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mayor, porque ha tenido la inmensa responsabilidad de cuidar de mis padres

y de borrar las tristezas por mi ausencia. A mis sobrinas, que aunque casi

no conocen a su t́ıo, han de saber que yo las quiero. A mi abuelo, quien por

su edad tal vez no recuerde mi último abrazo. A todos mis t́ıos, primos y

familiares, simplemente gracias.

Quiero terminar agradeciendo a dos personas muy especiales para mı́. A

mi Tadeo, que con sus juegos, su incesante sed de curiosidad, sus besos y sus
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sea, parezca minúsculo. A mi Neiky, por su apoyo infinito para llegar hasta
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Introduction

In everyday life we have several situations where the concept of distance is

present. Suppose, for instance, that we wish to travel from Barcelona city

to Madrid city. Thus, we may be interested in one or more of the following

numbers.

1) The straight line distance, in kilometres, from Barcelona to Madrid.

2) The distance, in kilometres, from Barcelona to Madrid by road.

3) The time, in minutes, of the shortest journey from Barcelona to Madrid

by train or bus.

4) The cost, in euros, of the cheapest journey from Barcelona to Madrid by

train or bus.

Each of these numbers is of interest to someone and none of them is easily

obtained from another. However, they do share some similar properties which

can be used to establish a common terminology for altogether. Given a set

X and a function d : X ×X → R with the following properties:

(i) d(x, y) ≥ 0 for all x, y ∈ X,

(ii) d(x, y) = 0 if and only if x = y,

(iii) d(x, y) = d(y, x) for all x, y ∈ X,

(iv) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X,

we say that d is a metric on X and that (X, d) is a metric space. Given a

subset M ⊂ X, for any point x ∈ X, its metric M-representation is the set

{(m, d(x,m)) : m ∈M} of its metric M-coordinates (m, d(x,m)). The set M

was called by Blumenthal in [11], a metric generator for X, if distinct points

x ∈ X have distinct M -representations. A metric generator of minimum

1



Introduction 2

cardinality is called a metric basis of (X, d), and its cardinality the metric

dimension of (X, d). For instance, it is shown in [9] that if U is any non-

empty open subset of any one of the three classical n-dimensional geometries

of constant curvature, namely Euclidean space Rn, Spherical space Sn and

Hyperbolic space Hn, then dim(U) = n+ 1.

From now on we consider a simple and connected graph G = (V,E) and

the function dG : V ×V → N∪{0}, where dG(x, y) is the length of a shortest

path between x and y in G, and N is the set of positive integers. Obviously

(V, dG) is a metric space, since dG is a metric on V . On the other hand, since

graph structures may be used to model computer networks, social networks,

molecules or any structure which depends on objects and their relationships,

it is therefore an interesting problem to study the metric space (V, dG). Ob-

jects can be represented as vertices in a graph and edges could represent their

relationships. For instance, the problem of uniquely determining the loca-

tion of an intruder in a network was the principal motivation of introducing

the concept of metric dimension of (V, dG) by Slater in [116, 117], where the

metric generators were called locating sets. The concept of metric dimension

of (V, dG) was also introduced independently by Harary and Melter in [59],

where metric generators were called resolving sets. Moreover, the terminol-

ogy of metric generators for the case of graphs was recently introduced by

Sebö and Tannier in [113].

Given a positive integer t, we define the following function dG,t : V ×V →
N ∪ {0}, where

dG,t(x, y) = min{dG(x, y), t}. (1)

Since dG,t is a metric on V , we also have that (V, dG,t) is a metric space. Note

that if t is at least the diameter of G, then the metric dG,t is equivalent to

dG. Any metric generator for (V, dG,t) is a metric generator for (V, dG,t+1)

and, as a consequence, the metric dimension of (V, dG,t+1) is at most the

metric dimension of (V, dG,t). In particular, the metric dimension of (V, dG,1)

is equal to |V | − 1, and as a consequence, it only deserves to study the

metric dimension of (V, dG,t) for t ≥ 2. Notice that while using the metric

dG,t, the concept of metric generator needs not be restricted to the case

of connected graphs, as for any pair of vertices x, y belonging to different

connected components of G we can assume that dG(x, y) = +∞ > t and so

dG,t(x, y) = t.
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A vertex v ∈ V is said to distinguish two different vertices x and y,

if dG,t(v, x) 6= dG,t(v, y). In this sense, a set S ⊂ V is a metric generator

for (V, dG,t) if every pair of different vertices of G is distinguished by some

element of S.

Despite the undeniable usefulness of a metric generator for (V, dG,t), in

its primary version, it has a weakness related with the possible uniqueness

of the vertex identifying a pair of different vertices of the graph. Consider,

for instance, some robots which are navigating, moving from node to node

of a network. On a graph, however, there is neither the concept of direction

nor that of visibility. We assume that robots have communication with a set

of landmarks S (a subset of nodes) which provides them the distance to the

landmarks in order to facilitate the navigation. Assume that all landmarks

have a transmission range t. As a consequence, robots only have communi-

cation with those landmarks in S which are at distance at most t from them.

Our aim is that the landmarks would uniquely determine the robot’s position

on the graph. A minimum set of landmarks which uniquely determines the

robot’s position is a metric basis of (V, dG,t), and the minimum number of

landmarks is the metric dimension of (V, dG,t). Suppose that in a specific

moment there are two robots x, y whose positions are only distinguished by

one landmark s ∈ S. If the communication between x and s is unexpectedly

blocked, then the robot x will get lost since it could assume to have the

position of y. So, for more realistic settings it may be desirable to consider

a set of landmarks where each pair of nodes is distinguished by at least k

landmarks, for some k ≥ 2.

A natural solution regarding that weakness is the location of one land-

mark in every node of the graph. But, such a solution, would have a very

high cost. Thus, the choice of a correct set of landmarks is convenient for

a satisfiable performance of the navigation system. That is, in order to

achieve a reasonable efficiency, it would be convenient to have a set of as

few landmarks as possible, always having the guarantee that every object of

the network will be properly distinguished. In this sense, we introduce the

concept of (k, t)-metric generator for (V, dG,t), which is a natural extension

of the concept of metric generator. A set S ⊆ V is said to be a (k, t)-metric

generator for a graph G if and only if any pair of different vertices of G is

distinguished by at least k elements of S, i.e., for any pair of different vertices
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u, v ∈ V , there exist at least k distinct vertices w1, w2, . . . , wk ∈ S such that

dG,t(u,wi) 6= dG,t(v, wi), for every i ∈ {1, . . . , k}. (2)

A (k, t)-metric generator of minimum cardinality in G is called a (k, t)-metric

basis and its cardinality the (k, t)-metric dimension of G, which is denoted

by dimk,t(G).

As an example, we take a graph G obtained from the cycle graph C5 and

the path Pr of order r ≥ 2, by identifying one of the vertices of the cycle, say

u1, and one of the extremes of Pr, as we show in Figure 1. Let S1 = {v1, v2},
S2 = {v1, v2, ur}, S3 = {v1, v2, v3, ur} and S4 = {v1, v2, v3, v4, ur}. For k ∈
{1, 2, 3, 4} and t at least the diameter of G, the set Sk is a (k, t)-metric basis

of G.

v1
v2

v3
v4

u1 u2 u3
. . .

ur

Figure 1: For k ∈ {1, 2, 3, 4} and t at least the diameter of G, dimk,t(G) =

k + 1.

Note that the (2, 1)-metric dimension of any graph is equal to |V | and

that there are no (k, 1)-metric bases for k ≥ 3. Thus, from now on we assume

that t ≥ 2. It can also be noted that every (k, t)-metric generator S satisfies

that |S| ≥ k and, if k > 1, then S is also a (k − 1, t)-metric generator.

Moreover, (1, t)-metric generators, where t is at least the diameter of G, are

the standard metric generators (resolving sets or locating sets as defined in

[59] or [116], respectively). Notice that if k = 1, then the problem of checking

if a set S is a metric generator reduces to check condition (2) only for those

vertices u, v ∈ V − S, as every vertex in S is distinguished at least by itself.

Also, if k = 2, then condition (2) must be checked only for those pairs having

at most one vertex in S, since two vertices of S are distinguished at least by

themselves. Nevertheless, if k ≥ 3, then condition (2) must be checked for

every pair of different vertices of the graph.

We also must remark that a vertex v ∈ V (G) distinguish two different

vertices x, y ∈ V (G) with regard to the distance dG,2, if v is exactly adjacent
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to one of x, y. In some sense, one could say that v distinguishes x, y in

connection with the neighbourhood of v (or according to adjacencies between

these vertices). Therefore, from now on we shall refer to the (k, 2)-metric

generators (bases) as k-adjacency generators (bases), and the (k, 2)-metric

dimension shall be called k-adjacency dimension and shall be denoted by

adimk(G). On the other hand, the (k, t)-metric generators (bases) of a graph

G, where t is greater than or equal to the diameter of G, had been previously

referred to as k-metric generators (bases), and its (k, t)-metric dimension

had been called k-metric dimension and had been denoted by dimk(G). As

a consequence, we keep this nomenclature and notation. In this thesis we

focus on the study of the k-adjacency dimension and the k-metric dimension

of graphs.

The literature about the 1-metric generators for graphs shows its highly

significant potential to be used for solving a representative number of real

life problems, which has been described in several works. For instance,

some applications to the navigation of robots in networks are discussed in

[71, 72, 89, 90, 114]; to chemistry in [21, 22, 68, 69, 75]; to problems of

pattern recognition and image processing, some of which involve the use of

hierarchical data structures, in [93]; to multiprocessor interconnection net-

works in [91] and to the network discovery(verification) problem in [10]. In

addition, interesting connections with the Mastermind game were presented

in [16, 25, 51, 52, 55, 70], throughout the development of an strategy for such

game which precisely needs the uniquely recognition of some “elements” of

the game. Finally, 1-metric generators have been also used in studies con-

cerning some coin weighing problems in [4, 15, 16, 17, 18, 31, 46, 56, 113].

There could probably exist some other possible applications of 1-metric ge-

nerators to some real problems. However, to the best of our knowledge,

we have collected here the main part of them. Moreover, this invariant

was further theoretically studied in a number of other papers including

[6, 16, 20, 21, 24, 37, 38, 61, 96, 111, 118, 132, 134].

The study of this invariant in graphs is more interesting if we consider

that the problem of finding the 1-metric dimension of graphs is NP-hard

[72], even when restricted to planar graphs [27]. However, there exist a

linear-time and a polynomial-time algorithm for determining the 1-metric

dimension for trees [72] and outerplanar graphs [27], respectively. For these

reasons, many efforts have been made to computationally solve the problem
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of finding a 1-metric generator of a graph in the last few years. For instance,

an increasing interest into algorithmic questions on this topic has been raised

(see [30, 40, 60] as some examples). In this direction we can also highlight

some papers of Kratica et al. in [77, 78, 79, 80], where some of them are

using some interesting heuristic on genetic algorithms to solve such problem

for some families of graphs. We finally suggest to consult the paper [6], which

contains an important collection of distinct ways of presenting the 1-metric

generators from different points of view that exists nowadays in the literature.

This article mentioned above is also an attempt to unifying the terminology

associated to this parameter in different areas of mathematics. In this thesis

we also try to contribute with this unification.

On the other hand, in order to gain more insight into the metric proper-

ties of graphs, several variations of 1-metric generators have been introduced

and studied. Such variations has become more or less known and popular in

connection to their applicability or according to how much challenging prob-

lems they are raising up. Among them we could remark resolving dominating

sets [14], independent resolving sets [22], local metric sets [8, 41, 96, 103, 104],

strong resolving sets [32, 86, 83, 84, 92, 95, 105, 107, 113, 135], resolving

partitions [23, 24, 38, 53, 106, 108], strong resolving partitions [130, 131],

simultaneous metric dimension [32, 99, 100, 101] and k-antiresolving sets

[119]. About this last one variation, it is maybe interesting to point out

that has been applied to generate a privacy measure for social graphs. Be-

sides, the concept of 1-adjacency generator1 was introduced by Jannesari

and Omoomi in [67] as a tool to study the 1-metric dimension of lexico-

graphic product graphs. This concept has been also studied by Fernau and

Rodŕıguez-Velázquez in [41, 42], where it was shown that the 1-metric di-

mension of the corona product of a graph of order n and some non-trivial

graph H equals n times the 1-adjacency dimension of H. As a consequence

of this strong relationship was obtained that the problem of computing the 1-

adjacency dimension of graphs is NP-hard. The identifying codes are another

variation of 1-metric generators, and they are nothing else than dominating

1-adjacency generators. Little is known about the robustness notions and

other variants discussed in connection with wireless networks for identifying

codes [43, 44, 45, 64, 87, 102].

11-adjacency generators were called adjacency resolving sets in [67]
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The 1-metric generators has been widely studied in the last decade. In

the database of MathSciNet, for instance, we have found 190 papers related

to the metric dimension of graphs since 2000 to date. Likewise, in Google

Scholar, for the same time interval, we have found 1260 documents about

the metric dimension of graphs. According to TDX (Theses and Disserta-

tions Online), a digital cooperative repository of doctoral theses presented

at some Spanish universities, there are 59 doctoral theses that have been

defended since 2000 to date, where the metric dimension of graphs is men-

tioned. However, extensions of the 1-metric dimension to k-metric dimension

for any k ≥ 2 had not been taken into account before our work would had

began. To the best of our knowledge, the only work in this direction was pre-

sented in [63], where was weakly studied the case k = 2 through the study of

some parameter they called fault tolerant metric dimension. More recently,

and in parallel with this work, a similar approach to k-metric dimension has

appeared in [1, 2], although the direction of such works are more going in the

algorithmic and computer science sense. Considering all these previous facts,

it is of high importance the study of the (k, t)-metric dimension of graphs.

The thesis is organized as follows. In the first chapter, we recall some

basic definitions on graph theory. The rest of the chapters are focused on

the (k, t)-metric dimension of graphs with special emphasis on the k-metric

dimension and the k-adjacency dimension. Chapter 2 is focused on finding

the largest integer k such that there exists a (k, t)-metric basis for a given

graph. Chapter 3 deals with finding formulae and bounds for the (k, t)-metric

dimension of some graphs. In Chapter 4 we study some complexity issues

concerning the problems of computing the largest integer k such that there

exists a (k, t)-metric basis for a graph, as well as computing the k-metric

dimension of a graph. We conclude the work with highlights of the principal

studied issues, contributions of the thesis, and future works.





Chapter 1

Basic concepts and tools

1.1 Basic concepts and notations

We begin by establishing the basic terminology and notations which is used

throughout the thesis. For the sake of completeness we refer the reader to

the books [28, 126]. Graphs considered herein are undirected, finite and

contain neither loops nor multiple edges. From now on G represents a graph

with vertex set V (G), edge set E(G), and order n = |V (G)|. A graph is

nontrivial if n ≥ 2. If two graphs G and H are isomorphic, then we say

that G ∼= H. We use the notation u ∼ v for two adjacent vertices u and

v of G. For a vertex v of G, NG(v) denotes the set of neighbours that v

has in G, i.e., NG(v) = {u ∈ V (G) : u ∼ v}. The set NG(v) is called the

open neighbourhood of a vertex v in G and NG[v] = NG(v) ∪ {v} is called

the closed neighbourhood of a vertex v in G. The degree of a vertex v of

G is denoted by δG(v), i.e., δG(v) = |NG(v)|. The open neighbourhood of a

set S of vertices of G is NG(S) =
⋃
v∈S NG(v) and the closed neighbourhood

of S is NG[S] = NG(S) ∪ S. The minimum and maximum degree of G are

denoted by δ(G) and ∆(G), respectively. The girth g(G) of G is the length

of a shortest cycle contained in G. A set S is a dominating set in G if

every vertex not in S is adjacent to a vertex in S. As usual, we denote by

AOB = (A ∪B)− (A ∩B) the symmetric difference of two sets A and B.

We use the notation Kn, Cn, Pn, and Nn for the complete graph, cycle

graph, path graph, and empty graph, respectively. Moreover, we write Ks,t for

the complete bipartite graph of order s+ t and, particularly, K1,n for the star

graph of order n+ 1. An end vertex is a vertex of degree one while a support

vertex is a vertex adjacent to an end vertex. Let T be a tree, an end vertex

9
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in T is called a leaf .

The diameter, D(G), of G is the longest distance between any two ver-

tices in G, i.e., D(G) = maxu,v∈V (G){dG(u, v)}. If G is not connected, then

we assume that the distance between any two vertices belonging to different

components of G is infinity and, thus, its diameter is D(G) =∞.

The complement of a graph G is a graph G with vertex set V (G) and

uv ∈ E(G) if and only if uv /∈ E(G). The subgraph induced by a set X is

denoted by 〈X〉. A clique in G is a set of pairwise adjacent vertices. The

clique number of G, denoted by ω(G), is the number of vertices in a maximum

clique in G. We will say that S is an ω(G)-clique if |S| = ω(G).

Two vertices x, y are called false twins if N(x) = N(y), and x, y are

called true twins if N [x] = N [y]. In particular, if G contains more than one

isolated vertex, then they are false twin vertices. Figure 1.1 shows examples

of basic concepts such as true twins. Two different vertices x, y are twins if

they are either false twin vertices or true twin vertices. We also say that a

vertex x is a twin, if there exists other vertex y such that x, y are twins. In

concordance with that, we define the twin equivalence relation R on V (G)

as follows:

xRy ←→ NG(x)− {y} = NG(y)− {x}.

We have three possibilities for each twin equivalence class U :

(a) U is a singleton twin equivalence class, or

(b) U is a false twin equivalence class, i.e., NG(x) = NG(y), for any x, y ∈ U
(and case (a) does not apply), or

(c) U is a true twin equivalence class, i.e., NG[x] = NG[y], for any x, y ∈ U
(and case (a) does not apply).

If all twin equivalence classes of a graph G are singletons, then we say that

G is a twins free graph. If G does not have any true (false) twin equivalence

class, then we say that G is a true (false) twins free graph. Given a vertex

x ∈ V (G), we denote the true twin equivalence class to which x belongs by

TT (x), and the false twin equivalence class to which x belongs by FT (x).

We also denote by S(G), FT (G) and TT (G) the union of the singletons, the

false, and the true twin equivalence classes of a graph G, respectively.

An example of a graph where every equivalence class is a true twin

equivalence class is Kr + (Ks ∪ Kt), r, s, t ≥ 2 (see Subsection 1.2.1 and
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Section 1.2 for the concepts of join graph G + H and disjoint union G ∪H,

respectively). In this case, there are three equivalence classes composed by

r, s and t true twin vertices, respectively. As an example where no class is

composed by true twin vertices we take the complete bipartite graph Kr,s,

r, s ≥ 2. Finally, the graph Kr + Ns, r, s ≥ 2, has two equivalence classes

and one of them is composed by r true twin vertices. On the other hand,

K1 + (Kr ∪ Ns), r, s ≥ 2, is an example where one class is a singleton, one

class is composed by true twin vertices and the other one is composed by

false twin vertices.

G

a

b

c

d

e

fg
H

a b

cd

e

f g

h

Figure 1.1: The set {d, e, f} ⊂ V (G) is composed by true twin vertices in

G. Notice that b and g are true twin vertices in G and f and d are also true

twins. The set {e, f, g, h} ⊂ V (H) is a twin-free clique in H.

A graph G is 2-antipodal if for each vertex x ∈ V (G) there exists exactly

one vertex y ∈ V (G) such that dG(x, y) = D(G). For example even cycles

are 2-antipodal graphs.

Other remaining definitions not defined herein are given the first time

that the concept appears in the text.

1.2 Graph operations

This section is a brief overview on some graphs operations. The union G∪H
of two graphs G and H with disjoint vertex sets V1 and V2, respectively, and

edge sets E1 and E2, respectively, is the graph with vertex set V = V1 ∪ V2
and edge set E = E1∪E2. This operation is sometimes also known explicitly

as the graph disjoint union.
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A product of graphs is an operation made with two or more graphs in

order to generate another graph. The graphs used in the operation are called

the factors of the product. In the last few years a rich theory involving the

structure and recognition of classes of product graphs has emerged [57]. The

most studied graph products are the Cartesian product, the strong product,

the direct product and the lexicographic product, which are also called stan-

dard products. However, there are also several other non standard styles of

operations with graphs, which have been intensively studied. In this work

we center our attention in one case of the standard products, and other case

of the non standard ones. Specifically, we focus on the lexicographic product

and the corona product of graphs. Even so, here we present two standard

products that we also use in this thesis, the so called Cartesian product and

strong product of graphs.

1.2.1 Lexicographic product

The lexicographic product of two graphs G and H is the graph G ◦ H with

vertex set V (G ◦ H) = V (G) × V (H) and two vertices (a, b) and (c, d) are

adjacent in G ◦H if either

• ac ∈ E(G), or

• a = c and bd ∈ E(H).

In the literature we can also find the names composition or substitution

for the lexicographic product. This product is clearly not commutative, while

it is associative [57, 65]. Figure 1.2 illustrates two examples of lexicographic

products and, at the same time, emphasizes the fact that the lexicographic

product is not commutative.

A lexicographic product G◦H is connected if and only if G is connected.

The relation between distances in the lexicographic product of graphs and

in its factors is presented in the following remark, for which is necessary to

recall (1).

Remark 1.1. [57, 65] If (a, b) and (c, d) are vertices of G ◦H, then

dG◦H((a, b), (c, d)) =


dG(a, c), if a 6= c,

dH(b, d), if a = c and δG(a) = 0,

dH,2(b, d), if a = c and δG(a) 6= 0.
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Figure 1.2: Two lexicographic product graphs: K1,3 ◦ P3 and P3 ◦K1,3.

We now define an extended lexicographic product between a graph G of

order n and a family composed by n graphs. The lexicographic product of a

graph G of order n and a family composed by graphs H = {H1, H2, . . . , Hn},
which is denoted by G◦H, is the graph with vertex set

⋃
vi∈V (G){vi}×V (Hi),

where (a, v) is adjacent to (b, w) whenever

• ab ∈ E(G), or

• a = b and vw ∈ E(Hi) for every Hi ∈ H.

Note that this approach of the lexicographic product is a natural general-

ization of the standard lexicographic product of graphs, and therefore of

its properties too. For instance, Remark 1.1 holds. Figure 1.3 shows the

lexicographic product between P3 and a family composed by {P4, K2, P3}.

Figure 1.3: The lexicographic product graph P3 ◦ {P4, K2, P3}.

If every Hi ∈ H holds that Hi
∼= H, then we use the notation G ◦H (as

in the standard case) instead of G ◦ H and we refer to Hi as the ith copy of

H. In general, we can construct the graph G ◦H by taking one copy of each

Hi ∈ H and, for every uiuj ∈ E(G), we join by an edge every vertex of Hi
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with every vertex of Hj. Note that G ◦ H is connected if and only if G is

connected.

