the resolution parameter r, and Ci(r)

the module at with a certain node i belongs to, we define the modular node similarity as

σmodular
ij =

∣∣∣∣∣∑
r

(δ(Ci(r), Cj(r))

∣∣∣∣∣
|Vr|

(4)

where δ is the Kronecker function, which takes a value of 1 when both arguments are equal,
and 0 otherwise.

We have explored the use of multidendrograms to assess the structure of networks using this similarity.
In particular we focus on a synthetic hierarchical network that we call H 13-4 network [27], which
corresponds to a homogeneous in degree network with two predefined hierarchical levels, being 256—the
number of nodes, 13—the number of links of each node within the most internal community (formed
by 16 nodes), 4—the number of links with the most external community (four groups of 64 nodes), and
1 more link with any other node at random in the network. The results of the multidendrogram reveal
the true structure of similarities again in agreement with the underlying hierarchical structured imposed,
see Figure 2a. Using the classical binary dendrograms we would obtain several representations none of
them capable of joining the basic four groups at the same distance.
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Figure 2. (a) H13-4 homogeneous network with modular structure at two different
hierarchical levels, and unweighted average multidendrogram of its modular similarity;
(b) Distances network of white berry varieties in the Spanish grapevine cultivars given in
Table 2 of Ibáñez et al. [28], and its unweighted average multidendrogram.
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3.3. Case Study: Distance Similarities in Complete Weighted Networks

Finally we present a more abstract scenario, where the classification is based on a distance matrix
between elements. Note that this is equivalent to the analysis of a complete weighted network [29].
Distance ties are very frequent in some types of data such as binary variables, or even integer variables
comprising just a few distinct values, because in these cases distances are constrained to a narrow
range of values. This is precisely what happens, for instance, in the case of some gene and DNA
frequency data [30], protein-protein interaction data [13], and microsatellite data analysis. In the latter
case, biologists usually compute pairwise distances between the multiple locus genotypes of two
individuals as a function of the proportion of shared alleles, and the genetic distance matrix obtained
is then used to construct a dendrogram, generally with the unweighted average clustering method.
This is precisely what it is done with the grapevine cultivars data in Table 3 of Fatahi et al. [31]
and the data in Supplementary Table 2 of Zdunić et al. [32], where the authors only show one of
all possible dendrograms, which amount to 6 and 36 respectively. Further, the problem can grow
to unsuspected dimensions such as in the case of the data in Table 2 of Ibáñez et al. [28] and
the data in Almadanim et al. [33], where the numbers of possible dendrograms are 17, 900 and
760, 590, 880 respectively.

Tied distances can also appear using continuous variables, especially if the precision of experimental
data is low. Sometimes, however, the absence of ties might be due to the representation of data with more
decimal digits than it should have. From the family of agglomerative hierarchical methods, complete
linkage is more susceptible than other methods to encounter ties during the clustering process, since it
does not produce new distance values that differ from the initial ones (Table 1). The non-uniqueness
problem also depends on the measure used to obtain the distance values between individuals. Moreover,
the larger the data set, the more possibilities for ties to occur.

Table 1. Number of different binary trees obtained for the grapevine cultivars data in Table 2
of Ibáñez et al. [28], using distinct hierarchical clustering methods. Although the resolution
of the data is equal to 3 significant digits, we show the effect that increasing the precision
has on the number of possible binary trees.

Method Precision = 3 Precision = 4 Precision = 5

Unweighted Average 17, 900 2, 208 2, 124

Weighted Average 9, 859 1, 709 1, 762

Complete Linkage >108 >108 >108

In Figure 2b we show the distances network corresponding to the subset of 56 white berry
varieties in the Spanish grapevine cultivars given in Table 2 of Ibáñez et al. [28]. Genetic distances
between genotypes in the nodes were calculated as one minus the proportion of shared alleles at 13
microsatellite loci. In Figure 2b we also show the corresponding unweighted average multidendrogram
for this grapevine network, which has been drawn using a precision equal to the original resolution of
the data (i.e., 3 significant digits). In the multidendrogram representation one can clearly observe the
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occurrence of several ties during the clustering process, which are responsible for up to 509 distinct
binary dendrograms. It is also remarkable how the two most dissimilar grapevine varieties, Albillo
22K49 and Ondarrabi zuri 22F24, appear clearly differentiated both in the network representation of the
data and in the multidendrogram.

4. Conclusions

The search for structural patterns in complex systems is approached herein from the hierarchical
clustering of its elements, according to different similarity (or distance) measures. The correct
visualization of the hierarchy is essential to discern these patterns. We have shown the feasibility of the
application of multidendrograms to scrutinize the hierarchical structure emerging in different complex
networked systems. We have focussed on those representations that, because of inherent symmetries,
will provoke ties when trying to discern which groups to merge. This information can be very useful
in several scenarios, e.g., discerning groups according to vertex similarity, modular node similarity, and
data similarity.

The non-uniqueness problem found in the standard pair-group algorithm for agglomerative
hierarchical clustering is usually ignored by the standard algorithms. The software packages ignore or
fail to adopt a common standard with respect to ties, many of them simply breaking ties in an arbitrary
way. However, different output clusterings are possible depending on the criterion used to break ties,
and very frequently the results depend on the input order of the observations. The selection of just one
of the possible classifications in such cases can be misleading, and the user is usually unaware of this
problem, taking for granted the output given by the software.
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