A particular case of lexicographic product is the join. The join graph

G + H is defined as the graph obtained from disjoint graphs G and H by

taking one copy of G and one copy of H and joining by an edge each vertex

of G with each vertex of H [58, 136]. Note that G+H ∼= K2 ◦{G,H}. It is a

commutative and associative operation. Now, for the sake of completeness,

Figure 1.4 illustrates two examples of join graphs.

Figure 1.4: Two join graphs: P4 + C3 and N2 +N2 +N2.

Moreover, complete k-partite graphs are typical examples of join graphs.

A complete k-partite graph Kp1,p2,...,pk is the join graph of empty graphs on

p1, p2, . . . , pk vertices. Notice that N2 +N2 +N2, illustrated in Figure 1.4, is

none other than the complete 3-partite graph K2,2,2.

The lexicographic product has been studied from different points of view

in the literature. One of the most common researches focuses on finding

relationships between the value of some invariant in the product and that

of its factors. In this sense, we can find in the literature a large number of

investigations on diverse topics, like for instance, independence number [3,

50], domination number [3, 88, 94, 115], chromatic number [3, 26, 50, 73, 98],

connectivity [128], hamiltonicity [7, 81], and metric dimension [39, 67, 85,

112]. For more information on the research on product graphs we suggest

the books [57, 65].

1.2.2 Corona product graphs

Let G and H be two graphs of order n1 and n2, respectively. The corona

product G�H is defined as the graph obtained from G and H by taking one

copy of G and n1 copies of H and joining by an edge each vertex from the

ith copy of H with the ith vertex of G. We denote by V = {v1, v2, . . . , vn}
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the set of vertices of G and by Hi = (Vi, Ei) the copy of H such that vi ∼ v

for every v ∈ Vi. Notice that the corona product K1 � H is isomorphic to

the join graph K1 +H.

Observe that G � H is connected if and only if G is connected. More-

over, it is readily seen from the definition that this product is neither an

associative nor a commutative operation. Figure 1.5 shows some examples

of corona products and also underscores the fact that the corona product is

not commutative.

Figure 1.5: The corona product graphs P4 � C3 and C3 � P4.

The concept of corona product of two graphs was first introduced by

Frucht and Harary [47]. This product is not too much popular and has not

been widely investigated. One of the reasons could be that the corona pro-

duct is a simple operation on two graphs and some mathematical properties

could be directly consequences of its factors. Surprisingly, for the case of the

k-metric dimension this is not the situation, which makes interesting its study

for this non standard product. Moreover, there are a few remarkable studies

on corona products, like for instance on some topological indices [97, 129], the

chromatic number [48, 54, 133], the domination number [54], the toughness

[19], and the metric dimension [8, 39, 41, 42, 54, 66, 83, 106, 132].

We also define an extended corona product between a graph G of order

n and a family composed by n graphs. Let G be a graph of order n and

let H = {H1, H2, . . . , Hn} be a family of graphs. The corona product graph

G � H is defined as the graph obtained from G and H by taking one copy

of G and joining by an edge each vertex of Hi with the ith vertex of G, [47].

In particular, if every Hi ∈ H holds that Hi
∼= H, then we use the standard

notation G�H instead of G�H. Note that G�H is also connected if and

only if G is connected.
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1.2.3 Cartesian product graphs

The Cartesian product graph G�H, of two graphs G = (V1, E1) and H =

(V2, E2), is the graph whose vertex set is V (G�H) = V1 × V2 and any two

distinct vertices (x1, x2), (y1, y2) ∈ V1 × V2 are adjacent in G�H if and only

if either:

(a) x1 = y1 and x2 ∼ y2, or

(b) x1 ∼ y1 and x2 = y2.

The Cartesian product is a straightforward and natural construction,

and is in many respects the simplest graph product [57, 65]. Hypercubes,

Hamming graphs and grid graphs are some particular cases of this product.

The Hamming graph Hk,n is the Cartesian product of k copies of the complete

graph Kn, i.e.,

Hk,n = Kn � Kn � . . . � Kn︸ ︷︷ ︸
k times

The Hypercube Qn is defined as Hn,2. Moreover, the grid graph Pk�Pn is

the Cartesian product of the paths Pk and Pn, the cylinder graph Ck�Pn is

the Cartesian product of the cycle Ck and the path Pn, and the torus graph

Ck�Cn is the Cartesian product of the cycles Ck and Cn. Figure 1.6 shows

two examples of Cartesian products.

Figure 1.6: Two Cartesian product graphs: C5�K2 and K1,3�P3.

This operation is commutative [57] in the sense that G�H ∼= H�G, and

is also associative, as the graphs (F�G)�H and F�(G�H) are naturally

isomorphic. A Cartesian product of graphs is connected if and only if both

of its factors are connected.
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This product has been extensively investigated from various perspectives.

For instance, the most popular open problem in the area of domination the-

ory known as Vizing’s conjecture [122]. Vizing suggested that the domination

number of the Cartesian product of two graphs is at least as large as the pro-

duct of domination numbers of its factors. Several researchers have worked

on it, for instance, some partial results appears in [12, 57]. Moreover, Vizing

[121] has investigated the independence number of Cartesian products. The

chromatic number of this product has been completely studied in [110]. The

connectivity and the hamiltonian properties of Cartesian products have been

described in [123, 127] and [29], respectively. For more information on struc-

ture and properties of the Cartesian product of graphs we refer the reader to

[57, 65].

1.2.4 Strong product graphs

The strong product graph G�H of two graphs G = (V1, E1) and H = (V2, E2)

is the graph with vertex set V (G�H) = V1×V2, where two distinct vertices

(x1, x2), (y1, y2) ∈ V1 × V2 are adjacent in G � H if and only if one of the

following holds.

• x1 = y1 and x2 ∼ y2, or

• x1 ∼ y1 and x2 = y2, or

• x1 ∼ y1 and x2 ∼ y2.

Other known names for the strong product are the strong direct product

or the symmetric composition. Notice that G�H and G×H are subgraphs

of G�H. Figure 1.7 shows two examples of strong products.

Figure 1.7: Two strong product graphs: C5 �K2 and K1,3 � P3.
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The commutativity of the strong product follows from the symmetry of

the definition of adjacency and for associativity see [57, 65]. A strong product

of graphs is connected if and only if every one of its factors is connected.

Remark 1.2. [57, 65] Let G and H be two graphs. For every u ∈ V (G) and

v ∈ V (H)

NG�H [(u, v)] = NG[u]×NH [v].

As a direct consequence of the remark above the following result is ob-

tained.

Corollary 1.3. Let G and H be two graphs and let u, u′ ∈ V (G) and v, v′ ∈
V (H). The following assertions hold.

(i) If (u′, v′) ∈ NG�H(u, v), then u′ ∈ NG[u] and v′ ∈ NG[v].

(ii) If u′ ∈ NG(u) and v′ ∈ NG(v), then (u′, v′) ∈ NG�H(u, v).

With the strong product is closely connected an important information

theoretical parameter, which in general is very difficult to calculate - the

Shannon capacity. The Shannon capacity of a graph G is defined as the limit

of k
√
α(Gk) when n tends to infinity, and where α(G) denotes the indepen-

dence number of the graph G and Gk is the strong product of G with itself

k times. This problem has been attracted for several researchers and some

partial results are presented in [5, 57].

Various properties of strong products have been also studied. The inves-

tigation encompasses, for instance, domination [57, 94], chromatic number

[74, 120], connectivity [13, 124] and hamiltonian properties [36, 76]. For more

information on the strong product we refer the reader to [57, 65].



Chapter 2

On (k, t)-dimensional graphs

Overview

This chapter is concerned with finding the largest integer k such that there

exists a (k, t)-metric basis for a graph G. In this sense, we first give general

results for any value of t ≥ 2. Subsequently, we focus on those values of t that

are at least the diameter of G and that are equal to two. Particularly, we

study the values of k such that there exist k-metric bases for the lexicographic

product and the corona product of graphs.

2.1 (k, t)-metric dimensional graphs

Throughout this chapter, unless otherwise stated, we will consider t as an

integer greater than one.

It is clear that it is not possible to find a (k, t)-metric generator for

a graph for every integer k. That is, given a graph G and the distance

dG,t, there exists an integer r such that G does not contain any (k, t)-metric

generator for every k > r. According to that fact, we say that a graph G is

(k, t)-metric dimensional if k is the largest integer such that there exists a

(k, t)-metric basis of G. Notice that if G is a (k, t)-metric dimensional graph,

then for each positive integer r ≤ k, there exists at least one (r, t)-metric

basis of G. Given a graph G and two different vertices x, y ∈ V (G), we

denote by DG,t(x, y) the set of vertices that distinguish the pair x, y with

regard to the metric dG,t, i.e.,

DG,t(x, y) = {z ∈ V : dG,t(z, x) 6= dG,t(z, y)}.

19
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We also define the set of nontrivial vertices that distinguish the pair x, y

as D∗G,t(x, y) = DG,t(x, y) − {x, y}. Note that a set S ⊆ V (G) is a (k, t)-

metric generator for G if |DG,t(x, y) ∩ S| ≥ k for every two different vertices

x, y ∈ V (G). It can also be noted that two different vertices x, y ∈ V (G)

belong to the same twin equivalence class of G if and only if D∗G,t(x, y) = ∅,
or equivalently, if DG,t(x, y) = {x, y}.

Since for every different vertices x, y ∈ V we have that |DG,t(x, y)| ≥ 2,

it follows that the whole vertex set V is a (2, t)-metric generator for G and, as

a consequence, we deduce that every graph G is (k, t)-metric dimensional for

some k ≥ 2. On the other hand, for any graph G of order n ≥ 3, there exists

at least one vertex v ∈ V and two vertices x, y ∈ V such that {x, y} ∈ NG(v)

or dG,t(x, v) = dG,t(y, v) = t ≥ 2, so v /∈ DG,t(x, y) and, as a result, there is

no n-metric dimensional graph of order n ≥ 3. Comments above are recalled

in the next remark.

Remark 2.1. Let G be a (k, t)-metric dimensional graph of order n ≥ 2 and

let t be an integer greater than one. If n ≥ 3, then 2 ≤ k ≤ n− 1. Moreover,

G is (n, t)-metric dimensional if and only if G ∼= K2 or G ∼= N2.

We define the following parameter

D(G, t) = min
x,y∈V

{|DG,t(x, y)|}.

Theorem 2.2. A graph G is (k, t)-metric dimensional if and only if k =

D(G, t).

Proof. (Necessity) If G is a (k, t)-metric dimensional graph, then for any

(k, t)-metric basis B and any pair of different vertices x, y ∈ V (G), we have

|B ∩ DG,t(x, y)| ≥ k. Thus, k ≤ D(G, t). Now we suppose that k < D(G, t).

In such a case, for every x′, y′ ∈ V (G) such that |B ∩ DG,t(x′, y′)| = k, there

exists zx′y′ ∈ DG,t(x′, y′) − B such that dG,t(zx′y′ , x
′) 6= dG,t(zx′y′ , y

′). Hence,

the set

B ∪

 ⋃
x′,y′∈V (G): |B∩DG,t(x′,y′)|=k

{zx′y′}


is a (k + 1, t)-metric generator for G, which is a contradiction. Therefore,

k = D(G, t).
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(Sufficiency) Let a, b ∈ V (G) such that min
x,y∈V (G)

|DG,t(x, y)| = |DG,t(a, b)|

= k. Since no set S ⊆ V (G) satisfies |S∩DG,t(a, b)| > k and V (G) is a (k, t)-

metric generator for G, we conclude that G is a (k, t)-metric dimensional

graph.

The characterization proved in Theorem 2.2 is a result on general graphs.

We next particularize this for some specific classes of graphs or we bound its

possible value in terms of other parameters of the graph. If two vertices u, v

of G do not belong to the same twin equivalence class, then u or v, say u, has

an adjacent vertex x that is not adjacent to v. Thus, {u, v, x} ⊆ DG,t(u, v),

and as a consequence, we deduce the following result.

Corollary 2.3. A graph G is (2, t)-metric dimensional if and only if there

are at least two vertices of G belonging to the same twin equivalence class.

It is clear that P2 and P3 are (2, t)-metric dimensional. Now, a specific

characterization for (2, t)-dimensional trees is obtained from Theorem 2.2 (or

from Corollary 2.3).

Corollary 2.4. A tree T of order n ≥ 4 is (2, t)-metric dimensional if and

only if T contains a support vertex which is adjacent to at least two leaves.

An example of a (2, t)-metric dimensional tree is the star graph K1,n−1,

whose (2, t)-metric dimension is dim2,t(K1,n−1) = n−1. On the other side, an

example of a tree T which is not (2, t)-metric dimensional is drawn in Figure

2.1. By Corollary 2.4 and since |DT,t(v1, v3)| = |{v1, v3, v5}| = 3, we have

that T is (3, t)-metric dimensional. The set V (T ) − {v2} is a (3, 2)-metric

basis and a (3, 3)-metric basis of T , while {v1, v3, v4, v5} is a (3, 4)-metric

basis, or equivalently, a 3-metric basis of T .

v1 v2

v3

v4

v5

v6 v7

Figure 2.1: An example of (3, t)-metric dimensional tree T . The set V (T )−
{v2} is a (3, 2)-metric basis and a (3, 3)-metric basis of T , while {v1, v3, v4, v5}
is a (3, r)-metric basis of T for any r ≥ 4.

A cut vertex in a graph is a vertex whose removal increases the number

of components of the graph and an extreme vertex is a vertex v such that



On (k, t)-metric dimensional graphs 22

the subgraph induced by N [v] is isomorphic to a complete graph. Also, a

block is a maximal biconnected subgraph1 of the graph. Now, let F be the

family of sequences of connected graphs G1, G2, . . . , Gr, r ≥ 2, such that G1

is a complete graph Kn1 , n1 ≥ 2, and Gi, i ≥ 2, is obtained recursively from

Gi−1 by adding a complete graph Kni
, ni ≥ 2, and identifying one vertex of

Gi−1 with one vertex of Kni
.

From now on we say that a connected graph G is a generalized tree2 if

and only if there exists a sequence {G1, G2, . . . , Gr} ∈ F such that Gr = G

for some r ≥ 2. The 1-metric dimension of these graphs was studied in [82].

Notice that in these generalized trees every vertex is either, a cut vertex or an

extreme vertex. Also, every complete graph used to obtain the generalized

tree is a block of the graph. Note that, if every Kni
is isomorphic to K2,

then Gr is a tree, justifying the terminology used. With these concepts we

give the following consequence of Theorem 2.2, which is a generalization of

Corollary 2.4.

Corollary 2.5. A generalized tree G is (2, t)-metric dimensional if and only

if G contains at least two extreme vertices being adjacent to a common cut

vertex.

In particular we can state the following result on Cartesian product

graphs.

Proposition 2.6. Let G and H be two connected graphs of order n ≥ 2 and

n′ ≥ 3, respectively. Then G�H is (k, t)-metric dimensional for some k ≥ 3.

Proof. Notice that for any vertex (a, b) ∈ V (G�H), NG�H((a, b)) = (NG(a)×
{b}) ∪ ({a} × NH(b)). Now, for any two distinct vertices (a, b), (c, d) ∈
V (G�H) at least a 6= c or b 6= d and since H is a connected graph of

order at least three, we have that NH(b) 6= {d} or NH(d) 6= {b}. Thus, we

obtain that NG�H((a, b)) 6= NG�H((c, d)). Therefore, the twin equivalence

classes of G�H are singletons and, by Remark 2.1 and Corollary 2.3, G�H

is (k, t)-metric dimensional for some k ≥ 3.

Now, according to Remark 2.1 we have that every graph of order n ≥ 2,

different from K2 and N2, is (k, t)-metric dimensional for some k ≤ n − 1.

Next we characterize those graphs being (n − 1, t)-metric dimensional. To

this end, we first show two previous results.

1A biconnected graph is a connected graph having no cut vertices.
2In some works these graphs are called block graphs.
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Proposition 2.7. Let Pn be a path of order n ≥ 3. If n ≤ t+ 2, then Pn is

(n− 1, t)-metric dimensional. Otherwise, Pn is (k, t)-metric dimensional for

some k ≤ n− 2.

Proof. Since n ≥ 3, by Remark 2.1, Pn is (k, t)-metric dimensional for some

k ∈ {2, . . . , n− 1}. We now consider two cases:

(1) n ≤ t + 2. For any pair of different vertices u, v ∈ V (Pn) there exists at

most one vertex w ∈ V (Pn) such that w does not distinguish u and v.

Therefore, by Theorem 2.2, Pn is (n− 1, t)-metric dimensional.

(2) n > t + 2. Let u, v ∈ V (Pn) be the leaves. Since t ≥ 2, it follows

n > 4. Let u′, v′ be the vertices adjacent to u and v, respectively. Since

n > t + 2, dPn,t(u, v) = dPn,t(u, v
′) = t and dPn,t(u

′, v) = dPn,t(u
′, v′) = t.

So, DPn,t(v, v
′) ∩ {u, u′} = ∅, which means that |DPn,t(v, v

′)| ≤ n − 2.

Therefore, by Theorem 2.2, the graph Pn is (k, t)-metric dimensional for

some k ≤ n− 2.

Proposition 2.8. Let Cn be a cycle graph of order n. If n ≤ 2t+ 1 and it is

odd, then Cn is (n− 1, t)-metric dimensional. Otherwise, Cn is (k, t)-metric

dimensional for some k ≤ n− 2.

Proof. Since n ≥ 3, by Remark 2.1, Cn is (k, t)-metric dimensional for some

k ∈ {2, . . . , n− 1}. We now consider three cases:

(1) n ≤ 2t + 1 and it is odd. For any pair of different vertices u, v ∈ V (Cn)

there exist only one vertex w ∈ V (Cn) such that w does not distinguish

u and v. Therefore, by Theorem 2.2, Cn is (n− 1, t)-metric dimensional.

(2) n is even. In this case, Cn is 2-antipodal. For any pair of vertices

u, v ∈ V (Cn), such that dCn(u, v) = 2l, we can take a vertex x such

that dCn(u, x) = dCn(v, x) = l. So, DCn,t(u, v) ∩ {x, y} = ∅, where y is

antipodal to x. Therefore, by Theorem 2.2, the graph Cn is (k, t)-metric

dimensional for some k ≤ n− 2.

(3) n > 2t+ 1 and it is odd. Let u, v ∈ V (Cn) be two adjacent vertices. Let

x, y be the antipodal vertices of u. Since n > 2t + 1, we deduce that

dCn(u, x) = dCn(u, y) ≥ t + 1, which gives dCn,t(u, x) = dCn,t(u, y) = t.

Without loss of generality, we assume that dCn(v, x) = dCn(v, y) + 1.
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Since dCn(v, x) ≥ t + 1, we deduce that dCn,t(v, x) = dCn,t(v, y) = t. So,

DCn,t(x, y) ∩ {u, v} = ∅. Therefore, by Theorem 2.2, the graph Cn is

(k, t)-metric dimensional for some k ≤ n− 2.

Once presented the two propositions above, we are now ready to present

the characterization of (n− 1, t)-metric dimensional graphs.

Theorem 2.9. Let G be a graph order n ≥ 3. The graph G is (n − 1, t)-

metric dimensional if and only if G is a path and n ≤ t+ 2, or G is an odd

cycle and n ≤ 2t+ 1, or G ∼= K1 ∪K2, or G ∼= N3.

Proof. Since n ≥ 3, by Remark 2.1, G is (k, t)-metric dimensional for some

k ∈ {2, . . . , n − 1}. If G is a path of order n ≤ t + 2, then by Proposition

2.7 we have that G is (n − 1, t)-metric dimensional. If G is a cycle of odd

order n ≤ 2t+1, then by Proposition 2.8 it follows that G is (n−1, t)-metric

dimensional. If G ∼= K1 ∪ K2 or G ∼= N3, then it is straightforward to see

that G is (2, t)-metric dimensional.

On the other side, let G be a (n−1, t)-metric dimensional graph. Hence,

for every pair of different vertices x, y ∈ V (G) there exists at most one

vertex which does not distinguish x, y. Suppose ∆(G) > 2 and let v ∈ V (G)

such that {u1, u2, u3} ⊆ N(v). Figure 2.2 shows all the possibilities for the

links between these four vertices. Figures 2.2 (a), 2.2 (b) and 2.2 (d) show

that v, u1 do not distinguish u2, u3. Figure 2.2 (c) shows that u1, u2 do not

distinguish v, u3. Thus, from the situations above we deduce that there is

a pair of different vertices which is not distinguished by at least two other

different vertices. Thus, G is not a (n−1, t)-metric dimensional graph, which

is a contradiction. So ∆(G) ≤ 2. If G is connected, then we have that G is

either a path or a cycle, and by Propositions 2.7 and 2.8, we deduce that G is

a path of order n ≤ t+2, or G is an odd cycle of order n ≤ 2t+1. If G is not

connected, then each connected component is either a path, or a cycle or an

isolated vertex. If one of the connected components C has order at least three,

then there exists a vertex v of degree two. Let N(v) = {x, y}. The vertex v

and any vertex belonging to a connected component different from C does not

distinguish x, y, which is a contradiction. Thus, each connected component C

of G satisfies ∆(C) ≤ 1. Suppose that there exists one connected component

C of order two. In this case, if there exists other connected component of
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order two, or there exist at least two other connected component, then the

pair of vertices belonging to C is not distinguished by at least two vertices,

which is a contradiction. So in this case G ∼= K1 ∪ K2. Suppose that

all connected components are isolated vertices. If there exist at least four

connected components, then any pair of vertices of G is not distinguished

by at least two vertices, which is a contradiction. Therefore, in this case

G ∼= N3, and we conclude the proof.

u1 v

u2

u3

(a)

u1 v

u2

u3

(b)

vu1 u2

u3

(c)

v

u1 u2

u3

(d)

Figure 2.2: Possible cases for a vertex v with three adjacent vertices u1, u2, u3.

2.2 On some families of k-metric dimensional

graphs

From now on, given a graph G and two vertices x, y ∈ V (G), for t ≥ D(G) we

say that G is k-metric dimensional instead of (k, t)-metric dimensional. The

concept of k-metric dimensional graph was introduced by Estrada-Moreno

et al. in [34, 35]. In this section, we use the notation D(G), DG(x, y) and

D∗G(x, y) instead of D(G, t), DG,t(x, y) and D∗G,t(x, y), respectively.

2.2.1 Bounding the value k for k-metric dimensional

graphs

In order to continue presenting our results, we need to introduce some defi-

nitions. A vertex of degree at least three in a graph G will be called a major

vertex of G. Any end vertex u of G is said to be a terminal vertex of a major

vertex v of G if dG(u, v) < dG(u,w) for every other major vertex w of G. The

terminal degree ter(v) of a major vertex v is the number of terminal vertices

of v. A major vertex v of G is an exterior major vertex of G if it has positive
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terminal degree. LetM(G) be the set of exterior major vertices of G having

terminal degree greater than one.

Given w ∈M(G) and a terminal vertex uj of w, we denote by P (uj, w)

the shortest path that starts at uj and ends at w. Let l(uj, w) be the length

of P (uj, w). Now, given w ∈ M(G) and two terminal vertices uj, ur of w

we denote by P (uj, w, ur) the shortest path from uj to ur containing w, and

by ς(uj, ur) the length of P (uj, w, ur). Notice that, by definition of exterior

major vertex, P (uj, w, ur) is obtained by concatenating the paths P (uj, w)

and P (ur, w), where w is the only vertex of degree greater than two lying

on these paths. Finally, given w ∈ M(G) and the set of terminal vertices

U = {u1, u2, . . . , uk} of w, for j 6= r we define ς(w) = min
uj ,ur∈U

{ς(uj, ur)} and

l(w) = min
uj∈U
{l(uj, w)}.

v1

v8

v12

v2 v3 v4 v5 v6 v7

v9

v10

v11 v18

v13 v14 v15 v16 v17

Figure 2.3: A graph G where ς(G) = 3.

From the local parameters above we define the following global parameter

ς(G) = min
w∈M(G)

{ς(w)}.

An example which helps to understand the notation above is given in

Figure 2.3. In such a case we have M(G) = {v3, v5, v15} and, for instance,

{v1, v8, v12} are terminal vertices of v3. So, v3 has terminal degree three

(ter(v3) = 3) and it follows that

l(v3) = min{l(v12, v3), l(v8, v3), l(v1, v3)}
= min{1, 2, 2} = 1,

and

ς(v3) = min{ς(v12, v1), ς(v12, v8), ς(v8, v1)}
= min{3, 3, 4} = 3.
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Similarly, it is possible to observe that ter(v5) = 2, l(v5) = 1, ς(v5) = 3,

ter(v15) = 2, l(v15) = 2 and ς(v15) = 4. Therefore, ς(G) = 3.

According to this notation we present the following result.

Theorem 2.10. Let G be a connected graph such that M(G) 6= ∅. If G is

k-metric dimensional, then k ≤ ς(G).

Proof. We claim that there exists at least one pair of different vertices x, y ∈
V (G) such that |DG(x, y)| = ς(G). To see this, let w ∈ M(G) and let u1, u2

be two terminal vertices of w such that ς(G) = ς(w) = ς(u1, u2). Let u′1 and

u′2 be the vertices adjacent to w in the shortest paths P (u1, w) and P (u2, w),

respectively. Notice that it could happen u′1 = u1 or u′2 = u2. Since every

vertex v 6∈ V (P (u1, w, u2)) − {w} satisfies that dG(u′1, v) = dG(u′2, v), and

the only distinctive vertices of u′1, u
′
2 are those ones belonging to P (u′1, u1)

and P (u′2, u2), we have that |DG(u′1, u
′
2)| = ς(G). Therefore, by Theorem 2.2,

if G is k-metric dimensional, then k ≤ ς(G).

The upper bound of Theorem 2.10 is tight. For instance, it is achieved

for every tree different from a path as it is further proved in Subsection 2.2.2,

where the k-metric dimension of trees is studied.

Theorem 2.11. Let G be a graph of order n different from a complete graph.

If G is k-metric dimensional, then k ≤ n− ω(G) + 1.

Proof. Let S be an ω(G)-clique. Since G is not complete, there exists a vertex

v /∈ S such that NS(v) ( S. Let u ∈ S with v 6∼ u. If NS(v) = S−{u}, then

d(u, x) = d(v, x) = 1 for every x ∈ S−{u}. Thus, |DG(u, v)| ≤ n−ω(G)+1.

On the other hand, if NS(v) 6= S − {u}, then there exists u′ ∈ S − {u} such

that u′ 6∼ v. Thus, d(u, v) = d(u′, v) = 2 and for every x ∈ S − {u, u′},
d(u, x) = d(u′, x) = 1. So, |DG(u, u′)| ≤ n − ω(G) + 1. Therefore, Theorem

2.2 leads to k ≤ n− ω(G) + 1.

Examples where the previous bound is achieved are those connected

graphs G of order n and clique number ω(G) = n − 1. In such a case,

n − ω(G) + 1 = 2. Notice that in this case there exists at least two twin

vertices. Hence, by Corollary 2.3 these graphs are 2-metric dimensional.

Theorem 2.12. Let G be a graph of minimum degree δ(G) ≥ 2, maximum

degree ∆(G) ≥ 3 and girth g(G) ≥ 4. If G is k-metric dimensional, then

k ≤ n− 1− (∆(G)− 2)

b g(G)
2 c−2∑
i=0

(δ(G)− 1)i.
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Proof. Let v ∈ V be a vertex of maximum degree in G. Since ∆(G) ≥ 3 and

g(G) ≥ 4, there are at least three different vertices adjacent to v and N(v)

is an independent set3. Given u1, u2 ∈ N(v) and i ∈ {0, . . . ,
⌊
g(G)
2

⌋
− 2} we

define the following sets.

A0 = N(v)− {u1, u2}.

A1 =
⋃
x∈A0

N(x)− {v}.

A2 =
⋃
x∈A1

N(x)− A0.

. . .

Ab g(G)
2 c−2 =

⋃
x∈Ab g(G)

2 c−3

N(x)− Ab g(G)
2 c−4.

Now, let A = {v} ∪

b
g(G)
2 c−2⋃
i=0

Ai

. Since δ(G) ≥ 2, we have that |A| ≥

1 + (∆(G)− 2)

b g(G)
2 c−2∑
i=0

(δ(G)− 1)i. Also, notice that for every vertex x ∈ A,

d(u1, x) = d(u2, x). Thus, u1, u2 can be only distinguished by themselves and

at most n− |A| − 2 other vertices. Therefore, |DG(u1, u2)| ≤ n− |A| and the

result follows by Theorem 2.2.

The bound of Theorem 2.12 is sharp. For instance, it is attained for the

graph in Figure 2.4. Since in this case n = 8, δ(G) = 2, ∆(G) = 3 and

g(G) = 5, we have that k ≤ n−1− (∆(G)−2)

b g(G)
2 c−2∑
i=0

(δ(G)−1)i = 6. Table

2.1 shows every pair of different vertices of this graph and their corresponding

nontrivial distinctive vertices. Notice that by Theorem 2.2 the graph is 6-

metric dimensional.

2.2.2 On k-metric dimensional trees

By Remark 2.1 we know that a path of order 2 is 2-metric dimensional, and

by Theorem 2.9, any path of order n ≥ 3 is n− 1-metric dimensional. Thus,

in this subsection we only considerer trees different from paths.

3An independent set or stable set is a set of vertices in a graph, no two of which are

adjacent.
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v1 v2 v3

v4

v5v6v7

v8

Figure 2.4: A graph that satisfies the equality in the upper bound of Theorem

2.12.

To study the k-metric dimensional trees different from paths, we need the

terminology and notation already described in Subsection 2.2.1 and also the

following one. Given an exterior major vertex v in a tree T and the set of its

terminal vertices v1, . . . , vα, the subgraph induced by the set
α⋃
i=1

V (P (v, vi))

is called a branch of T at v (a v-branch for short).

Theorem 2.13. If T is a k-metric dimensional tree different from a path,

then k = ς(T ).

Proof. Since T is not a path, M(T ) 6= ∅. Let w ∈ M(T ) and let u1, u2 be

two terminal vertices of w such that ς(T ) = ς(w) = ς(u1, u2). Notice that,

for instance, the two neighbours of w belonging to the paths P (w, u1) and

P (w, u2), say u′1 and u′2 satisfy |DT (u′1, u
′
2)| = ς(T ).

It only remains to prove that for every x, y ∈ V (T ) it holds that |DT (x, y)|
≥ ς(T ). Let w ∈M(T ) and let Tw = (Vw, Ew) be the w-branch. Also we con-

sider the set of vertices V ′ = V (T )−
⋃
w∈M(T ) Vw. Note that |Vw| ≥ ς(T ) + 1

for every w ∈M(T ). With this fact in mind, we consider three cases.

Case 1: x ∈ Vw and y ∈ Vw′ for some w,w′ ∈ M(T ), w 6= w′. In this

case x, y are distinguished by w or by w′. Now, if w distinguishes the pair

x, y, then at most one element of Vw does not distinguish x, y (see Figure

2.5). So, x and y are distinguished by at least |Vw| − 1 vertices of T or by at

least |Vw′| − 1 vertices of T .

Case 2: x ∈ V ′ or y ∈ V ′. Thus, V ′ 6= ∅ and, as a consequence,

|M(T )| ≥ 2. Hence, we have one of the following situations.

• There exist two vertices w,w′ ∈M(T ), w 6= w′, such that the shortest

path from x to w and the shortest path from y to w′ have empty

intersection, or
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x, y D∗G(x, y)

v1, v3 {v4, v5, v7, v8}
v1, v5 {v2, v4, v6, v8}
v1, v6 {v4, v5, v7, v8}
v1, v7 {v2, v3, v5, v6}
v1, v8 {v2, v3, v4, v7}
v2, v5 {v1, v3, v4, v8}
v2, v6 {v1, v3, v5, v7}
v2, v7 {v1, v3, v4, v8}
v3, v4 {v1, v2, v5, v8}
v3, v5 {v1, v2, v6, v7}
v3, v6 {v4, v5, v7, v8}
v3, v7 {v2, v4, v6, v8}
v4, v5 {v3, v6, v7, v8}
v4, v8 {v1, v3, v5, v7}
v5, v7 {v1, v3, v4, v8}
v7, v8 {v1, v4, v5, v6}

x, y D∗G(x, y)

v1, v2 {v3, v4, v5, v6, v8}
v1, v4 {v2, v3, v5, v7, v8}
v2, v3 {v1, v4, v6, v7, v8}
v2, v4 {v1, v5, v6, v7, v8}
v2, v8 {v3, v4, v5, v6, v7}
v3, v8 {v1, v2, v4, v5, v7}
v4, v6 {v1, v2, v3, v7, v8}
v4, v7 {v1, v3, v5, v6, v8}
v5, v6 {v1, v2, v4, v7, v8}
v5, v8 {v1, v3, v4, v6, v7}
v6, v7 {v2, v3, v4, v5, v8}
v6, v8 {v1, v2, v3, v4, v5}

Table 2.1: Pairs of vertices of the graph in Figure 2.4 and their nontrivial

distinctive vertices.

w′

y

w

z x

Figure 2.5: In this example, w distinguishes the pair x, y, and z is the only

vertex in Vw that does not distinguish x, y.

• for every vertex w′′ ∈ M(T ), it follows that either y belongs to the

shortest path from x to w′′ or x belongs to the shortest path from y to

w′′.

In the first case, x, y are distinguished by vertices in Vw or by vertices in Vw′

and in the second one, x, y are distinguished by vertices in Vw′′ .

Case 3: x, y ∈ Vw for some w ∈ M(T ). If x, y ∈ V (P (ul, w)) for

some l ∈ {1, . . . , ter(w)}, then there exists at most one vertex of V (P (ul, w))
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which does not distinguish x, y. Since ter(w) ≥ 2, the vertex w has a terminal

vertex uq with q 6= l. So, x, y are distinguished by at least |V (P (ul, w, uq))|−
1 vertices, and since |V (P (ul, w, uq))| ≥ ς(T ) + 1, we are done. If x ∈
V (P (ul, w) and y ∈ V (P (uq, w) for some l, q ∈ {1, . . . , ter(w)}, l 6= q, then

there exists at most one vertex of V (P (ul, w, uq)) which does not distinguish

x, y. Since |V (P (ul, w, uq))| ≥ ς(T ) + 1, the result follows.

Therefore, ς(T ) = D(T ) and by Theorem 2.2 the proof is completed.

2.3 On some families of k-adjacency dimen-

sional graph

From now on, given a graph G and two vertices x, y ∈ V (G), we say that G is

k-adjacency dimensional instead of (k, 2)-metric dimensional. The concept

of k-adjacency dimensional graphs was introduced by Estrada-Moreno et al.

in [33]. In this section, we use the notation C(G), CG(x, y) and C∗G(x, y)

instead of D(G, 2), DG,2(x, y) and D∗G,2(x, y), respectively. Note that C(G) =

min
x,y∈V (G)

{|NG(x)ONG(y) ∪ {x, y}|}.

As we shall see in Theorem 4.2, given a graph G, the problem of finding

the value of k such that G is k-adjacency dimensional is easy to solve. Even

so, we would point out some useful particular cases. For instance, by Corol-

lary 2.3 we deduce that complete graph Kn and complete bipartite graph

Kr,s are 2-adjacency dimensional.

If u, v ∈ V (G) are adjacent vertices of degree two and they are not twin

vertices, then |CG(u, v)| = 4. Thus, for any integer n ≥ 5, Cn is 4-adjacency

dimensional and we can state the following more general remark.

Remark 2.14. Let G be a twins free graph of minimum degree two. If G

has two adjacent vertices of degree two, then G is 4-adjacency dimensional.

For any hypercube Qr, r ≥ 2, we have |CQr(u, v)| = 2r if u ∼ v,

|CQr(u, v)| = 2r − 2 if dQr(u, v) = 2 and |CQr(u, v)| = 2r + 2 if dQr(u, v) ≥ 3.

Hence, C(Qr) = 2r − 2.

Remark 2.15. For any integer r ≥ 2 the hypercube Qr is (2r−2)-adjacency

dimensional.

It is straightforward to see that for any graph G of girth g(G) ≥ 5 and
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minimum degree δ(G) ≥ 2, C(G) ≥ 2δ(G). Hence, the following remark is

immediate.

Remark 2.16. Let G be a k-adjacency dimensional graph. If g(G) ≥ 5 and

δ(G) ≥ 2, then k ≥ 2δ(G).

If there is an end vertex u in G whose support vertex v has degree two,

then |CG(u, v)| = |NG[v]| = 3. Hence, we deduce the following result.

Remark 2.17. Let G be a twins free graph. If there exists an end vertex

whose support vertex has degree two, then G is 3-adjacency dimensional.

The case of trees is summarized in the following remark an we need the

concept of exterior major vertex already presented in Subsection 2.2.1.

Remark 2.18. Let T be a k-adjacency dimensional tree of order n ≥ 3.

Then k ∈ {2, 3} and k = 2 if and only if there are two leaves sharing a

common support vertex.

Proof. By Remark 2.3 we conclude that k = 2 if and only if there are two

leaves sharing a common support vertex. Also, if T is a path different from

P3, then by Remark 2.17 we have that k = 3.

If T is not a path, then there exists at least one exterior major vertex u

of terminal degree greater than one. Then, either u is the support vertex of

all its terminal vertices, in which case Remark 2.3 leads to k = 2, or u has

at least one terminal vertex whose support vertex has degree two, in which

case Remark 2.17 leads to k = 3 if there are no leaves of T sharing a common

support vertex.

Since |CG(x, y)| ≤ δ(x) + δ(y) + 2, for all x, y ∈ V (G), the following

remark immediately follows.

Remark 2.19. If G is a k-adjacency dimensional graph, then

k ≤ min
x,y∈V (G)

{δ(x) + δ(y)}+ 2.

This bound is achieved, for instance, for any graph G ∼= Cn �K1. Also,

a trivial example is the case of graphs having two isolated vertices, which are

2-adjacency dimensional.

Since any k-adjacency generator is a (k, t)-metric generator, and for any

graph G of diameter at most two the distances dG,t and dG,2 are equivalent,

the following result is straightforward.
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Remark 2.20. If a graph G is k-adjacency dimensional and (k′, t)-metric

dimensional, then k ≤ k′. Moreover, if D(G) ≤ 2, then k′ = k.

2.4 k-metric dimensional product graphs

We explained earlier that we study the k-metric dimension of the lexico-

graphic product and the corona product of graphs. Thus, we need to deter-

mine the values of k such that there exist k-metric bases for these products.

2.4.1 Lexicographic product graphs

We now analyse when the lexicographic product is k-metric dimensional.

We first study the particular case of join graphs due its importance and its

peculiarities.

Join graphs

Throughout this section we also use the concept of C(H) for a graph H

already defined at the beginning of Section 2.3.

Proposition 2.21. Let H be a graph of order n′ ≥ 2 and maximum de-

gree ∆(H). The graph K1 + H is k-metric dimensional if and only if k =

min{C(H), n′ −∆(H) + 1}.

Proof. If x, y ∈ V (H), then DK1+H(x, y) = CH(x, y). Also, if x /∈ V (H) then

DK1+H(x, y) = {x}∪(V (H)−NH(y)). Therefore, by Theorem 2.2, the result

follows.

We next point out some consequences of Proposition 2.21.

Corollary 2.22. Let H be a nontrivial graph. If H is k-metric dimensional

and K1 +H is k′-metric dimensional, then k′ ≤ k.

Proof. By Proposition 2.21 we have that if K1 +H is a k′-metric dimensional

graph, then k′ ≤ C(H). Since, for any x, y ∈ V (H) we have CH(x, y) ⊆
DH(x, y), we deduce that if H is k-metric dimensional, then C(H) ≤ k and,

as a consequence, k′ ≤ k.

Corollary 2.23. For any connected graph H of order n′ ≥ 2, the graph

K1 +H is 2-metric dimensional if and only if ∆(H) = n′− 1 or H has twins

vertices.
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Notice that the previous corollary may also be derived from Corollary

2.3.

Corollary 2.24. Let H be a connected graph of order n′ ≥ 4 and maximum

degree ∆(H) = n′ − 2. If H does not contain twin vertices, then K1 + H is

3-metric dimensional.

Proof. Since H does not contain twin vertices, for every x, y ∈ V (H) there

exists z ∈ CH(x, y)−{x, y}. Thus, C(H) ≥ 3. Now, since n′−∆(H) + 1 = 3,

by Proposition 2.21 we can deduce the result.

The wheel graph W1,n is the join graph K1 + Cn and the fan graph F1,n

is the join graph K1 + Pn.

Corollary 2.25. For any n ≥ 4, the fan graph F1,n is 3-metric dimensional,

and for any n ≥ 5, the wheel graph W1,n is 4-metric dimensional.

We now show a property on the (n′−∆(H)+ 1)-metric bases of K1 +H.

Proposition 2.26. Let H be a nontrivial graph of order n′. If K1 + H is

(n′ −∆(H) + 1)-metric dimensional, then the vertex of K1 belongs to every

(n′ −∆(H) + 1)-metric basis of K1 +H.

Proof. Let v be the vertex of K1. Notice that for every x ∈ V (H), we have

DK1+H(x, v) = (V (H)−NH(x)) ∪ {v}.

For every x ∈ V (H) such that NH(x) = ∆(H) we have that n′−∆(H) + 1 =

| (V (H)−N(x)) ∪ {v}| = |DK1+H(x, v)|. Thus, for any (n′ − ∆(H) + 1)-

metric basis B we have DK1+H(x, v) ⊆ B and, since v ∈ DK1+H(x, v), we

conclude that v ∈ B.

By Proposition 2.26 we deduce that if the vertex of K1 does not belong

to any k-metric basis of K1 +H, then K1 +H is not (n′−∆(H) + 1)-metric

dimensional. Thus, by Proposition 2.21 we obtain the following result.

Proposition 2.27. Let H be a nontrivial graph. If the vertex of K1 does

not belong to any k-metric basis of K1 + H, then K1 + H is C(H)-metric

dimensional.

Proposition 2.28. Let G and H be two graphs of order n ≥ 2 and n′ ≥ 2,

respectively. The graph G + H is k-metric dimensional if and only if k =

min{C(G), C(H), n−∆(G) + n′ −∆(H)}.
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Proof. If x, y ∈ V (G), then DG+H(x, y) = CG(x, y). Analogously, if x, y ∈
V (H), then DG+H(x, y) = CH(x, y). Also, if x ∈ V (G) and y ∈ V (H), then

DG+H(x, y) = (V (G) − NG(x)) ∪ (V (H) − NH(y)). Therefore, by Theorem

2.2, the result follows.

General lexicographic product graphs

Twin vertices play a highly significant role into studying the k-metric dimen-

sion of graphs, as we shall observe through our exposition. In this sense,

we need to use a formal terminology already set forth above in Section 1.1.

Now, for any graph G of order n, a family composed by n nontrivial graphs

H = {H1, . . . , Hn} and ui ∈ V (G), we define in G ◦ H the following local

parameter:

T (ui,H) =



|V (Hi)|, if ui ∈ S(G),

min
uj ,ul∈FT (ui)

{δ(Hj) + δ(Hl) + 2}, if ui ∈ FT (G),

min
uj ,ul∈TT (ui)

{|V (Hj)| −∆(Hj) + |V (Hl)| −∆(Hl)}, if ui ∈ TT (G).

Moreover, we define a global parameter from the local parameter defined

above,

T (G ◦ H) = min
ui∈V (G)

{T (ui,H)}.

We also define

C(H) = min
Hi∈H
{C(Hi)}.

With all the tools presented till this point, we are now prepare to give

our first result regarding the value k for which a lexicographic product graph

is k-metric dimensional.

Theorem 2.29. Let G be a connected graph of order n ≥ 2 and let H be a

family of n nontrivial graphs. The graph G ◦ H is k-metric dimensional if

and only if k = min{T (G ◦ H), C(H)}.

Proof. By Theorem 2.2, it is only necessary to prove that D(G ◦ H) =

min{T (G ◦H), C(H)}. Hence, let (ui, v), (uj, w) ∈ V (G ◦H) be two different
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vertices. We analyse two cases.

Case 1. i = j. In this case v 6= w. By Remark 1.1 (i) and (ii), it follows that

DG◦H((ui, v), (ui, w)) = {ui} × CHi
(v, w). Thus,

R1 = min
(ui,v),(ui,w)∈V (G◦H)

{|DG◦H((ui, v), (ui, w))|} = min
Hi∈H
{C(Hi)} = C(H).

Case 2. i 6= j. If ui, uj are not twins, then D∗G(ui, uj) 6= ∅. So, for every ul ∈
D∗G(ui, uj) it follows V (Hl) ( DG◦H((ui, v), (uj, w)) or equivalently |V (Hl)| <
|DG◦H((ui, v), (uj, w))|. Thus,

R2 = min
(ui,v),(uj ,w)∈V (G◦H)

{|DG◦H((ui, v), (uj, w)))|}

> min
Hl∈H
{|V (Hl)|}

≥ min
Hl∈H
{|C(Hl)|} = C(H).

Notice that R2 is strictly greater than R1. So, the minimum between them

is R1.

Now, we assume that ui, uj are twins, so D∗(ui, uj) = ∅. Hence we con-

sider two possibilities for ui, uj in the next statements, where the conclusions

are consequences of Remark 1.1 (i) and (ii).

Subcase 2.1: If ui ∼ uj, then |DG◦H((ui, v), (uj, w))| = |(V (Hi) − NHi
(v)) ∪

(V (Hj)−NHj
(w))|. So, it follows that

R3 = min
(ui,v),(uj ,w)∈V (G◦H)

{|DG◦H((ui, v), (uj, w))|}

= min{|(V (Hi)−NHi
(v)) ∪ (V (Hj)−NHj

(w))|}
= min{|V (Hi)| −∆(Hi) + |V (Hj)| −∆(Hj)}
= min

ul∈V (G)
{T (ul,H)}

= T (G ◦ H).

Subcase 2.2: If dG(ui, uj) = 2, then |DG◦H((ui, v), (uj, w))| = |NHi
[v] ∪
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NHj
[w]|. Similarly, we obtain that

R4 = min
(ui,v),(uj ,w)∈V (G◦H)

{|DG◦H((ui, v), (uj, w))|}

= min{|NHi
[v] ∪NHj

[w]|}
= min{δ(Hi) + δ(Hj) + 2}
= min

ul∈V (G)
{T (ul,H)}

= T (G ◦ H).

As a conclusion of all the statements above, it is obtained that

D(G ◦ H) = min
(ui,v),(uj ,w)∈V (G◦H)

{|DG◦H((ui, v), (uj , w))|}

= min

{
min
i=j
{|DG◦H((ui, v), (uj , w))|},min

j 6=i
{|DG◦H((ui, v), (uj , w))|}

}
= min{R1, R2, R3, R4}

= min{R1, R3, R4}

= min{C(H), T (G ◦ H)}.

Therefore the proof is completed.

We next emphasize some particular cases of Theorem 2.29 when the

lexicographic product graphs have some specific structure which are related

with the existence or not of twin vertices in the graph G.

Corollary 2.30. Let G be a connected twins free graph of order n ≥ 2 and let

H be a family composed by n nontrivial graphs. Then G ◦ H is C(H)-metric

dimensional.

Corollary 2.31. Let G be a connected nontrivial graph and let H be a graph

of order n′ ≥ 2.

(i) If G is twins free, then the graph G ◦H is k-metric dimensional if and

only if k = C(H).

(ii) If G contains at least one false twin and one true twin, then the graph

G ◦H is k-metric dimensional if and only if k = min{2δ(H) + 2, 2(n′−
∆(H)), C(H)}.

(iii) If G is true twins free and contains at least one false twin, then the graph

G◦H is k-metric dimensional if and only if k = min{2δ(H)+2, C(H)}.
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(iv) If G is false twins free and contains at least one true twin, then the

graph G ◦ H is k-metric dimensional if and only if k = min{2(n′ −
∆(H)), C(H)}.

v0v1 v2

v3v11

v12

v21

v22Ga

v0v1 v2

v3v11

v12

v21

v22Gb

v0v1
v2

v3v11

v12

v21

v22Gc

Figure 2.6: The graph Gx, x ∈ {a, b, c}, satisfies the conditions of Corollary

2.31 (ii), (iii) and (iv) respectively.

As some instances of graphs G that satisfy the conditions of the corollary

above we next construct some examples. In Figure 2.6, the vertices v11

and v12 of the graph Ga are true twins, as well as v21 and v22 are false

twins. So, Ga contains two false twins and two true twins and satisfies the

premise of Corollary 2.31 (ii), and as a consequence, for any graph H of order

n′ ≥ 2, we have that Ga ◦ H is k-metric dimensional for k = min{2δ(H) +

2, 2(n′ − ∆(H)), C(H)}. Similarly, Gb is a true twins free graph and it has

two false twin vertices, v11 and v3. Thus, Gb ◦H is k-metric dimensional for

k = min{2δ(H) + 2, C(H)}. Finally, the graph Gc is false twins free and it

has two true twin vertices, v21 and v22, and consequently, Gc ◦H is k-metric

dimensional for k = min{2(n′ −∆(H)), C(H)}.
We also point out the particular case k = 2 of Theorem 2.29.

Corollary 2.32. Let G be a connected graph of order n ≥ 2 and let H
be a family composed by n nontrivial graphs. The graph G ◦ H is 2-metric

dimensional if and only if at least one of the following statements holds,

(i) there exists Hi ∈ H which has twins or,

(ii) there exist two true twin vertices ui, uj ∈ V (G) such that ∆(Hi) = ni−1

and ∆(Hj) = nj − 1.

(iii) there exist two false twin vertices ui, uj ∈ V (G) such that Hi and Hj

contain at least an isolated vertex.
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2.4.2 Corona product graphs

If there exists a graph Hi ∈ H such that Hi has twin vertices, then for any

graph G, the corona graph G � H has twin vertices. Notice also that any

two vertices of G are not twins in G�H. Therefore, according to Corollary

2.3 we deduce the following result.

Remark 2.33. For any connected graph G of order n and any family H
composed by n connected nontrivial graphs, the corona graph G � H is 2-

metric dimensional if and only if there exists a 2-metric dimensional graph

Hi ∈ H.

Corollary 2.34. Let G be a connected graph. Then,

(i) For n ≥ 2, the graph G�Kn is 2-metric dimensional.

(ii) The graphs G� P3 and G� C4 are 2-metric dimensional.

Theorem 2.35. Let G be a connected nontrivial graph of order n and let

H be a family composed by n nontrivial graphs. Then, G � H is k-metric

dimensional if and only if k = C(H).

Proof. We claim that C(H) = min
x,y∈V (G�H)

{|DG�H(x, y)|}. Notice that, for ev-

ery u, v ∈ V (Hi), we have that |CHi
(u, v)| ≤ |V (Hi)|. Let x, y be two different

vertices of G�H. We consider the following cases.

Case 1. If x ∈ V (Hi) and y ∈ V (Hj), i 6= j, then we obtain thatDG�H(x, y) =⋃
vl∈DG(vi,vj)

(V (Hl) ∪ {vl}).

Case 2. If x, y ∈ V (G), then we assume that x = vi and y = vj. So, it

follows that DG�H(x, y) =
⋃

vl∈DG(vi,vj)

(V (Hl) ∪ {vl}).

Case 3. If x ∈ V (Hi) and y ∈ V (G), then y = vj for some j ∈ {1, . . . , n} and

we consider the following. If j = i, then DG�H(x, y) = V (G�H)−NHi
(x).

Now, if j 6= i, then we have DG�H(x, y) ⊇ V (Hj).

Case 4. If x, y ∈ V (Hi), then DG�H(x, y) = CHi
(x, y).

Now, notice that from Cases 1, 2 and 3, |DG�H(x, y)| ≥ min
Hi∈H
{|V (Hi)|} ≥

min
Hi∈H
{C(Hi)} = C(H). Also, in Case 4, for every x, y ∈ V (Hi) we have that
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|DG�H(x, y)| = |CHi
(x, y)| ≥ min

Hj∈H
{C(Hj)} = C(H). Thus,

C(H) ≤ min
x,y∈V (G�H)

{|DG�H(x, y)|}.

On the other hand, we consider the following.

min
x,y∈V (G�H)

{|DG�H(x, y)|} ≤ min
x,y∈V (G�H)−V (G)

{|DG�H(x, y)|}

≤ min
Hi∈H
{ min
x,y∈V (Hi)

{|DG�H(x, y)|}}

= min
Hi∈H
{ min
x,y∈V (Hi)

{|CHi
(x, y)|}}

= min
Hi∈H
{C(Hi)}

= C(H).

Therefore C(H) = min
x,y∈V (G�H)

{|DG�H(x, y)|} and, by Theorem 2.2, we con-

clude the proof.

Notice that if every Hi ∈ H satisfies that Hi
∼= H, then C(H) = C(H).

Thus, the following result follows from Theorem 2.35.

Corollary 2.36. Let G and H be two connected nontrivial graphs. Then

G�H is k-metric dimensional if and only if k = C(H).

According to Theorem 2.35, if the corona graph G � H is k-metric di-

mensional, then the value of k is independent from the connected nontrivial

graph G. Moreover, for any x, y ∈ V (Hi) it holds DHi
(x, y) ⊇ CHi

(x, y).

Therefore, by Theorems 2.2 and 2.35 we deduce the following result.

Proposition 2.37. Let G�H be a k-metric dimensional graph such that G is

a connected nontrivial graph and H = {H1, H2, . . . , Hn} is a family composed

by nontrivial graphs, where Hi is ki-metric dimensional for i ∈ {1, . . . , n}.
Then the following assertions hold:

(i) k ≤ min
i∈{1,...,n}

{ki}.

(ii) k = kj if and only if min
i∈{1,...,n}

{C(Hi)} = min
x,y∈V (Hj)

{|DHj
(x, y)|}.

(iii) If k = kj, then C(Hj) = min
x,y∈V (Hj)

{|DHj
(x, y)|}.
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If a graph H has diameter D(H) ≤ 2, then for every x, y ∈ V (H) it

holds DH(x, y) = CH(x, y). Thus, the following result is deduced.

Corollary 2.38. Let G �H be a k-metric dimensional graph where G is a

connected nontrivial graph and H = {H1, H2, . . . , Hn} is a family composed

by graphs such that Hi is ki-metric dimensional and D(Hi) ≤ 2, for every

i ∈ {1, . . . , n}. Then k = min
i∈{1,...,n}

{ki}.

If g(H) ≥ 5, then for every x, y ∈ V (H) we have that either |NH(x) ∩
NH(y)| = 1 or |NH(x) ∩ NH(y)| = 0. Hence, as a consequence of Theorem

2.35, the next result follows.

Corollary 2.39. Let G be a connected nontrivial graph of order n and

let H = {H1, H2, . . . , Hn} be a family composed by δ-regular graphs where

g(Hi) ≥ 5, for every i ∈ {1, . . . , n}. Then G�H is a 2δ-metric dimensional

graph.

We would point out the following particular case of Corollary 2.39.

Remark 2.40. Let G be a connected nontrivial graph. Then, for n ≥ 5, the

graph G� Cn is 4-metric dimensional.

If x ∈ V (H) is an end vertex and y ∈ V (H) is a support vertex of degree

two which is adjacent to x, then |CH(x, y)| = 3. Thus, from Corollary 2.3

and Theorem 2.35 we deduce the following result.

Proposition 2.41. Let G be a connected graph of order n ≥ 2 and let H be

a family composed by n nontrivial graphs such that no graph belonging to H
has twin vertices. If there exists H ∈ H, having an end vertex whose support

vertex has degree two, then G�H is a 3-metric dimensional graph.

An interesting particular case of the result above is when the family H
contains a path Pr of order r ≥ 4 and no graph belonging to H has twin

vertices. In such a case G�H is a 3-metric dimensional graph.





Chapter 3

On the (k, t)-metric dimension

of graphs

Overview

The current chapter is concerned with finding formulae and bounds for the

(k, t)-metric dimension of some graphs. We also describe some classes of

graphs where these bounds are achieved. Despite we give some results for

the (k, t)-metric dimension for any t ≥ 2, we emphasize in the particular

cases of the k-metric dimension and the k-adjacency dimension of a graph

G, i.e., the cases when t ≥ D(G) and t = 2, respectively. We also find exact

values of the k-metric dimension of some families of lexicographic product

graphs and Corona product graphs, or general lower and upper bounds, and

express these in terms of invariants of the factor graphs.

3.1 On the (k, t)-metric dimension of graphs

As in the previous chapter, throughout this chapter, unless otherwise stated,

we will consider t as an integer greater than one.

In this section we study the problem of computing or bounding the (k, t)-

metric dimension of several families of graphs. The following result is direct

consequence of the fact that any (k, t)-metric generator for G is also a (k, t+

1)-metric generator for G.

Remark 3.1 (Monotony of the (k, t)-metric dimension with respect to t).

Let G be a (k′, t)-metric dimensional graph. Then for any k ∈ {1, . . . , k′}

43
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and any integers r, s such that 2 ≤ r < s,

dimk,r(G) ≥ dimk,s(G).

Moreover, if r ≥ D(G), then dimk,r(G) = dimk,s(G).

Theorem 3.2 (Monotony of the (k, t)-metric dimension with respect to k).

Let G be a (k, t)-metric dimensional graph and let r, s be two integers. If

1 ≤ r < s ≤ k, then dimr,t(G) < dims,t(G).

Proof. Let B be a (k, t)-metric basis of G and let x ∈ B. Since all pairs of

different vertices in V (G) are distinguished by at least k vertices of B, we have

that B − {x} is a (k − 1, t)-metric generator for G and, as a consequence,

dimk−1,t(G) ≤ |B − {x}| < |B| = dimk,t(G). Proceeding analogously, we

obtain that dimk−1,t(G) > dimk−2,t(G) and, by a finite repetition of the

process we obtain the result.

Corollary 3.3. Let G be a (k, t)-metric dimensional graph of order n ≥ 2.

(i) For any r ∈ {2, . . . , k}, dimr,t(G) ≥ dimr−1,t(G) + 1.

(ii) For any r ∈ {1, . . . , k}, dimr,t(G) ≥ dim1,t(G) + (r − 1).

(iii) For any r ∈ {1, . . . , k}, dimr,t(G) ≤ n− (k − r).

Let Dk,t(G) be the set obtained as the union of the sets DG,t(x, y) that

distinguish a pair of different vertices x, y whenever |DG,t(x, y)| = k, i.e.,

Dk,t(G) =
⋃

|DG,t(x,y)|=k

DG,t(x, y).

Remark 3.4. If G is a (k, t)-metric dimensional graph, then for any (k, t)-

metric basis B we have Dk,t(G) ⊆ B, and as a consequence, dimk,t(G) ≥
|Dk,t(G)|.

Proof. Since every pair of different vertices x, y is distinguished only by the

elements ofDG,t(x, y), if |DG,t(u, v)| = k for some u, v ofG, then for any (k, t)-

metric basis B we have DG,t(u, v) ⊆ B, and as a consequence, Dk,t(G) ⊆ B.

Therefore, the result follows.

The bound given in Remark 3.4 is tight. For instance, for t ≥ D(G)

we will show in Proposition 3.23 that there exists a family of trees attaining

this bound for every k. Other examples for any positive integer t ≥ 2 can be

derived from the following result.
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Theorem 3.5. Let G be a (k, t)-metric dimensional graph of order n ≥ 2.

Then dimk,t(G) = n if and only if V (G) = Dk,t(G).

Proof. Suppose that V (G) = Dk,t(G). Now, since every (k, t)-metric dimen-

sional graph G satisfies that dimk,t(G) ≤ n, by Remark 3.4 we obtain that

dimk,t(G) = n.

On the other hand, let dimk,t(G) = n. Note that for every a, b ∈ V (G),

we have |DG,t(a, b)| ≥ k. If there exists at least one vertex x ∈ V (G) such

that x /∈ Dk,t(G), then for every a, b ∈ V (G), we have |DG,t(a, b)− {x}| ≥ k

and, as a consequence, V (G)− {x} is a (k, t)-metric generator for G, which

is a contradiction. Therefore, V (G) = Dk,t(G).

Corollary 3.6. Let G be a graph of order n ≥ 2. Then dim2,t(G) = n if and

only if every vertex of G belongs to a non-singleton twin equivalence class.

We will show other examples of graphs that satisfy Theorem 3.5 for

k ≥ 3. Let W1,n be the wheel graph and F1,n = K1 + Pn be the fan graph.

Since V (F1,4) = D3,t(F1,4) and V (W1,5) = D4,t(W1,5), by Theorem 3.5 we

have that dim3,t(F1,4) = 5 and dim4,t(W1,5) = 6.

Given two nontrivial graphs G and H, it holds that any pair of twin

vertices x, y ∈ V (G) or x, y ∈ V (H) are also twin vertices in G + H. As a

direct consequence of Corollary 3.6, the next result holds.

Remark 3.7. Let G and H be two nontrivial graphs of order n1 and n2,

respectively. If all the vertices of G and H are twin vertices, then G + H is

(2, t)-metric dimensional and

dim2,t(G+H) = n1 + n2.

Note that in Remark 3.7, the graphs G and H could be non-connected.

Moreover, G and H could be nontrivial empty graphs. For instance, Nr+Ns,

where Nr, Ns, r, s > 1, is the complete bipartite graph Kr,s which satisfies

that dim2,t(Kr,s) = r + s.

In general, we can state the following result.

Remark 3.8. Let G be a connected graph, and let U1, U2, . . . , Ur be the non-

singleton twin equivalence classes of G. Then

dim2,t(G) ≥
r∑
i=1

|Ui|.
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Proof. Since for two different vertices x, y ∈ V (G) we have that D2,t(x, y) =

{x, y} if and only if there exists a twin equivalence class Ui such that x, y ∈ Ui,
we deduce

D2,t(G) =
r⋃
i=1

Ui.

Therefore, by Remark 3.4 we conclude the proof.

Notice that the previous result leads to Corollary 3.6, so this bound is

tight. Now, we consider the connected graph G of order r+ t obtained from

an empty graph Nr of order r ≥ 2 and a path Pt of order t ≥ 2 by connecting

every vertex of Nr to a given leaf of Pt. In this case, there are t singleton

classes and one false twin equivalence class, say U1, of cardinality r. By the

previous result we have dim2,t(G) ≥ |U1| = r and, since U1 is a (2, t)-metric

generator for G, we conclude that dim2,t(G) = r.

In particular we can state the following result on the strong product

graphs.

Theorem 3.9. Let G and H be two nontrivial connected graphs of order n

and n′, respectively. Let U1, U2, . . . , Ur be the true twin equivalence classes of

G. Then

dim2,t(G�H) ≥ n′
r∑
i=1

|Ui|.

Moreover, if every vertex of G is a true twin, then

dim2,t(G�H) = nn′.

Proof. For any two vertices a, c ∈ Ui and b ∈ V (H),

NG�H [(a, b)] = NG[a]×NH [b]

= NG[c]×NH [b]

= NG�H [(c, b)].

Thus, (a, b) and (c, b) are true twin vertices. Hence,

D2,t(G�H) ⊇
r⋃
i=1

Ui × V (H).

Therefore, by Remark 3.4 we conclude dim2,t(G�H) ≥ n′
r∑
i=1

|Ui|.
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Finally, if every vertex of G is a true twin, then
r⋃
i=1

Ui = V (G) and, as a

consequence, we obtain dim2,t(G�H) = nn′.

It was shown in [21] that dim(G) = 1 if and only if G ∼= Pn. The

following result is a generalization.

Theorem 3.10. Let G be a nontrivial graph. Then dim1,t(G) = 1 if and

only if G ∼= K1 ∪ Pr or G ∼= Pr+1 for some r ∈ {1, . . . , t}.

Proof. Note that one of the vertices of K1 ∪ K1 and one of the vertices

of P2 form a corresponding (1, t)-metric basis in the corresponding graph.

For every r ∈ {2, . . . , t} one of the leaves of Pr and one of the leaves of

Pr+1 are (1, t)-metric bases of K1 ∪ Pr and Pr+1, respectively. Thus, for any

r ∈ {1, . . . , t} we have that if G ∼= K1 ∪ Pr or G ∼= Pr+1, then dim1,t(G) = 1.

Now, suppose that dim1,t(G) = 1. We first show that ∆(G) ≤ 2. To this

end, suppose that there exists a vertex u of deg(u) ≥ 3. Thus, for every v ∈ V
there exist two vertices x, y ∈ NG(u) such that dG,t(v, x) = dG,t(v, y). Hence,

dim1,t(G) ≥ 2, which is a contradiction, and as a consequence, ∆(G) ≤ 2.

Note that no vertex belonging to any (1, t)-metric basis has degree two, since

this vertex does not distinguish a pair of its neighbours. As a consequence

of this facts, we deduce that each connected component of G is a path or an

isolated vertex. If G has at least three connected components, then no vertex

belonging to a connected component distinguishes two vertices belonging to

other two connected components. Hence, G has at most two connected com-

ponents. If G has only one connected component, then G is a path of order

at most t+1. Note that if G is a path of order at least t+2, then for any leaf

v of the path there exist two vertices x, y such that dG,t(v, x) = dG,t(v, y) = t,

which is a contradiction. Now, consider that G has two connected compo-

nents. If these connected components have order greater than one, then no

vertex belonging to a connected component distinguish two vertices belonging

to the other connected component. So, if G has two connected components,

then one of them is an isolated vertex and the other is a path of order at

most t. Note that if G ∼= K1 ∪ Pr for some r > t, then for any leaf v of Pr

there exists a vertex x ∈ V (Pr) such that dG,t(v, x) = dG,t(v, y) = t, where y

is the isolated vertex, which is a contradiction.
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Proposition 3.11. Let k, t be two integers such that k ≥ 3 and t ≥ k − 1.

For any path Pr of order r ≥ k + 1,

dimk,t(Pr) ≥ k + 1.

Moreover, if k + 1 ≤ r ≤ 2t− k + 3, then

dimk,t(Pr) = k + 1.

Proof. Let V (Pr) = {v1, v2, . . . , vr} such that vi ∼ vi+1 for every i ∈ {1, . . . , r−
1}, and let S be a (k, t)-metric basis of Pr. Since |S| ≥ k ≥ 3, we deduce that

S ∩ (V (Pr)− {v1, vr}) 6= ∅. For any vertex w ∈ S ∩ (V (Pr)− {v1, vr}) there

exist at least two vertices u, v ∈ V (Pr) such that dPr,t(w, u) = dPr,t(w, v).

Hence, |S| = dimk,t(Pr) ≥ k + 1.

Let S ′ =
{
vd r2e−b k2c, vd r2e−b k2c+1, . . . , vd r2e+d k2e

}
for some r ≥ k + 1.

Note that |S ′| = k+1. If r ≤ 2t−k+3, then for any pair of different vertices

u, v ∈ V (Pr) there exists at most one vertex w ∈ S ′ such that dPr,t(w, u) =

dPr,t(w, v). Thus, for every pair of different vertices x, y ∈ V (Pr), there exists

at least k vertices of S ′ such that they distinguish x, y. So S ′ is a (k, t)-metric

generator for Pr. Therefore, dimk(Pr, t) ≤ |S ′| = k + 1 and, consequently,

the result follows.

We now consider the limit case of the trivial bound dimk,t(G) ≥ k.

Proposition 3.12. If G is a nontrivial graph, then dimk,t(G) = k if and

only if k ∈ {1, 2} and G ∼= K1 ∪ Pr or G ∼= Pr+1 for all r ∈ {1, . . . , t}.

Proof. The case k = 1 was studied in Theorem 3.10. On the other hand, note

that all the vertices of K1 ∪K1 and all the vertices of P2 form a (2, t)-metric

basis of K1 ∪ K1 and P2, respectively. For every r ∈ {2, . . . , t} the leaves

of Pr and the leaves of Pr+1 form a (2, t)-metric basis of K1 ∪ Pr and Pr+1,

respectively. Thus, for any r ∈ {1, . . . , t} we have that if G ∼= K1 ∪ Pr or

G ∼= Pr+1, then dim2,t(G) = 2.

Now, suppose that dimk,t(G) = k for some k ≥ 2. By Corollary 3.3

(ii) we have that k = dimk,t(G) ≥ dim1,t(G) + k − 1, and as a consequence,

dim1,t(G) = 1. Hence, by Theorem 3.10 it follows that G ∼= K1 ∪ Pr or

G ∼= Pr+1 for any r ∈ {1, . . . , t} and we are done for k ∈ {1, 2}.
From now on we assume that k ≥ 3. If G ∼= Pr+1, then by Corollary

2.3 we deduce that r ≥ 3. As a consequence of this fact and by Proposition
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3.11 we have that dimk,t(G) = k + 1, which is a contradiction. Since the

isolated vertex of K1 ∪ Pr does not distinguish any pair of different vertices

of Pr, we obtain that dimk,t(K1 ∪ Pr) ≥ dimk,t(Pr). By Corollary 2.3, if

G ∼= K1∪Pr, then r ≥ 4. According to this fact and by Proposition 3.11, we

conclude that k+ 1 = dimk,t(Pr) ≤ dimk,t(K1 ∪Pr), which is a contradiction

again. Therefore, if k ≥ 3, then for any nontrivial graph G we deduce that

dimk,t(G) ≥ k + 1.

The following result allows to extend the results on the (k, t)-metric

dimension of lexicographic product graphs G ◦ H to results on the (k, 2)-

metric dimension of G ◦ H, and vice versa.

Theorem 3.13. Let G be a connected graph of order n ≥ 2 and let H =

{H1, . . . , Hn} be a family composed by nontrivial graphs. A set A ⊆ V (G◦H)

is a (k, t)-metric generator for G ◦ H if and only if A is a (k, 2)-metric

generator for G ◦ H, and as a consequence,

dimk,t(G ◦ H) = dimk,2(G ◦ H).

Proof. By definition, any (k, 2)-metric generator for a graph is also a (k, r)-

metric generator for r ≥ 3. Considering that any (k,D(G))-metric generator

for a graph G is also a (k, t)-metric generator for t > D(G), we only need

to prove that any (k,D(G ◦ H))-metric generator for G ◦ H is also a (k, 2)-

metric generator. For simplicity, we will use the terminology of k-metric

generators and k-adjacency generators. Let V (G) = {u1, . . . , un}, let S be

a k-metric generator for G ◦ H, and let Si = S ∩ ({ui} × V (Hi)) for every

ui ∈ V (G). We differentiate the following four cases for two different vertices

(ui, v), (uj, w) ∈ V (G ◦ H).

Case 1. i = j. In this case v 6= w. By Remark 1.1, no vertex from Sl, l 6= i,

distinguishes (ui, v) and (ui, w). So it holds that |DG◦H((ui, v), (ui, w))∩Si| ≥
k. Since for any vertex (ui, x) ∈ Si we have that dG◦H((ui, x), (ui, v)) =

dG◦H,2((ui, x), (ui, v)) and dG◦H((u, x), (ui, w)) = dG◦H,2((ui, x), (ui, w)), we

conclude that k ≤ |CG◦H((ui, v), (ui, w)) ∩ Si| = |CG◦H((ui, v), (ui, w)) ∩ S|.

Case 2. i 6= j and ui, uj are true twins. By Remark 1.1, no vertex from Sl, l /∈
{i, j}, distinguishes (ui, v) and (uj, w). So |DG◦H((ui, v), (uj, w))∩(Si∪Sj)| ≥
k. Since for any vertex (u, x) ∈ Si ∪ Sj we have that dG◦H((u, x), (ui, v)) =
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dG◦H,2((u, x), (ui, v)) and dG◦H((u, x), (uj, w)) = dG◦H,2((u, x), (uj, w)), we

conclude that k ≤ |CG◦H((ui, v), (uj, w))∩(Si∪Sj)| = |CG◦H((ui, v), (uj, w))∩
S|.

Case 3. i 6= j and ui, uj are false twins. Analogous to the previous case.

Case 4. i 6= j and ui, uj are not twins. Hence, there exists ul ∈ V (G)−{ui, uj}
such that dG,2(ul, ui) 6= dG,2(ul, uj). Hence, for any vertex (ul, x) ∈ Sl we have

that

dG◦H,2((ul, x), (ui, v)) = dG,2((ul, ui) 6= dG,2((ul, uj) = dG◦H,2((ul, x), (uj, w)).

According to Case 1, we have that |Sl| ≥ k. Therefore, we conclude that

k ≤ |CG◦H((ui, v), (uj, w)) ∩ Sl| ≤ |CG◦H((ui, v), (uj, w)) ∩ S|.
In conclusion, S is a k-adjacency generator for G ◦ H. The proof is

complete.

3.1.1 Large families of graphs having a common (k, t)-

metric generator

Let B be a (k, t)-metric basis of a graph G = (V,E), and let D(G, t) =

min{D(G), t}. For any r ∈ {0, 1, . . . , D(G, t)} we define the set

Br(B) =
⋃
x∈B

{y ∈ V : dG,t(x, y) ≤ r}.

In particular, B0(B) = B and B1(B) =
⋃
x∈B

NG[x]. Moreover, since B is a

(k, t)-metric basis of G, |BD(G,t)−1(B)| ≥ |V | − 1.

Let G = (V,E) be a connected graph that is not complete. Given a

(k, t)-metric basis B of G we say that a graph G′ = (V,E ′) belongs to the

family GB(G) if and only if NG′(v) = NG(v), for every v ∈ BD(G,t)−2(B).

In particular, if t = 2 and G is not a complete graph, then G′ = (V,E ′)

belongs to the family GB(G) if and only if NG′(x) = NG(x), for every x ∈ B.

Moreover, ifG is a complete graph, we define GB(G) = {G}. By the definition

of GB(G), we deduce the following remark.

Remark 3.14. Let B be a (k, t)-metric basis of a connected graph G, and

let G′ ∈ GB(G). Then for any b ∈ B and v ∈ BD(G,t)−1(B), dG,t(b, v) =

dG′,t(b, v). Moreover, 〈BD(G,t)−2(B)〉 ∼= 〈BD(G′,t)−2(B)〉.
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Notice that if BD(G,t)−2(B) ( V , then any graph G′ ∈ GB(G) is isomor-

phic to a graph G∗ = (V,E∗) whose edge set E∗ can be partitioned into two

sets E∗1 , E∗2 , where E∗1 consists of all edges of G having at least one vertex

in BD(G)−2(B) and E∗2 is a subset of edges of a complete graph whose vertex

set is V −BD(G,t)−2(B). Hence, if l =

(
|V (G)−BD(G,t)−2(B)|

2

)
, then GB(G)

contains 2l different graphs, where some of them could be isomorphic.

Theorem 3.15. Any (k, t)-metric basis B of a graph G is a (k, t)-metric

generator for any graph G′ ∈ GB(G), and as a consequence,

dimk,t(G
′) ≤ dimk,t(G).

Proof. Assume that B is a (k, t)-metric basis of a graph G = (V,E), and

G′ ∈ GB(G). We shall show that B is a (k, t)-metric generator for G′. To

this end, we take two different vertices u, v ∈ V . Since B is a (k, t)-metric

basis of G, there exists Buv ⊆ B such that |Buv| ≥ k and for every x ∈ Buv

we have that dG,t(x, u) 6= dG,t(x, v). Now, consider the following two cases

for u, v.

(1) u, v ∈ BD(G,t)−1(B). In this case, since for every x ∈ Buv we have that

dG,t(x, u) 6= dG,t(x, v), Remark 3.14 leads to dG′,t(x, u) 6= dG′,t(x, v) for every

x ∈ Buv.

(2) u ∈ BD(G,t)−1(B) and v 6∈ BD(G,t)−1(B). By definition of BD(G,t)−1(B),

we deduce that dG′,t(x, u) ≤ D(G, t) − 1 for every x ∈ Buv. Since v 6∈
BD(G,t)−1(B), we have that dG′,t(x, v) = D(G, t) for every x ∈ Buv. So,

dG′,t(x, u) ≤ D(G, t)− 1 < D(G, t) = dG′,t(x, v) for every x ∈ Buv.

Notice that since B is a (k, t)-metric basis of G, the case u, v 6∈ BD(G,t)−1(B)

is not possible. According to the two cases above, B is a (k, t)-metric gene-

rator for G′. Therefore, dimk,t(G
′) ≤ |B| = dimk,t(G).

By Proposition 3.12 we have that ifG is a nontrivial graph, then dimk,t(G)

= k if and only if k ∈ {1, 2} and G ∼= K1 ∪ Pr or G ∼= Pr+1 for every

r ∈ {1, . . . , t}. Thus, for any graph G of order at least t+2, dimk,t(G) ≥ k+1.

Therefore, the next corollary is a direct consequence of Theorem 3.15.

Corollary 3.16. Let B be a (k, t)-metric basis of a graph G of order n ≥ t+2

and let G′ ∈ GB(G). If dimk,t(G) = k + 1, then dimk,t(G
′) = k + 1.
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Figure 3.1 shows some graphs belonging to the family GB(G) having a

common (2, 2)-metric generator B = {v2, v3, v4, v5}. Moreover, as we shall

see in Theorem 3.27, B is also a common (2, 2)-metric basis for all graphs

belonging to GB(G). In this case, the family GB(G) contains 210 = 1024

different graphs, where some of them could be isomorphic.
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Figure 3.1: B = {v2, v3, v4, v5} is a (2, 2)-metric basis of G and

{G,G1, G2, G4, G5} ⊂ GB(G).

3.2 On the k-metric dimension of graphs

In this section we present some results that allow to compute the k-metric

dimension of several families of graphs. We also give some tight bounds on

the k-metric dimension of a graph.

We now present a lower bound for the k-metric dimension of a k′-metric

dimensional graph G with k′ ≥ k. To this end, we require the use of the

following function for any exterior major vertex w ∈ V (G) having terminal

degree greater than one, i.e., w ∈ M(G). Notice that this function uses the

concepts already defined in Subsection 2.2.1. Given an integer r ≤ k′,
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Ir(w) =


(ter(w)− 1) (r − l(w)) + l(w), if l(w) ≤ b r

2
c,

(ter(w)− 1) d r
2
e+ b r

2
c, otherwise.

In Figure 2.3 we give an example of a graph G, which helps to clarify

the notation above. Since every graph is at least 2-metric dimensional, we

can consider the integer r = 2 and we have the following.

• Since l(v3) = 1 ≤
⌊
r
2

⌋
, it follows that Ir(v3) = (ter(v3)− 1) (r − l(v3))+

l(v3) = (3− 1)(2− 1) + 1 = 3.

• Since l(v5) = 1 ≤
⌊
r
2

⌋
, it follows that Ir(v5) = (ter(v5)− 1) (r − l(v5))+

l(v5) = (2− 1)(2− 1) + 1 = 2.

• Since l(v15) = 2 >
⌊
r
2

⌋
, it follows that Ir(v15) = (ter(v15)− 1)

⌈
r
2

⌉
+⌊

r
2

⌋
= (2− 1)

⌈
2
2

⌉
+
⌊
2
2

⌋
= 2.

Therefore, according to the result below, dim2(G) ≥ 3 + 2 + 2 = 7.

Theorem 3.17. If G is a k-metric dimensional graph such that |M(G)| ≥ 1,

then for every r ∈ {1, . . . , k},

dimr(G) ≥
∑

w∈M(G)

Ir(w).

Proof. Let S be an r-metric basis of G. Let w ∈ M(G) and let ui, us

be two different terminal vertices of w. Let u′i, u
′
s be the vertices adja-

cent to w in the paths P (ui, w) and P (us, w), respectively. Notice that

DG(u′i, u
′
s) = V (P (ui, w, us)) − {w} and, as a consequence, it follows that

|S ∩ (V (P (ui, w, us))− {w})| ≥ r. Now, if ter(w) = 2, then we have

|S ∩ (V (P (ui, w, us))− {w})| ≥ r = Ir(w).

Now, we assume ter(w) > 2. Let W be the set of terminal vertices of w, and

let u′j be the vertex adjacent to w in the path P (uj, w) for every uj ∈ W .

Let U(w) =
⋃
uj∈W

V (P (uj, w)) − {w} and let x = min
uj∈W
{|S ∩ V (P (uj, w))|}.

Since S is an r-metric generator of minimum cardinality (it is an r-metric

basis of G), it is satisfied that 0 ≤ x ≤ min{l(w), b r
2
c}. Let uα be a terminal

vertex such that |S ∩ (V (P (uα, w))− {w})| = x. Since for every terminal
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vertex uβ ∈ W − {uα} we have that |S ∩ DG(u′β, u
′
α)| ≥ r, it follows that

|S ∩ (V (P (uβ, w))− {w})| ≥ r − x. Thus,

|S ∩ U(w)| =
ter(w)∑

β=1,β 6=α

|S ∩ (V (P (uβ, w))− {w})|+

+ |S ∩ (V (P (uα, w))− {w})|
≥ (ter(w)− 1) (r − x) + x.

Now, if x = 0, then |S ∩U(w)| ≥ (ter(w)− 1) r > Ir(w). On the contrary, if

x > 0, then the function f(x) = (ter(w)− 1) (r − x) + x is decreasing with

respect to x. So, the minimum value of f is achieved in the highest possible

value of x. Thus, |S ∩U(w)| ≥ Ir(w). Since
⋂

w∈M(G)

U(w) = ∅, it follows that

dimr(G) ≥
∑

w∈M(G)

|S ∩ U(w)| ≥
∑

w∈M(G)

Ir(w).

Now, in order to give some consequences of the bound above we shall

use some notation defined in Subsection 2.2.1 to introduce the following pa-

rameter.

µ(G) =
∑

v∈M(G)

ter(v).

Notice that for k = 1 Theorem 3.17 leads to the bound on the metric

dimension of a graph, established by Chartrand et al. in [21]. In such a case,

I1(w) = ter(w)− 1 for all w ∈M(G) and thus,

dim1(G) ≥
∑

w∈M(G)

(ter(w)− 1) = µ(G)− |M(G)|.

Next we give the particular cases of Theorem 3.17 for r = 2 and r = 3.

Corollary 3.18. If G is a connected graph, then

dim2(G) ≥ µ(G).

Proof. If M(G) = ∅, then µ(G) = 0 and the result is direct. Suppose that

M(G) 6= ∅. Since I2(w) = ter(w) for all w ∈M(G), we deduce that

dim2(G) ≥
∑

w∈M(G)

ter(w) = µ(G).
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Corollary 3.19. If G is k-metric dimensional for some k ≥ 3, then

dim3(G) ≥ 2µ(G)− |M(G)|.

Proof. If M(G) = ∅, then the result is direct. Suppose that M(G) 6= ∅.
Since I3(w) = 2 ter(w)− 1 for all w ∈M(G), we obtain that

dim3(G) ≥
∑

w∈M(G)

(2 ter(w)− 1) = 2µ(G)− |M(G)|.

In the next subsection we give some results concerning trees which show

that the bounds proved in Theorem 3.17 and Corollaries 3.18 and 3.19 are

tight. Specifically those results are Theorem 3.20 and Corollaries 3.21 and

3.22, respectively.

3.2.1 On the k-metric dimension of trees

Since any path is a particular case of a tree and its behaviour with respect

to the k-metric dimension is relatively different, here we analyse them in a

first instance. In Proposition 3.12 we noticed that for k ∈ {1, 2} the k-metric

dimension of a path Pn(n > 2) is k. On the other hand, by Proposition

3.11 we deduce that for any integer k ≥ 3 and any path graph Pn of order

n ≥ k + 1, we have that dimk(Pn) = k + 1.

We now continue with a formula for the r-metric dimension of any k-

metric dimensional tree different from a path which, among other usefulness,

shows that Theorem 3.17 is tight. In this proof we use the concept of branch

already defined in Subsection 2.2.2.

Theorem 3.20. If T is a tree which is not a path, then for any r ∈ {1, . . . ,
ς(T )},

dimr(T ) =
∑

w∈M(T )

Ir(w).

Proof. Since T is not a path, T contains at least one vertex belonging to

M(T ). Let w ∈ M(T ) and let Tw = (Vw, Ew) be the w-branch. Also

we consider the set V ′ = V (T ) −
⋃
w∈M(T ) Vw. For every w ∈ M(T ), we

suppose u1 is a terminal vertex of w such that l(u1, w) = l(w). Let U(w) =

{u1, u2, . . . , us} be the set of terminal vertices of w. Now, for every uj ∈
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U(w), let the path P (uj, w) = uju
1
ju

2
j . . . u

l(uj ,w)−1
j w and we consider the set

S(uj, w) ⊂ V (P (uj, w))− {w} given by:

S(u1, w) =


{
u1, u

1
1, . . . , u

l(w)−1
1

}
, if l(w) ≤ b r

2
c

{
u1, u

1
1, . . . , u

b r
2
c−1

1

}
, if l(w) > b r

2
c.

and for j 6= 1,

S(uj, w) =


{
uj, u

1
j , . . . , u

r−l(w)−1
j

}
, if l(w) ≤ b r

2
c,

{
uj, u

1
j , . . . , u

d r
2
e−1

j

}
, if l(w) > b r

2
c.

According to this we have,

|S(uj, w)| =



l(w), if l(w) ≤ b r
2
c and uj = u1,

r − l(w), if l(w) ≤ b r
2
c and uj 6= u1,

b r
2
c, if l(w) > b r

2
c and uj = u1,

d r
2
e, if l(w) > b r

2
c and uj 6= u1.

Let S(w) =
⋃

uj∈U(w)

S(uj, w) and S =
⋃

w∈M(T )

S(w). Since for every w ∈M(T )

it follows that
⋂

uj∈U(w)

S(uj, w) = ∅ and
⋂

w∈M(T )

S(w) = ∅, we obtain that

|S| =
∑

w∈M(T )

Ir(w).

Also notice that for every w ∈ M(T ), such that ter(w) = 2 we have

|S(w)| = r and, if ter(w) > 2, then we have |S(w)| ≥ r + 1. We claim that

S is an r-metric generator for T . Let u, v be two distinct vertices of T . We

consider the following cases.

Case 1: u, v ∈ Vw for some w ∈M(T ). We have the following subcases.

Subcase 1.1: u, v ∈ V (P (uj, w)) for some j ∈ {1, . . . , ter(w)}. Hence

there exists at most one vertex of S(w)∩V (P (uj, w)) which does not distin-

guish u, v. If ter(w) = 2, then there exists at least one more exterior major

vertex w′ ∈ M(T ) − {w}. So, the elements of S(w′) distinguish u, v. Since

|S(w′)| ≥ r, we deduce that at least r elements of S distinguish u, v. On the

other hand, if ter(w) > 2, then since |S(w)| ≥ r + 1, we obtain that at least

r elements of S(w) distinguish u, v.
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Subcase 1.2: u ∈ V (P (uj, w)) and v ∈ V (P (ul, w)) for some j, l ∈
{1, . . . , ter(w)}, j 6= l. According to the construction of the set S(w), there

exists at most one vertex of (S(w)∩ (V (P (uj, w, ul))) which does not distin-

guish u, v.

Now, if ter(w) = 2, then there exists w′ ∈ M(T ) − {w}. If dT (u,w) =

dT (v, w), then the r elements of S(w) distinguish u, v and, if dT (u,w) 6=
dT (v, w), then the elements of S(w′) distinguish u, v.

On the other hand, if ter(w) > 2, then since |S(w)| ≥ r + 1, we deduce

that at least r elements of S(w) distinguish u, v.

Case 2: u ∈ Vw and v ∈ Vw′ , for some w,w′ ∈ M(T ) with w 6= w′. In

this case, either the vertices in S(w) or the vertices in S(w′) distinguish u, v.

Since |S(w)| ≥ r and |S(w′)| ≥ r we have that u, v are distinguished by at

least r elements of S.

Case 3: u ∈ V ′ or v ∈ V ′. Without loss of generality we assume u ∈ V ′.
Since V ′ 6= ∅, we have that there exist at least two different vertices inM(T ).

Hence, we have either one of the following situations.

• There exist two vertices w,w′ ∈M(T ), w 6= w′, such that the shortest

path from u to w and the shortest path from v to w′ have empty

intersection, or

• for every vertex w′′ ∈ M(T ), it follows that either v belongs to every

shortest path from u to w′′ or u belongs to every shortest path from v

to w′′.

Notice that in both situations, since |S(w)| ≥ r, for every w ∈ M(T ), we

have that u, v are distinguished by at least r elements of S. In the first case,

u and v are distinguished by the elements of S(w) or by the elements of S(w′)

and, in the second one, u and v are distinguished by the elements of S(w′′).

Therefore, S is an r-metric generator for T and, by Theorem 3.17, the

proof is complete.

In the case r = 1, the formula of Theorem 3.20 leads to

dim1(T ) = µ(T )− |M(T )|,

which is the result obtained in [21]. Other interesting particular cases are

the following ones for r = 2 and r = 3, respectively. That is, by Theorem

3.20 we have the next results.
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Corollary 3.21. If T is a tree different from a path, then

dim2(T ) = µ(T ).

Corollary 3.22. If T is a tree different from a path with ς(T ) ≥ 3, then

dim3(T ) = 2µ(T )− |M(T )|.

As mentioned before, the two corollaries above show that the bounds

given in Corollaries 3.18 and 3.19 are achieved.

We finish this subsection with a formula for the k-metric dimension of a

k-metric dimensional tree with some specific structure. Given a graph G, we

define Dk(G) as Dk,t(G) for t ≥ D(G). With this notation in mind, we show

that the inequality dimk(T ) ≥ |Dk(T )|, given in Remark 3.4, can be reached.

Proposition 3.23. Let T be a tree different from a path and let k ≥ 2

be an integer. If ter(w) = 2 and ς(w) = k for every w ∈ M(T ), then

dimk(T ) = |Dk(T )|.

Proof. Since every vertex w ∈M(T ) satisfies that ter(w) = 2 and ς(w) = k,

we have that ς(T ) = k. Thus, by Theorem 2.13, T is k-metric dimensional

tree. Since Ik(w) = k for every w ∈ M(T ), by Theorem 3.20 we have that

dimk(T ) = k|M(T )|. Let ur, us be the terminal vertices of w. As we have

shown in the proof of Theorem 2.13, for every pair x, y ∈ V (T ) such that x /∈
V (P (ur, w, us))− {w} or y /∈ V (P (ur, w, us))− {w}, it follows that x, y are

distinguished by at least k+1 vertices of T and so |D∗T (x, y)| > k−2. Hence,

if |D∗T (x, y)| = k− 2, then x, y ∈ V (P (ur, w, us))−{w} for some w ∈M(T ).

If dT (x,w) 6= dT (y, w), then x, y are distinguished by more than k vertices

(those vertices not in V (P (ur, w, us))−{w}). Thus, if |D∗T (x, y)| = k−2, then

dT (x,w) = dT (y, w) and, as a consequence, D∗T (x, y) = V (P (ur, w, us)) −
{x, y, w}. Considering that |V (P (ur, w, us))− {w}| = k and at the same

time that
⋂

w∈M(T )

V (P (ur, w, us)) = ∅, we deduce |Dk(T )| = k|M(T )|. There-

fore, dimk(T ) = |Dk(T )|.

Figure 3.2 shows an example of a 3-metric dimensional tree. In this

case M(T ) = {w,w′}, ter(w) = ter(w′) = 2 and ς(w) = ς(w′) = 3. Then

Proposition 3.23 leads to dim3(T ) = |D3(T )| = |{u1, u2, u3, u′1, u′2, u′3}| = 6.
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w

u1

u2u3

w′

u′1

u′2 u′3

v

Figure 3.2: A 3-metric dimensional tree T for which dim3(T ) = |D3(T )| = 6.

3.3 On the k-adjacency dimension of graphs

In this section we present some results that allow us to compute the k-

adjacency dimension of several families of graphs. We also give some tight

bounds on the k-adjacency dimension of a graph. For the graph G shown

in Figure 3.3 we have dim1(G) = 8 < 9 = adim1(G), dim2(G) = 12 <

14 = adim2(G) and dim3(G) = 20 = adim3(G). Note that the only 3-

adjacency basis of G, and at the same time the only 3-metric basis, is V (G)−
{0, 6, 12, 18}.

0

1 2 3 4 5

6

7 8 9 10 11

12

13 14 15 16 17

18

19 20 21 22 23

Figure 3.3: The set {2, 4, 6, 8, 10, 14, 16, 20, 21} is a 1-adjacency basis of G,

while the set {2l + 1 : l ∈ {0, . . . , 11}} ∪ {6, 12} is a 2-adjacency basis and

V (G)− {0, 6, 12, 18} is a 3-adjacency basis.

In the same way, for the Petersen graph G we have that adim6(G) =

adim5(G) + 1 = adim4(G) + 2 = adim3(G) + 3 = 10 and adim2(G) =

adim1(G) + 1 = 4.

Since CG(x, y) = CG(x, y) for all x, y ∈ V (G), we deduce the following

result, which was previously observed for k = 1 by Jannesari and Omoomi

in [67].

Remark 3.24. For any nontrivial graph G and k ∈ {1, 2, . . . , C(G)},

adimk(G) = adimk(G).

Moreover, A is a k-adjacency generator for G if and only if A is a k-adjacency

generator for G.
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According to the Proposition 3.12, it is interesting to study the graphs

where adimk(G) = k + 1. To begin with, we state the following remark.

Remark 3.25. If G is a graph of order n ≥ 7, then adim1(G) ≥ 3.

Proof. Suppose, for purposes of contradiction, that adim1(G) ≤ 2. By

Proposition 3.12 we deduce that adim1(G) = 2. Let B = {u, v} be an

adjacency basis of G. Then for any w ∈ V (G) − B the distance vec-

tor (dG,2(u,w), dG,2(v, w)) must belong to {(1, 1), (1, 2), (2, 1), (2, 2)}. Since

|V (G)−B| ≥ 5, by Dirichlet’s box principle at least two elements of V (G)−B
have the same distance vector, which is a contradiction. Therefore, adim1(G)

≥ 3.

By Corollary 3.3 (ii) and Remark 3.25 we obtain the following result.

Theorem 3.26. For any graph G of order n ≥ 7 and k ∈ {1, . . . , C(G)},

adimk(G) ≥ k + 2.

Our next result immediately follows from Theorems 3.15 and 3.26.

Theorem 3.27. Let B be a k-adjacency basis of a graph G of order n ≥ 7

and let G′ ∈ GB(G). If adimk(G) = k + 2, then adimk(G
′) = k + 2.

An example of an application of the result above is shown in Figure 3.1,

where adim2(G
′) = 4 for all G′ ∈ GB(G). In this case, as we mentioned

above, GB(G) contains 210 = 1024 different graphs.

From Remark 3.25 and Theorem 3.26, we only need to consider graphs of

order n ∈ {3, 4, 5, 6} to determine those satisfying adimk(G) = k+1. If n = 3,

then by Proposition 3.12 we conclude that adim1(G) = 2 or adim2(G) = 3

if and only if G ∈ {K3, N3}. For k ∈ {1, 2} and n ∈ {4, 5, 6} the graphs

satisfying adimk(G) = k + 1 can be determined by a simple calculation.

Here we just show some of these graphs in Figure 3.4. Finally, the cases

adim3(G) = 4 and adim5(G) = 5 are studied in the following two remarks.

Remark 3.28. A graph G of order greater than or equal to four satisfies

adim3(G) = 4 if and only if G ∈ {P4, C5}.

Proof. If G ∈ {P4, C5}, then it is straightforward to check that adim3(G) = 4.

Assume that B = {v1, . . . , v4} is a 3-adjacency basis of G. Since for any pair

of vertices vi, vj ∈ B, there exists vl ∈ B ∩ C∗(vi, vj), by inspection we
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v1 v′1

v2

v′2

v3v′3
G1

v1 v′1

v2

v′2

v3
G2

v1 v′1

v2

v3
G3

Figure 3.4: Any graph belonging to the families GB(G1), GB(G2) or {K1 ∪
K3, G3}, where B = {v1, v2, v3}, satisfies adim2(G) = 3. The reader is re-

ferred to Subsection 3.1.1 for the construction of the families GB(Gi).

can check that 〈B〉 ∼= P4. We assume that vi ∼ vi+1 for i ∈ {1, 2, 3}. If

V (G) − B = ∅, then G ∼= P4. Suppose that there exists v ∈ V (G) − B. If

v ∼ v2, then the fact that |B ∩ C∗(v, v1)| ≥ 2 leads to v ∼ v3 and v ∼ v4.

Since |B ∩ C∗(v, v4)| ≥ 2 and v ∼ v3, it follows that v ∼ v1. Thus, v is

connected to any vertex in B, which leads to |B ∩ C∗(v, v2)| = |{v4}| = 1,

contradicting the fact that B is a 3-adjacency basis of G. Analogously if

v ∼ v3, then we arrive to a similar contradiction. Thus, v ∼ v1 or v ∼ v4. If

v ∼ v1 and v 6∼ v4, then |B ∩ C∗(v, v2)| = |{v3}| = 1, contradicting the fact

that B is a 3-adjacency basis of G. Now, if v ∼ v1 and v ∼ v4, then G ∼= C5.

If |V (G)| ≥ 6, then there exist u, v ∈ V (G) − B. Since |B ∩ C(u, v)| ≥ 3,

then either |B ∩N(u)| ≥ 2 or |B ∩N(v)| ≥ 2. Suppose that |B ∩N(u)| ≥ 2.

As discussed earlier, B ∩N(u) = {v1, v4}. Since |B ∩ C(u, v)| ≥ 3, it follows

that either v ∼ v2 or v ∼ v3, which, as we saw earlier, contradicts the fact

that B is a 3-adjacency basis of G.

By Corollary 3.3 (i) and Remark 3.28 we deduce that adim4(G) ≥ 6 for

any graph G of order at least five such that G 6∼= C5. Since adim4(C5) = 5,

we obtain the following result.

Remark 3.29. A graph G of order n ≥ 5 satisfies that adim4(G) = 5 if and

only if G ∼= C5.

From Corollary 3.3 (i) and Remark 3.29, it follows that any 4-adjacency

dimensional graph G of order six satisfies adim4(G) = 6, as the case of C6.
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3.4 On the k-metric dimension of product

graphs

As we mentioned above, in this section we study the k-metric dimension of

the lexicographic product graphs.

3.4.1 Lexicographic product graphs

In this subsection we focus into obtaining the (k, t)-metric dimension of the

lexicographic product of graphs for k ∈ {1, . . . ,min{T (G◦H), C(H)}}. Theo-

rem3.13 allows us to give, without loss of generality, all results referred to

the (k, t)-metric dimension of G◦H in terms of adimk(G◦H) or dimk(G◦H)

as we consider appropriate.

Join graphs

The following remark is a particular case of Corollary 3.6.

Remark 3.30. Let H be a graph of order n. Then adim2(K1 +H) = n+1 if

and only if ∆(H) = n− 1 and every vertex v ∈ V (H) of degree δ(v) < n− 1

belongs to a non-singleton twin equivalence class.

Proposition 3.31. Let H be a graph of order n ≥ 2 and k ∈ {1, . . . , C(K1 +

H)}. Then

adimk(K1 +H) ≥ adimk(H).

Proof. Let A be a k-adjacency basis of K1 + H, AH = A ∩ V (H) and let

x, y ∈ V (H) be two different vertices. Since CK1+H(x, y) = CH(x, y), it

follows that |AH ∩ CH(x, y)| = |A ∩ CK1+H(x, y)| ≥ k, and as a consequence,

AH is a k-adjacency generator for H. Therefore, adimk(K1 + H) = |A| ≥
|AH | ≥ adimk(H).

Theorem 3.32. For any nontrivial graph H, the following assertions are

equivalent:

(i) There exists a k-adjacency basis A of H such that |A−NH(y)| ≥ k, for

all y ∈ V (H).

(ii) adimk(K1 +H) = adimk(H).
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Proof. Let A be a k-adjacency basis of H such that |A−NH(y)| ≥ k, for all

y ∈ V (H). By Proposition 3.31 we have that adimk(K1 + H) ≥ adimk(H).

It remains to prove that adimk(K1 + H) ≤ adimk(H). We will prove that

A is a k-adjacency generator for K1 + H. We differentiate two cases for

two vertices x, y ∈ V (K1 + H). If x, y ∈ V (H), then the fact that A is

a k-adjacency basis of H leads to k ≤ |A ∩ CH(x, y)| = |A ∩ CK1+H(x, y)|.
On the other hand, if x is the vertex of K1 and y ∈ V (H), then the fact

that CK1+H(x, y) = {x} ∪ (V (H) − NH(y)) and |A − NH(y)| ≥ k leads to

|A ∩ CK1+H(x, y)| ≥ k. Therefore, A is a k-adjacency generator for K1 + H,

and as a consequence, adimk(H) = |A| ≥ adimk(K1 +H).

On the other hand, letB be a k-adjacency basis ofK1+H such that |B| =
adimk(H) and let BH = B∩V (H). Since for any h1, h2 ∈ V (H) the vertex of

K1 does not belong to CK1+H(h1, h2), we conclude that BH is a k-adjacency

generator for H. Thus, |BH | = adimk(H) and, as a consequence, BH is a

k-adjacency basis of H. If there exists h ∈ V (H) such that |BH −NH(h)| <
k, then |B ∩ CK1+H(v, h)| = |BH − NH(h)| < k, which is a contradiction.

Therefore, the result follows.

Corollary 3.33. Let H be a nontrivial graph such that adimk(K1 + H) =

adimk(H). Then the vertex of K1 does not belong to any k-adjacency basis

A of K1 +H.

Proof. Let A be a k-adjacency basis of K1 + H, let x, y ∈ V (H) be two

different vertices and let AH = A ∩ V (H). Since CK1+H(x, y) = CH(x, y), it

follows that |AH ∩ CH(x, y)| = |A ∩ CK1+H(x, y)| ≥ k, and as a consequence,

AH is a k-adjacency generator for H. Thus, adimk(H) = adimk(K1 + H) =

|A| ≥ |AH | ≥ adimk(H), and as a consequence, AH = A. Therefore, the

vertex of K1 does not belong to A.

Our next result on graphs of diameter grater than or equal to six, is a

consequence of Theorem 3.32.

Corollary 3.34. For any graph H of diameter D(H) ≥ 6 and k ∈ {1, . . . ,
C(K1 +H)},

adimk(K1 +H) = adimk(H).

Proof. Let S be a k-adjacency basis of H. We will show that |S−NH(x)| ≥ k,

for all x ∈ V (H). Suppose, for the purpose of contradiction, that there exists
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x ∈ V (H) such that |S∩(V (H)−NH(x))| < k. Let F (x) = S∩NH [x]. Notice

that |S| ≥ k and hence F (x) 6= ∅.
From the assumptions above, if V (H) = F (x) ∪ {x}, then D(H) ≤ 2,

which is a contradiction. If for every y ∈ V (H) − (F (x) ∪ {x}) there exists

z ∈ F (x) such that dH(y, z) = 1, then dH(v, v′) ≤ 4 for all v, v′ ∈ V (H) −
(F (x) ∪ {x}). Hence D(H) ≤ 4, which is a contradiction. So, we assume

that there exists a vertex y′ ∈ V (H)− (F (x) ∪ {x}) such that dH(y′, z) > 1,

for every z ∈ F (x), i.e, NH(y′) ∩ F (x) = ∅. If V (H) = F (x) ∪ {x, y′}, then

by the connectivity of H we have y′ ∼ x and, as consequence, D(H) = 2,

which is also a contradiction. Hence, V (H) − (F (x) ∪ {x, y′}) 6= ∅. Now,

for any w ∈ V (H) − (F (x) ∪ {x, y′}) we have that |CH(y′, w) ∩ S| ≥ k and,

since |S ∩ (V (H)−NH(x)) | < k and NH(y′) ∩ F (x) = ∅, we deduce that

NH(w)∩F (x) 6= ∅. From this fact and the connectivity of H, we obtain that

dH(y′, w) ≤ 5. Hence D(H) ≤ 5, which is also a contradiction. Therefore, if

D(H) ≥ 6, then for every x ∈ V (H) we have that |S∩(V (H)−NH(x)) | ≥ k.

Therefore, the result follows by Theorem 3.32.

Corollary 3.35. Let H be a graph of girth g(H) ≥ 5 and minimum degree

δ(H) ≥ 3. Then for any k ∈ {1, . . . , C(K1 +H)},

adimk(K1 +H) = adimk(H).

Proof. Let A be a k-adjacency basis of H and let x ∈ V (H) and y ∈ NH(x).

Since g(H) ≥ 5, for any u, v ∈ NH(y)−{x} we have that CH(u, v)∩NH [x] = ∅.
Also, since |CH(u, v) ∩ A| ≥ k, we obtain that |A − NH(x)| ≥ k. Therefore,

by Theorem 3.32 we conclude the proof.

We now study the k-metric dimension of fan and wheel graphs. The case

k = 1 for fan graphs was previously studied in [62] and for wheel graphs in

[15].

Proposition 3.36. [15, 62]

(i) adim1(K1 + Pn) =


1, if n = 1,

2, if n = 2, 3, 4, 5,

3, if n = 6,⌊
2n+2

5

⌋
, otherwise.

(ii) adim1(K1 + Cn) =

{
3, if n = 3, 6,⌊
2n+2

5

⌋
, otherwise.
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By Corollary 2.25, we know that the fan graphs F1,n, n ≥ 4, are 3-

metric dimensional, so dimk(F1,n) makes sense for k ∈ {1, 2, 3}. Thus, it

only remains for us analyse the case k ∈ {2, 3}. To this end, we will use

the following notation. Let V (Pn) = {u1, u2, . . . , un} be the vertex set of

the path Pn, and let F1,n = 〈u〉 + Pn. We assume that ui ∼ ui+1 for each

i ∈ {1, . . . , n− 1}.
We first present some useful lemmas.

Lemma 3.37. Let k ∈ {2, 3} and let n ≥ 6 be an integer. For any k-metric

basis S of F1,n it holds |S ∩ V (Pn)| ≥ 2k.

Proof. Notice that DF1,n(u1, u2) = {u1, u2, u3} and DF1,n(un−1, un) = {un−2,
un−1, un}. Since S is a k-metric basis of F1,n, we have |S ∩DF1,n(u1, u2)| ≥ k

and |S∩DF1,n(un−1, un)| ≥ k. As n ≥ 6, it holdsDF1,n(u1, u2)∩DF1,n(un−1, un)

= ∅. Therefore, |S ∩ V (Pn)| ≥ 2k.

Lemma 3.38. Let H be a nontrivial graph, let K1+H be a k′-metric dimen-

sional graph, and let k ∈ {1, . . . , k′}. If for every k-metric basis S of K1 +H

we have that |S ∩ V (H)| ≥ k + ∆(H), then the vertex of K1 does not belong

to any k-metric basis of K1 +H.

Proof. Let v be the vertex of K1, and let S be a k-metric basis of K1 + H.

We will show that S ′ = S − {v} is a k-metric generator for K1 +H.

On the one hand, for every x ∈ V (H) we have |S ′ ∩ DK1+H(x, v)| =

|S ′ ∩ (V (H)−NH(x))| ≥ k, as |S ′ ∩ V (H)| = |S ∩ V (H)| ≥ k + ∆(H).

On the other hand, for any x, y ∈ V (H) we have |S ′ ∩ DK1+H(x, y)| =

|S ∩ DK1+H(x, y)| ≥ k, as v 6∈ DK1+H(x, y).

Therefore, S ′ is a k-metric generator for K1 +H and, by the minimality

of S, the set S ′ is a k-metric basis of K1 +H.

By performing some simple calculations, we observe that dim2(F1,2) = 3,

dim2(F1,3) = 4, dim2(F1,4) = dim2(F1,5) = 4, and dim3(F1,4) = dim3(F1,5)

= 5. The remaining values of dimk(F1,n) are obtained in our next proposition.

Proposition 3.39. For any integer n ≥ 6,

(i) dim2(F1,n) =
⌈
n+1
2

⌉
.

(ii) dim3(F1,n) = n−
⌊
n−4
5

⌋
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Proof.

(i) We shall prove that A = {ui ∈ V (Pn) : i ≡ 1 (2)} ∪ {un} is a 2-metric

generator for F1,n. Let x, y be two different vertices of F1,n = 〈u〉+ Pn.

If x = u, then dF1,n(x, ui) = 1 for every ui ∈ V (Pn). Since |A| ≥ 4 and

there exist at most two vertices uj, ul ∈ V (Pn) such that dF1,n(y, uj) =

dF1,n(y, ul) = 1, we have |DF1,n(u, y) ∩ A| ≥ 2.

Let us now assume that x, y ∈ V (Pn). If x, y ∈ A, then they are distin-

guished by themselves and, if x, y /∈ A, then there exist at least two ver-

tices ui, uj ∈ A such that ui, uj ∈ N(x) 5 N(y) ⊂ DF1,n(x, y). Finally,

if x ∈ A and y /∈ A, then there exists a vertex ul ∈ A − {x} such that

ul ∈ N(y) − N(x). Therefore, A is a 2-metric generator for F1,n and, as a

consequence, dim2(F1,n) ≤ |A| =
⌈
n+1
2

⌉
.

It remains to show that dim2(F1,n) ≥
⌈
n+1
2

⌉
. With this aim, we take an

arbitrary k-metric basis A′ of F1,n. Since n ≥ 6, by Lemmas 3.37 and

3.38, u 6∈ A′. Notice that DF1,n(u1, u2) = {u1, u2, u3} and DF1,n(un−1, un) =

{un−2, un−1, un}. Thus, |A′∩{u1, u2, u3}| ≥ 2 and |A′∩{un−2, un−1, un}| ≥ 2.

So, for n = 6, then |A′| ≥ 4 and we are done. From now on, we consider

n ≥ 7. Let M(Pn) = V (Pn) − {u1, u2, u3, un−2, un−1, un}. Assume for pur-

poses of contradiction that |A′ ∩ M(Pn)| ≤
⌊
n−6
2

⌋
− 1. We consider the

following three subcases.

(1) n − 6 = 4p or n − 6 = 4p + 1 for some positive integer p. Let Qi =

{u4i, u4i+1, u4i+2, u4i+3}, 1 ≤ i ≤ p. Notice that every Qi ⊂ M(Pn). Since

|A′∩M(Pn)| <
⌊
n−6
2

⌋
= 2p, there exists at least a set Qj = {u4j, u4j+1, u4j+2,

u4j+3} such that |Qj ∩A′| ≤ 1. Since DF1,n(u4j+1, u4j+2) = {u4j, u4j+1, u4j+2,

u4j+3}, we deduce that u4j+1, u4j+2 are distinguished by at most one vertex

of A′, which is a contradiction.

(2) n− 6 = 4p+ 2 for some positive integer p. As above, let Qi = {u4i, u4i+1,

u4i+2, u4i+3}, 1 ≤ i ≤ p. Notice that M(Pn) = (
⋃p
i=1Qi)∪{u4(p+1), u4(p+1)+1}.

If there exists at least one Qi such that |Qi ∩ A′| ≤ 1, then we have a con-

tradiction as in the case above. Thus, |Qi ∩A′| ≥ 2 for all 1 ≤ i ≤ p and we
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have

2p =

⌊
n− 6

2

⌋
− 1

≥ |A′ ∩M(Pn)|

=

p∑
i=1

|Qi ∩ A′|+ |A′ ∩ {u4(p+1), u4(p+1)+1}|

≥ 2p.

As a consequence, it follows |Qj ∩ A′| = 2 for every j ∈ {1, . . . , p} and

A′ ∩ {u4(p+1), u4(p+1)+1} = ∅. Now, if u4p+2, u4p+3 ∈ A′, then u4p, u4p+1 /∈ A′.
Thus, u4p+1, u4p+3 are distinguished only by u4p+3, which is a contradiction.

Conversely, if u4p+2 /∈ A′ or u4p+3 /∈ A′, then |A′ ∩ {u4p+2, u4p+3, u4(p+1),

u4(p+1)+1| ≤ 1 and, like in the previous case, we obtain that u4p+3, u4(p+1) are

distinguished by at most one vertex, which is also a contradiction.

(3) If n − 6 = 4p + 3, then we obtain a contradiction by proceeding analo-

gously to Case 2 (n− 6 = 4p+ 2).

Thus, |A′ ∩M(Pn)| ≥
⌊
n−6
2

⌋
and we obtain that dim2(F1,n) = |A′| =

|A′∩M(Pn)|+|A′∩DF1,n(u1, u2)|+|A′∩DF1,n(un−1, un)| ≥
⌊
n−6
2

⌋
+4 =

⌈
n+1
2

⌉
.

Therefore, (i) follows.

(ii) Let S = V (Pn) − {ui ∈ V (Pn) : i ≡ 0 (5) ∧ 1 ≤ i ≤ n − 4}. No-

tice that |S| = n−
⌊
n−4
5

⌋
. We claim that S is a 3-metric generator for F1,n.

Let x, y be two different vertices of F1,n.

If x = u, then dF1,n(x, ui) = 1 for every ui ∈ V (Pn). Also, there exist

at most two vertices uj, ul ∈ V (Pn) such that dF1,n(y, uj) = dF1,n(y, ul) = 1.

Since |S| ≥ 6, the vertices x, y are distinguished by at least three vertices of

S.

Now suppose x, y ∈ V (Pn). According to the construction of S, there

exist at least three different vertices ui1 , ui2 , ui3 ∈ S such that dF1,n(x, uij) 6=
dF1,n(y, uij), with j ∈ {1, 2, 3} (notice that x or y could be equal to some uij ,

j ∈ {1, 2, 3}).
Thus, S is a 3-metric generator for F1,n and, as a result, dim3(F1,n) ≤

|S| = n−
⌊
n−4
5

⌋
.

It remains to show that dim3(F1,n) ≥ n −
⌊
n−4
5

⌋
. Now, let S ′ be a

3-metric basis of F1,n. Since n ≥ 6, by Lemmas 3.37 and 3.38, u 6∈ S ′.

Also, notice that two adjacent vertices ui, ui+1 are distinguished by them-

selves and at least one neighbour ui−1 or ui+2. So, at least three of them
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belong to S ′. Now, if there exist three consecutive vertices ui−1, ui, ui+1 ∈
S ′ such that ui−2, ui+2 /∈ S ′, then the vertices ui−1, ui+1 are not distin-

guished by at least three vertices of S ′, which is a contradiction. Thus,

if two vertices ui, uj /∈ S ′, then i − j ≡ 0 (5) and, as a consequence, per

each five consecutive vertices of V (Pn), at least four of them are in S ′, or

equivalently, at most one does not belong to S ′. Moreover, notice that

DF1,n(u1, u2) = {u1, u2, u3}, DF1,n(u1, u3) = {u1, u3, u4}, DF1,n(un−1, un) =

{un−2, un−1, un}, and DF1,n(un−2, un) = {un−3, un−2, un}. By Remark 3.4,

{u1, u2, u3, u4, un−3, un−2, un−1, un} ⊂ S ′. Hence, |S ′| ≤
⌊
n−4
5

⌋
+ 1. Finally,

we have that dim3(F1,n) = |S ′| = n + 1 − |S ′| ≥ n −
⌊
n−4
5

⌋
. Therefore,

dim3(F1,n) = n−
⌊
n−4
5

⌋
.

Let V (Cn) = {u0, u2, . . . , un−1} be the vertex set of the cycle Cn in

W1,n = K1 + Cn, and let u be the central vertex of the wheel graph. From

now on, all the operations with the subscripts of ui ∈ V (Cn) will be taken

modulo n.

Since W1,3 and W1,4 have twin vertices, they are 2-metric dimensional

graphs. Also, by Corollary 2.25 we know that the wheel graphs W1,n, n ≥ 5,

are 4-metric dimensional, i.e, dimk(W1,n) makes sense for k ∈ {1, 2, 3, 4}. We

now study dimk(W1,n) for k ∈ {2, 3, 4}. To this end, we first give some useful

results.

Lemma 3.40. Let Cr be a cycle graph of order r ≥ 7, and let k ∈ {2, 3, 4}.
For any k-metric basis S of W1,r we have that |S ∩ V (Cr)| ≥ k + 2.

Proof. Let V (Cr) = {u0, u2, . . . , ur−1} be the vertex set of the cycle Cr. The

subscripts of ui ∈ V (Cr) will be taken modulo r. Notice thatDW1,r(ui, ui+1) =

{ui−1, ui, ui+1, ui+2}.
We first consider the case r ≥ 8. SinceDW1,r(ui, ui+1)∩DW1,r(ui+4, ui+5) =

∅, |DW1,r(ui, ui+1)∩(S∩V (Cr))| ≥ k and |DW1,r(ui+4, ui+5)∩(S∩V (Cr))| ≥ k,

we deduce that |S∩V (Cr)| ≥ 2k. Thus, for k ≥ 2 we have that |S∩V (Cr)| ≥
k + 2.

We now consider the case r = 7. SinceDW1,r(ui, ui+1)∩DW1,r(ui+4, ui+5) =

{ui+6}, in this case we have |S ∩ V (Cr)| ≥ 2k− 1. So, for k ∈ {3, 4} it holds

|S| ≥ k+ 2. Now we take k = 2. Suppose that |S ∩V (Cr)| = 3. If S ∩V (Cr)

is composed by non-consecutive vertices, say S ∩ V (Cr) = {ui, ui+2, ui+4},
then |DW1,r(ui+4, ui+5) ∩ (S ∩ V (Cr))| = 1, which is a contradiction. If there

are two consecutive vertices in S ∩ V (Cr), say ui, ui+1 ∈ S ∩ V (Cr), then
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|DW1,r(ui+3, ui+4) ∩ (S ∩ V (Cr))| ≤ 1, which is a contradiction. Hence,

|S ∩V (Cr)| ≥ 4 and, as a consequence, for k = 2 we have that |S ∩V (Cr)| ≥
k + 2.

By Lemmas 3.38 and 3.40 we deduce the next result.

Proposition 3.41. Let Cr be a cycle graph of order r ≥ 7, and let k ∈
{2, 3, 4}. Then the vertex of K1 does not belong to any k-metric basis of

W1,r.

Lemma 3.42. Let H be a nontrivial graph, and let K1 + H be a k′-metric

dimensional graph. Let k ∈ {1, . . . , k′} and S ⊆ V (H). If for every x, y ∈
V (H), |S ∩ DK1+H(x, y)| ≥ k and |S| ≥ k + ∆(H), then S is a k-metric

generator for K1 +H.

Proof. Let v be the vertex of K1. Since for every x, y ∈ V (H) we have

that |S ∩ DK1+H(x, y)| ≥ k, in order to prove that S is a k-metric generator

for K1 + H, it is enough proving that for every x ∈ V (H) the condition

|DK1+H(x, v) ∩ S| ≥ k is satisfied. Notice that for every x ∈ V (H) we have

that DK1+H(x, v) = (V (H)−NH(x))∪{v}. Since |S| ≥ k+ ∆(H), for every

x ∈ V (H) there exist k vertices y ∈ S ∩ (V (H) − NH(x)). Thus, for every

x ∈ V (H) it holds that |DK1+H(x, v) ∩ S| ≥ k. Therefore, S is a k-metric

generator for K1 +H.

By performing some simple calculations, we have that dim2(W1,3) =

dim2(W1,4) = dim2(W1,5) = dim2(W1,6) = 4, dim3(W1,5) = dim3(W1,6) = 5,

and dim4(W1,5) = dim4(W1,6) = 6. Next we present a formula for the k-

metric dimension of wheel graphs for n ≥ 7 and k ∈ {2, 3, 4}.

Proposition 3.43. For any n ≥ 7,

(i) dim2(W1,n) =
⌈
n
2

⌉
.

(ii) dim3(W1,n) = n−
⌊
n
5

⌋
.

(iii) dim4(W1,n) = n.

Proof. Since n ≥ 7, by Proposition 3.41, the central vertex of W1,n does not

belong to any k-metric basis of W1,n. Thus, any k-metric basis of W1,n is

a subset of V (Cn). Let Sk ⊂ V (Cn), k ∈ {2, 3, 4}, be a set of vertices of

W1,n such that |S2| <
⌈
n
2

⌉
, |S3| < n −

⌊
n
5

⌋
, and |S4| < n. We claim that
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Sk is not a k-metric generator for W1,n with k ∈ {2, 3, 4}. Consider each Sk

independently:

k = 2. Since |S2| <
⌈
n
2

⌉
, there exist four consecutive vertices ui, ui+1, ui+2,

ui+3 such that at most one of them belongs to S2. Thus, |DW1,n(ui+1, ui+2)∩
S2| ≤ 1.

k = 3. Since |S3| < n−
⌊
n
5

⌋
, there exist five consecutive vertices ui, ui+1, ui+2,

ui+3, ui+4 such that at most three of them belong to S3. Thus, there ex-

ist four consecutive vertices uj, uj+1, uj+2, uj+3 ∈ {ui, ui+1, ui+2, ui+3, ui+4}
such that at most two of them belong to S3, with the exception of two

cases. Hence, |DW1,n(uj+1, uj+2) ∩ S3| ≤ 2. The two exceptional cases

are when either ui+1, ui+2, ui+3 ∈ S3 or ui, ui+2, ui+4 ∈ S3. In both cases,

|DW1,n(ui+1, ui+3) ∩ S3| = 2.

k = 4. Since |S4| < n, there exist four consecutive vertices ui, ui+1, ui+2, ui+3

such that at most three of them belong to S4. Thus, |DW1,n(ui+1, ui+2)∩S4| ≤
3.

Therefore, as we claimed, Sk is not a k-metric generator for W1,n, with

k ∈ {2, 3, 4}, and so dim2(W1,n) ≥
⌈
n
2

⌉
, dim3(W1,n) ≥ n−

⌊
n
5

⌋
and dim4(W1,n)

≥ n.

Since n ≥ 7, by Proposition 3.41, the central vertex of W1,n does not

belong to any k-metric basis of W1,n. Thus, V (Cn) is a 4-metric genera-

tor for W1,n and, as a result, dim4(W1,n) = n. It remains to show that

dim2(W1,n) ≤
⌈
n
2

⌉
and dim3(W1,n) ≤ n−

⌊
n
5

⌋
. With this aim, let Ak ⊂ V (Cn),

k ∈ {2, 3}, be a set of vertices such that ui belongs to A2 or A3 if and

only if i is odd or i 6≡ 0 (5), respectively. Notice that |A2| =
⌈
n
2

⌉
and

|A3| = n−
⌊
n
5

⌋
. We shall show that for every ui, uj ∈ V (Cn), i 6= j, it holds

|DW1,n(ui, uj) ∩ Ak| ≥ k and hence, by Lemmas 3.40 and 3.42, we have that

Ak is a k-metric generator for W1,n. Consider each Ak separately:

k = 2. If ui, uj ∈ A2, then the result is straightforward. If ui ∈ A2 and uj 6∈
A2, then {ui, uk} ⊆ A2 ∩ DW1,n(ui, uj), for some uk ∈ N(uj) − N [ui]. Also,

if ui, uj 6∈ A2, then {uk, ul} ⊆ A2∩DW1,n(ui, uj), where uk, ul ∈ N(ui)ON(uj).

k = 3. If ui, uj ∈ A3, then {ui, uj, uk} ⊆ A3 ∩ DW1,n(ui, uj), where uk ∈
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A3 ∩ (N [ui]ON [uj]). If ui ∈ A3 and uj 6∈ A3, then {ui, uk, ul} ⊆ A3 ∩
DW1,n(ui, uj), where uk, ul ∈ A3∩ (N [uj]ON [ui]). Finally, if ui, uj 6∈ A3, then

{uk, ul, um} ⊆ A3 ∩ DW1,n(ui, uj), where uk, ul, um ∈ N(ui) ∪N(uj).

Therefore, Ak is a k-metric generator for W1,n, with k ∈ {2, 3} and, as a

consequence, the result follows.

Proposition 3.44. [67] For any integer n ≥ 4,

adim1(Pn) = adim1(Cn) =

⌊
2n+ 2

5

⌋
.

Notice that by Propositions 3.36 and 3.44, for any n ≥ 4, n 6= 6, we have

that

adim1(Pn) = adim1(K1 + Pn) = adim1(Cn) = adim1(K1 + Cn).

We now show the relationship between the k-adjacency dimension of fan

(wheel) graphs and path (cycle) graphs. By Theorem 2.2 we have that any

path graph of order at least four is 3-adjacency dimensional and any cycle

graph of order at least five is 4-adjacency dimensional. From Propositions

3.31, 3.39 and 3.43 we will derive closed formulae for the k-adjacency dimen-

sion of paths (for k ∈ {2, 3}) and cycles (for k ∈ {2, 3, 4}).

Proposition 3.45. For any integer n ≥ 4,

adim2(Pn) =

⌈
n+ 1

2

⌉
and adim3(Pn) = n−

⌊
n− 4

5

⌋
.

Proof. Let k ∈ {2, 3} and V (Pn) = {v1, v2, . . . , vn}, where vi is adjacent to

vi+1 for every i ∈ {1, . . . , n− 1}.
We first consider the case n ≥ 7. Since CPn(v1, v2) = {v1, v2, v3} and

CPn(vn−1, vn) = {vn−2, vn−1, vn}, we deduce that for any k-adjacency basis A

of Pn and any y ∈ V (T ), |A − NPn(y)| ≥ k. Hence, Theorem 3.32 leads to

adimk(K1 +Pn) = adimk(Pn). Therefore, by Proposition 3.39 we deduce the

result for n ≥ 7.

Now, for n = 6, since CP6(v1, v2) = {v1, v2, v3} and CP6(v5, v6) = {v4, v5, v6},
we deduce that adim2(P6) ≥ 4 and adim3(P6) = 6. In addition, {v1, v3, v4, v6}
is a 2-adjacency generator for P6 and so adim2(P6) = 4.

From now on, let n ∈ {4, 5}. By Proposition 3.31 we have dimk(K1 +

Pn) ≥ adimk(Pn). It remains to prove that adimk(K1 + Pn) ≤ adimk(Pn).
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If n = 4 or n = 5, then by Proposition 3.12, adim2(Pn) ≥ 3. Note

that {v1, v2, v4} and {v1, v3, v5} are 2-adjacency generators for P4 and P5,

respectively. Thus, adim2(P4) = adim2(P5) = 3. LetA be a 3-adjacency basis

of Pn, where n ∈ {4, 5}. Since CPn(v1, v2) = {v1, v2, v3} and CPn(vn−1, vn) =

{vn−2, vn−1, vn}, we have that (A∩CPn(v1, v2))∪ (A∩CPn(vn−1, vn)) = V (Pn),

and as consequence, A = V (Pn). Therefore, adim3(P4) = 4 and adim3(P5) =

5 and, as a consequence, the result follows.

Proposition 3.46. For any integer n ≥ 5,

adim2(Cn) =
⌈n

2

⌉
, adim3(Cn) = n−

⌊n
5

⌋
and adim4(Cn) = n.

Proof. Let k ∈ {2, 3, 4} and V (Cn) = {v1, v2, . . . , vn}, where vi is adjacent to

vi+1 and the subscripts are taken modulo n.

We first consider the case n ≥ 7. Since CCn(vi+3, vi+4) = {vi+2, vi+3, vi+4,

vi+5}, we deduce that for any k-adjacency basis A of Cn, |A−NCn(vi)| ≥ k.

Hence, Theorem 3.32 leads to adimk(K1 + Cn) = adimk(Cn). Therefore, by

Proposition 3.43 we deduce the result for n ≥ 7.

From now on, let n ∈ {5, 6}. By Proposition 3.31 we have dimk(K1 +

G) ≥ adimk(G). It remains to prove that adimk(K1 +H) ≤ adimk(H).

By Theorem 3.2, we deduce that 2 = adim1(C5) < adim2(C5) < adim3(C5)

< adim4(C5) ≤ 5. Hence, adim2(C5) = 3, adim3(C5) = 4 and adim4(C5) = 5.

Therefore, for n = 5 the result follows.

By Theorem 3.2, adim2(C6) > adim1(C6) = 2 and, since {v1, v3, v5} is a

2-adjacency generator for C6, we obtain that adim2(C6) = 3. Now, let A4 be

a 4-adjacency basis of C6. If |A4| ≤ 5, then there exists at least one vertex

which does not belong to A4, say v1. Then, |CCn(v1, v2) ∩ A4| ≤ 3, which is

a contradiction. Thus, adim4(C6) = |A4| = 6. Let A1
3 = {v1, v2, v3, v4}, A2

3 =

{v1, v2, v3, v5} and A3
3 = {v1, v2, v4, v5}. Note that any manner of selecting

four different vertices from C6 is equivalent to some of these A1
3, A

2
3, A

3
3. Since

|CCn(v5, v6) ∩ A1
3| = |{v1, v4}| = 2 < 3, |CCn(v4, v6) ∩ A2

3| = |{v1, v3}| = 2 < 3

and |CCn(v1, v2) ∩ A3
3| = |{v1, v2}| = 2 < 3, we deduce that adim3(C6) ≥ 5 >

|A1
3| = |A2

3| = |A3
3| = 4. By Theorem 3.2, 5 ≤ adim3(C6) < adim4(C6) ≤ 6.

Thus, adim3(C6) = 5 and, as a consequence, the result follows.

By Propositions 3.45 and 3.46, adim3(Pn) = n for n ∈ {4, . . . , 8} and

adim4(Cn) = n for n ≥ 5. These are examples of graphs satisfying conditions

of Theorem 3.5.
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By Propositions 3.36, 3.39, 3.43, 3.44, 3.45 and 3.46 we observe that

for any k ∈ {1, 2, 3} and n ≥ 7, adimk(K1 + Pn) = adimk(Pn) and for any

k ∈ {1, 2, 3, 4}, adimk(K1 + Cn) = adimk(Cn). The next result is devoted

to characterize the trees where adimk(K1 + T ) = adimk(T ). To this end,

we recall that the eccentricity of a vertex v in a connected graph G is the

maximum distance between v and any other vertex u of G.

Proposition 3.47. Let T be a tree. The following statements hold.

(a) adim1(K1+T ) = adim1(T ) if and only if T 6∈ F1 = {P2, P3, P6, K1,n, T
′},

where n ≥ 3 and T ′ is obtained from P5∪{K1} by joining by an edge the

vertex of K1 to the central vertex of P5.

(b) adim2(K1 +T ) = adim2(T ) if and only if T 6∈ F2 = {Pr, K1,n, T
′}, where

r ∈ {2, . . . , 5}, n ≥ 3 and T ′ is a graph obtained from K1,n ∪ K2 by

joining by an edge one leaf of K1,n to one leaf of K2.

(c) adim3(K1 + T ) = adim3(T ) if and only if T 6∈ F3 = {P4, P5}.

Proof. For any k ∈ {1, 2, 3} and T ∈ Fk, a simple inspection shows that

adimk(K1 + T ) 6= adimk(T ). From now on, assume that T 6∈ Fk, for

k ∈ {1, 2, 3}, and let Ext(T ) be the number of exterior major vertices of

T . We differentiate the following three cases.

Case 1. T = Pn. The result is a direct consequence of combining Proposi-

tions 3.36 and 3.44 for k = 1 and Propositions 3.39 and 3.45 for k > 1.

In the following cases we shall show that there exists a k-adjacency basis

A of T such that |A − NT (v)| ≥ k, for all v ∈ V (T ). Therefore, the result

follows by Theorem 3.32.

Case 2. Ext(T ) = 1. Let u be the only exterior major vertex of T .

We first take k = 1. Since any two vertices adjacent to u must be

distinguished by at least one vertex, we have that all paths from u to its

terminal vertices, except at most one, contain at least one vertex in A. Thus,

|A−NT (y)| ≥ 1, for all y ∈ V (T )−{u}. Now we shall show that |A−NT (u)| ≥
1. If u ∈ A or A 6⊆ NT (u), then we are done, so we suppose that for any

adjacency basis A of T , u 6∈ A and A ⊆ NT (u). If there exists a leaf v

such that dT (u, v) ≥ 4, then the support v′ of v satisfies CT (v, v′) ∩ A = ∅,
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which is a contradiction. Hence, the eccentricity of u satisfies 2 ≤ ε(u) ≤ 3.

If w is a leaf of T such that dT (u,w) = ε(u), then the vertex u′ ∈ NT (u)

belonging to the path from u to w must belong to A and, as a consequence

A′ = (A− {u′}) ∪ {w} is an adjacency basis of T , which is a contradiction.

We now take k = 2. Let A be a 2-adjacency basis of T . Since any

two vertices adjacent to u must be distinguished by at least two vertices

in A, either all paths joining u to its terminal vertices contain at least one

vertex of A or all but one contain at least two vertices of A. Thus, any vertex

y ∈ V (T )−{u} and any 2-adjacency basis A of T satisfy that |A−NT (y)| ≥ 2.

If there exist two vertices v, v′ ∈ V (T ) such that dT (u, v) ≥ 3 and

dT (u, v′) ≥ 3, then |A − NT (u)| ≥ 2, as |A ∩ C2(v, v′)| ≥ 2. On the other

hand, if there exists only one leaf v such that dT (u, v) ≥ 3 and another leaf

w such that dT (u,w) = 2, we have that in order to distinguish v and its

support as well as w and its support, |A ∩ NT [v]| ≥ 1 and |A ∩ {u,w}| ≥ 1

and, as a result, |A − NT (u)| ≥ 2. Now, since T 6∈ F2 it remains to con-

sider the case where u has eccentricity two. Let v, w be two leaves such that

dT (u, v) = dT (u,w) = 2. If |NT (u)| = 3, then the set A composed by u and its

three terminal vertices is a 2-adjacency basis of T such that |A−NT (u)| ≥ 2.

Assume that |NT (u)| ≥ 4. In order to distinguish v and its support vertex

v′, as well as w and its support vertex w′, any 2-adjacency basis A of T must

contain at least two vertices of {u, v, v′} and at least two vertices of {u,w,w′}.
If u /∈ A, then v, w ∈ A, and as a consequence, |A − NT (u)| ≥ 2. Assume

that u ∈ A. In this case, if A−NT [u] 6= ∅, then |A−NT (u)| ≥ 2. Otherwise,

A ⊆ NT [u] and {u, v′, w′} ⊂ A and, as a consequence, A′ = (A− {v′}) ∪ {v}
is a 2-adjacency basis of T and |A′ −NT (u)| ≥ 2.

Finally, suppose that there exists exactly one leaf v such that dT (u, v) = 2.

Let v′ be the support vertex of v. In this case, V (T )− {v′} is a 2-adjacency

basis A of T such that |A−NT (u)| ≥ 2.

We now take k = 3. In this case, there exist two leaves v, w such that

dT (u, v) ≥ 2 and dT (u,w) ≥ 2. Since v and its support vertex v′ must be dis-

tinguished by at least three vertices, they must belong to any 3-adjacency ba-

sis. Analogously, w and its support vertex w′ must belong to any 3-adjacency

basis. In general, any leaf that is not adjacent to u and its support vertex

belong to any 3-adjacency basis of T . Moreover, there exists at most one

terminal vertex x adjacent to u. If x exists, it must be distinguished from

any vertex belonging to NT (u) − {x} by at least three vertices. Thus, they
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must belong to any 3-adjacency basis. Any vertex y different from u and any

3-adjacency basis A of T satisfy v, v′ ∈ A−NT (y) or w,w′ ∈ A−NT (y). If

v, v′ ∈ A−NT (y) and w,w′ ∈ A−NT (y), then |A−NT (y)| ≥ 3. Otherwise,

assuming without loss of generality that v, v′ ∈ A−NT (y), there exists a ter-

minal vertex z different from w such that y 6∼ z. Thus, again |A−NT (y)| ≥ 3.

If dT (u, v) = 2, then v, v′ are distinguished only by u, v, v′, so u must belong

to any 3-adjacency basis of T . Thus, for any 3-adjacency basis A of T we

have that u, v, w ∈ A −NT (u), and as a consequence, |A −NT (u)| ≥ 3. Fi-

nally, if dT (u, v) > 2 and dT (u,w) > 2, then v, v′, w, w′ ∈ A−NT (u). Hence

|A−NT (u)| ≥ 3.

Case 3. Ext(T ) ≥ 2. In this case, there are at least two exterior major

vertices u, v of T having terminal degree at least two. Let u1, u2 be two

terminal vertices of u and v1, v2 be two terminal vertices of v. Let u′1 and u′2
be the vertices adjacent to u in the paths u − u1 and u − u2, respectively.

Likewise, let v′1 and v′2 be the vertices adjacent to v in the paths v − v1 and

v − v2, respectively. Notice that it is possible that u1 = u′1, u2 = u′2, v1 = v′1
or v2 = v′2. Note also that C(u′1, u′2) = (NT [u′1]∪NT [u′2])−{u} and C(v′1, v′2) =

(NT [v′1]∪NT [v′2])−{v}. Since for any k-adjacency basis A of T it holds that

|C(u′1, u′2) ∩ A| ≥ k and |C(v′1, v′2) ∩ A| ≥ k, and for any vertex w ∈ V (T ) we

have that (A − NT (w)) ∩ C(u′1, u′2) = ∅ or (A − NT (w)) ∩ C(v′1, v′2) = ∅, we

conclude that |A−NT (w)| ≥ k.

By Remark 3.24 we know that adimk(H) = adimk(H) for any nontrivial

graph H and k ∈ {1, 2, . . . , C(H)}. Thus, by Corollaries 3.33, 3.34, 3.35

and Propositions 3.36, 3.39, 3.43, 3.44, 3.45, 3.46 and 3.47 we deduce the

following results.

Proposition 3.48. Let H be a nontrivial graph such that adimk(K1 ∪H) =

adimk(H). Then the vertex of K1 does not belong to any k-adjacency basis

of K1 ∪H.

Proposition 3.49. If H is a graph of diameter D(H) ≥ 6, or H has girth

g(H) ≥ 5 and minimum degree δ(H) ≥ 3, then adimk(K1∪H) = adimk(H) =

adimk(H) for any k ∈ {1, . . . , C(K1 +H)}.

Proposition 3.50. Let T be a tree. The following statements hold.



On the (k, t)-metric dimension of graphs 76

(a) adim1(K1 ∪ T ) = adim1(T ) = adim1(T ) if and only if T 6∈ F1 =

{P2, P3, P6, K1,n, T
′}, where n ≥ 3 and T ′ is obtained from P5 ∪ K1 by

joining by an edge the vertex of K1 to the central vertex of P5.

(b) adim2(K1 ∪ T ) = adim2(T ) = adim2(T ) if and only if T 6∈ F2 =

{Pr, K1,n, T
′}, where r ∈ {2, . . . , 5}, n ≥ 3 and T ′ is a graph obtained

from K1,n ∪K2 by joining by an edge one leaf of K1,n to one leaf of K2.

(c) adim3(K1∪T ) = adim3(T ) = adim3(T ) if and only if T 6∈ F3 = {P4, P5}.

Moreover, if T is a path Pn of order n, then

(i) adim1(K1 ∪ Pn) = adim1(Pn) = adim1(Pn) =
⌊
2n+2

5

⌋
for n ≥ 7.

(ii) adim2(K1 ∪ Pn) = adim2(Pn) = adim2(Pn) =
⌈
n+1
2

⌉
for n ≥ 6.

(iii) adim3(K1 ∪ Pn) = adim3(Pn) = adim3(Pn) = n−
⌊
n−4
5

⌋
for n ≥ 6.

Proposition 3.51. For any cycle Cn of order n ≥ 7, the following statements

hold.

(i) adim1(K1 ∪ Cn) = adim1(Cn) = adim1(Cn) =
⌊
2n+2

5

⌋
.

(ii) adim2(K1 ∪ Cn) = adim2(Cn) = adim2(Cn) =
⌈
n
2

⌉
.

(iii) adim3(K1 ∪ Cn) = adim3(Cn) = adim3(Cn) = n−
⌊
n
5

⌋
.

(iv) adim4(K1 ∪ Cn) = adim4(Cn) = adim4(Cn) = n.

From now on, we shall study some cases where adimk(K1+H) > adimk(H).

First of all, notice that by Corollary 3.34, if H is a connected graph and

adimk(K1 + H) ≥ adimk(H) + 1, then D(H) ≤ 5 and, by Corollary 3.35, if

H has minimum degree δ(H) ≥ 3, then it has girth g(H) ≤ 4. We would

point out the following consequence of Theorem 3.32.

Corollary 3.52. If adimk(K1 + H) ≥ adimk(H) + 1, then either H is con-

nected or H has exactly two connected components, one of which is an isolated

vertex.

Proof. Let A be a k-adjacency basis of H. We differentiate three cases for

H.

Case 1. There are two connected components H1 and H2 of H such that

|V (H1)| ≥ 2 and |V (H2)| ≥ 2. As for any i ∈ {1, 2} and u, v ∈ V (Hi),
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|CH(u, v) ∩ A| = |CHi
(u, v) ∩ A| ≥ k we deduce that |A ∩ V (H1)| ≥ k and

|A∩ V (H2)| ≥ k. Hence, if x ∈ V (H1), then |A−NH(x)| ≥ |A∩ V (H2)| ≥ k

and if x ∈ V (H) − V (H1), then |A − NH(x)| ≥ |A ∩ V (H1)| ≥ k. Thus, by

Theorem 3.32, adimk(K1 +H) = adimk(H).

Case 2. There is a connected component H1 of H such that |V (H1)| ≥ 2

and there are two isolated vertices u, v ∈ V (H). From CH(u, v) = {u, v}
we conclude that k ≤ 2 and |{u, v} ∩ A| ≥ k. Moreover, for any x, y ∈
V (H1), x 6= y, we have that |CH(x, y) ∩ A| = |CH1(u, v) ∩ A| ≥ k and so

|A ∩ V (H1)| ≥ k. Hence, if x ∈ V (H1), then |A−NH(x)| ≥ |{u, v} ∩A| ≥ k

and if x ∈ V (H) − V (H1), then |A − NH(x)| ≥ |A ∩ V (H1)| ≥ k. Thus, by

Theorem 3.32, adimk(K1 +H) = adimk(H).

Case 3. H ∼= Nn, for n ≥ 2. In this case k ∈ {1, 2}, adim1(K1 + Nn) =

adim1(Nn) = n− 1 and adim2(K1 +Nn) = adim2(Nn) = n.

Therefore, according to the three cases above, the result follows.

By Proposition 3.31 and Theorem 3.32, adimk(K1 +H) ≥ adimk(H) + 1

if and only if for any k-adjacency basis A of H, there exists h ∈ V (H)

such that |A − NH(h)| < k. Consider, for instance, the graph G shown

in Figure 3.1. The only 2-adjacency basis of G is B = {v2, v3, v4, v5} and

|B − NG(v1)| = 0, so adim2(K1 + G) ≥ adim2(G) + 1 = 5. It is easy to

check that A = {v1, v6, v7, v8, v9} is a 2-adjacency generator for K1 +G, and

so adim2(K1 +G) = adim2(G) + 1 = 5. We emphasize that neither B ∪ {v1}
nor B ∪ {x} are 2-adjacency bases of 〈x〉+G.

Proposition 3.53. Let H be a graph of order n ≥ 2 and let k ∈ {1, . . . , C(K1+

H)}. If for any k-adjacency basis A of H, there exists h ∈ V (H) such that

|A−NH(h)| = k − 1 and |A−NH(h′)| ≥ k − 1, for all h′ ∈ V (H), then

adimk(K1 +H) = adimk(H) + 1.

Proof. If for any k-adjacency basis A of H, there exists h ∈ V (H) such that

|A−NH(h)| = k−1, then by Theorem 3.32, adimk(K1+H) ≥ adimk(H)+1.

Now, let A be a k-adjacency basis of H and let v be the vertex of K1.

Since |A−NH(h′)| ≥ k−1, for all h′ ∈ V (H), the set A∪{v}, is a k-adjacency

generator for K1 +H and, as a consequence, adimk(K1 +H) ≤ |A ∪ {v}| =
adimk(H) + 1.

The graphH shown in Figure 3.5 has six 3-adjacency bases. For instance,

one of them is B = {1, 2, 3, 4, 5, 8, 9} and the remaining ones can be found
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Figure 3.5: The set B = {1, 2, 3, 4, 5, 8, 9} is a 3-adjacency basis of this graph.

by symmetry. Notice that for any 3-adjacency basis, say A, there are two

vertices i, j such that |A−NH(i)| = 2, |A−NH(j)| = 2 and |A−NH(l)| ≥ 3,

for all l 6= i, j. In particular, for the basis B we have i = 3 and j = 4.

Therefore, Proposition 3.53 leads to adim3(K1 +H) = adim3(H) + 1 = 8.

By Theorem 3.32 and Proposition 3.53 we deduce the following result

previously obtained in [67].

Proposition 3.54. [67] Let H be graph of order n ≥ 2. If for any adjacency

basis A of H, there exists h ∈ V (H)− A such that A ⊆ NH(h), then

adim1(K1 +H) = adim1(H) + 1,

otherwise,

adim1(K1 +H) = adim1(H).

Theorem 3.55. For any nontrivial graph H,

adim2(K1 +H) ≤ adim2(H) + 2.

Proof. Let A be a 2-adjacency basis of H and let u be the vertex of K1.

Notice that there exists at most one vertex x ∈ V (H) such that A ⊆ NH(x).

Now, if |A−NH(v)| ≥ 1 for all v ∈ V (H), then we define X = A∪{u} and, if

there exists x ∈ V (H) such that A ⊆ NH(x), then we define X = A∪{x, u}.
We claim that X is a 2-adjacency generator for K1 + H. To show this,

we first note that for any y ∈ V (H) we have that |CK1+H(u, y) ∩ X| =

|((A−NH(y))∪ {u})∩X| ≥ 2. Moreover, for any a, b ∈ V (H) we have that

CK1+H(a, b) = CH(a, b). Therefore, X is a 2-adjacency generator for K1 +H

and, as a consequence, adim2(K1 +H) ≤ adim2(H) + 2.

We would point out that if for any 2-adjacency basis A of a graph H,

there exists a vertex x such that A ⊆ NH(x), then not necessarily adim2(K1+
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H) = adim2(H) + 2. To see this, consider the graph G shown in Figure 3.1,

where {v2, v3, v4, v5} is the only 2-adjacency basis of G and {v2, v3, v4, v5} ⊆
NH(v1). However, {v1, v6, v7, v8, v9} is a 2-adjacency basis of K1 +G and so

adim2(K1 + H) = adim(H) + 1. Now, we prove some results showing that

the inequality given in Theorem 3.55 is tight.

Theorem 3.56. Let H be a nontrivial graph. If there exists a vertex x of

degree δ(x) = |V (H)| − 1 not belonging to any 2-adjacency basis of H, then

adim2(K1 +H) = adim2(H) + 2.

Proof. Let u be the vertex of K1 and let x ∈ V (H) be a vertex of degree

δ(x) = |V (H)| − 1 not belonging to any 2-adjacency basis of H. In such a

case, CK1+H(x, u) = {x, u} and, as a result, both x and u must belong to any

2-adjacency basis X of K1 + H. Since X − {u} is a 2-adjacency generator

for H and x ∈ X − {u} we conclude that |X − {u}| ≥ adim2(H) + 1 and so

adim2(K1 + H) = |X| ≥ adim2(H) + 2. By Theorem 3.55 we conclude the

proof.

Examples of graphs satisfying the premises of Theorem 3.56 are the fan

graphs F1,n and the wheel graphs W1,n for n ≥ 7. For these graphs we have

adim2(K1+F1,n) = adim2(F1,n)+2 and adim2(K1+W1,n) = adim2(W1,n)+2.

Theorem 3.57. Let H be a graph having an isolated vertex v and a vertex

u of degree δ(x) = |V (H)| − 2. If for any 2-adjacency basis B of H, neither

u nor v belongs to B, then

adim2(K1 +H) = adim2(H) + 2.

Proof. Let u be the vertex of K1. Since CK1+H(x, u) = {x, u, v}, at least

two vertices of {x, u, v} must belong to any 2-adjacency basis X of K1 +H.

Then we have that x ∈ X − {u} or v ∈ X − {u}. Since X − {u} is a

2-adjacency generator for H, we conclude that if |X ∩ {x, v}| = 1, then

adim2(K1 + H) > |X − {u}| ≥ adim2(H) + 1, whereas if |X ∩ {x, v}| = 2,

then adim2(K1 +H) ≥ |X−{u}| ≥ adim2(H) + 2. Hence, adim2(K1 +H) =

|X| ≥ adim2(H) + 2. By Theorem 3.55 we conclude the proof.

For instance, we take a family of graphs G = {G1, G2, . . .} such that

for any Gi ∈ G, every vertex in V (Gi) belongs to a non-singleton true twin

equivalence class. Then X =
⋃
Gi∈G V (Gi) is the only 2-adjacency basis of

H = K1 ∪ (K1 +
⋃
Gi∈G Gi). Therefore, adim2(K1 +H) = adim2(H) + 2.
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Proposition 3.58. Let H be graph and k ∈ {1, . . . , C(K1 + H)}. If there

exists a vertex x ∈ V (H) and a k-adjacency basis A of H such that A ⊆
NH(x), then

adimk(K1 +H) ≤ adimk(H) + k.

Proof. Let u be the vertex of K1 and assume that there exists a vertex

v1 ∈ V (H) and a k-adjacency basis A of H such that A ⊆ NH(v1). Since

k ≤ |V (H)|−∆(H)+1, we have that |V (H)−NH(v1)| ≥ k−1. With this fact

in mind, we shall show that X = A∪ {u} ∪A′ is a k-adjacency generator for

K1 +H, where A′ = ∅ if k = 1 and A′ = {v1, v2, . . . , vk−1} ⊂ V (H)−NH(v1)

if k ≥ 2. To this end we only need to check that |CK1+H(u, v) ∩ X| ≥ k,

for all v ∈ V (H). On one hand, |CK1+H(u, v1) ∩ X| = |{u} ∪ A′| = k. On

the other hand, since A ⊆ NH(v1), for any v ∈ V (H) − {v1} we have that

|A − NH(v)| ≥ k and, as a consequence, |CK1+H(u, v) ∩ X| ≥ k. Therefore,

X is a k-adjacency generator for K1 +H and, as a result, adimk(K1 +H) ≤
|X| = adimk(H) + k.

1
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6
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Figure 3.6: The set A = {2, 3, 5, 6, 7, 9} is the only 3-adjacency basis of H

and A ⊂ NH(1).

The bound above is tight. It is achieved, for instance, for the graph

shown in Figure 3.6. In this case adim3(K1 + H) = adim3(H) + 3 = 9.

The set {2, 3, 5, 6, 7, 9} is the only 3-adjacency basis of H, whereas 〈u〉 + H

has four 3-adjacency bases, i.e., {1, 2, 3, 4, 5, 6, 7, 8, u}, {1, 2, 3, 4, 5, 6, 7, 9, u}
{1, 2, 3, 4, 5, 7, 8, 9, u} and {1, 2, 3, 4, 6, 7, 8, 9, u}.

Conjecture 3.59. Let H be graph of order n ≥ 2 and k ∈ {1, . . . , C(K1 +

H)}. Then

adimk(K1 +H) ≤ adimk(H) + k.

We have shown that Conjecture 3.59 is true for any graph H and k ∈
{1, 2}, and for any H and k satisfying the premises of Proposition 3.58.



On the (k, t)-metric dimension of graphs 81

Moreover, in order to assess the potential validity of Conjecture 3.59, we

explored the entire set of graphs of order n ≤ 11 and minimum degree two

by means of an exhaustive search algorithm. This search yielded no graph H

such that adimk(K1 +H) > adimk(H)+k, k ∈ {3, 4}, a fact that empirically

supports our conjecture.

Two different vertices u, v of G+H belong to the same twin equivalence

class if and only if at least one of the following three statements hold.

(a) u, v ∈ V (G) and u, v belong to the same twin equivalence class of G.

(b) u, v ∈ V (H) and u, v belong to the same twin equivalence class of H.

(c) u ∈ V (G), v ∈ V (H), NG[u] = V (G) and NH [v] = V (H).

The following two remarks are direct consequence of Corollary 3.6.

Remark 3.60. Let G and H be two graphs of order n1 ≥ 2 and n2 ≥ 2,

respectively. Then adim2(G + H) = n1 + n2 if and only if one of the two

following statements hold.

(a) Every vertex of G belongs to a non-singleton twin equivalence class of G

and every vertex of H belongs to a non-singleton twin equivalence class

of H.

(b) ∆(G) = n1 − 1, ∆(H) = n2 − 1, every vertex u ∈ V (G) of degree

δ(u) < n1− 1 belongs to a non-singleton twin equivalence class of G and

every vertex v ∈ V (H) of degree δ(v) < n2−1 belongs to a non-singleton

twin equivalence class of H.

Theorem 3.61. Let G and H be two nontrivial graphs. Then the following

assertions hold:

(i) For any k ∈ {1, . . . , C(G+H)},

adimk(G+H) ≥ adimk(G) + adimk(H).

(ii) For any k ∈ {1, . . . ,min{C(H), C(K1 +G)}}

adimk(G+H) ≤ adimk(K1 +G) + adimk(H).
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Proof. First we proceed to deduce the lower bound. Let A be a k-adjacency

basis of G + H, AG = A ∩ V (G), AH = A ∩ V (H) and let x, y ∈ V (G)

be two different vertices. Notice that AG 6= ∅ and AH 6= ∅, as n1 ≥ 2 and

n2 ≥ 2. Now, since CG+H(x, y) = CG(x, y), it follows that |AG ∩ CG(x, y)| =

|A ∩ CG+H(x, y)| ≥ k, and as a consequence, AG is a k-adjacency generator

for G. By analogy we deduce that AH is a k-adjacency generator for H.

Therefore, adimk(G+H) = |A| = |AG|+ |AH | ≥ adimk(G) + adimk(H).

To obtain the upper bound, first we suppose that there exists a k-

adjacency basis U of K1 + G such that the vertex of K1 does not belong

to U . We claim that for any 2-adjacency basis B of H the set X = U ∪B is

a k-adjacency generator for G+H. To see this we take two different vertices

a, b ∈ V (G+H). If a, b ∈ V (G), then |CG+H(a, b)∩X| = |CK1+G(a, b)∩U | ≥ k.

If a, b ∈ V (H), then |CG+H(a, b)∩X| = |CH(a, b)∩B| ≥ k. Now, assume that

a ∈ V (G) and b ∈ V (H). Since U is a k-adjacency generator for 〈b〉+G, we

have that |C〈b〉+G(a, b)∩U | ≥ k. Hence, |CG+H(a, b)∩X| = |C〈b〉+G(a, b)∩U | ≥
k. Therefore, X is a k-adjacency generator for G+H and, as a consequence,

adimk(G+H) ≤ |X| = |U |+ |B| = adimk(K1 +G) + adimk(H).

Suppose from now on that the vertex u of K1 belongs to any k-adjacency

basis U of K1 +G. We differentiate two cases:

Case 1. For any k-adjacency basis B of H, there exists a vertex x such

that B ⊆ NH(x). We claim that X = U ′ ∪ (B ∪ {x}) is a k-adjacency

generator for G+H, where U ′ = U − {u}. To see this we take two different

vertices a, b ∈ V (G + H). Notice that since B is k-adjacency basis of H,

there exists exactly one vertex x ∈ V (H) such that B ⊆ NH(x) and for

any y ∈ V (H) − {x} it holds |B − NH(y)| ≥ k. If a, b ∈ V (G), then

|CG+H(a, b)∩X| = |CK1+G(a, b)∩U ′| = |CK1+G(a, b)∩U | ≥ k. If a, b ∈ V (H),

then |CG+H(a, b) ∩ X| = |CH(a, b) ∩ (B ∪ {x})| ≥ k. Now, assume that a ∈
V (G) and b ∈ V (H). Since U ′∪{b} is a k-adjacency basis of 〈b〉+G, we have

that |C〈b〉+G(a, b) ∩ U ′| ≥ k − 1. Furthermore, |C〈a〉+H(a, b) ∩ (B ∪ {x})| ≥ 1.

Hence, |CG+H(a, b)∩X| = |C〈b〉+G(a, b)∩U ′|+ |C〈a〉+H(a, b)∩ (B ∪ {x})| ≥ k.

Therefore, X is a k-adjacency generator for G + H and, as a consequence,

adimk(G+H) ≤ |X| = |U ′|+ |B∪{x}| = (adimk(K1+G)−1)+(adimk(H)+

1) = adimk(K1 +G) + adimk(H).

Case 2. There exists a k-adjacency basis B′ of H such that |B′ −
NH(h′)| ≥ 1, for all h′ ∈ V (H). We take X = U ′∪B′ and we proceed as above

to show that X is a k-adjacency generator for G + H. As above, for a, b ∈
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V (G) or a, b ∈ V (H) we deduce that |CG+H(a, b)∩X| ≥ k. Now, for a ∈ V (G)

and b ∈ V (H) we have |C〈b〉+G(a, b)∩U ′| ≥ k− 1 and |C〈a〉+H(a, b)∩B′| ≥ 1.

Hence, |CG+H(a, b) ∩X| = |C〈b〉+G(a, b) ∩ U ′|+ |C〈a〉+H(a, b) ∩B| ≥ k and, as

a consequence, adimk(G+H) ≤ |X| = |U ′|+ |B′| = (adimk(K1 +G)− 1) +

adimk(H) ≤ adimk(K1 +G) + adimk(H).

By Proposition 3.54 and Theorem 3.61 we obtain the following result.

Proposition 3.62. Let G and H be two nontrivial graphs. If for any adja-

cency basis A of G, there exists g ∈ V (G) such that A ⊆ NG(g) and for any

adjacency basis B of H, there exists h ∈ V (H) such that B ⊆ NH(h), then

adim1(G+H) = adim1(G) + adim1(H) + 1

Otherwise,

adim1(G+H) = adim1(G) + adim1(H).

Corollary 3.63. Let G and H be two nontrivial graphs and k ∈ {1, . . . , C(G+

H)}. If adimk(K1 +G) = adimk(G), then

adimk(G+H) = adimk(G) + adimk(H).

In the previous subsection we showed that there are several classes of

graphs where adimk(K1 + G) = adimk(G). This is the case, for instance, of

graphs of diameter D(G) ≥ 6, or G ∈ {Pn, Cn}, n ≥ 7, or graphs of girth

g(G) ≥ 5 and minimum degree δ(G) ≥ 3. Hence, for any of these graphs,

any nontrivial graph H, and any k ∈ {1, . . . ,min{C(H), C(K1+G)}} we have

that adimk(G+H) = adimk(G) + adimk(H).

Theorem 3.64. Let G and H be two nontrivial graphs. Then the following

assertions are equivalent:

(i) There exists a k-adjacency basis AG of G and a k-adjacency basis AH

of H such that |(AG −NG(x)) ∪ (AH −NH(y))| ≥ k, for all x ∈ V (G)

and y ∈ V (H).

(ii) adimk(G+H) = adimk(G) + adimk(H).

Proof. Let AG be a k-adjacency basis of G and and let AH be a k-adjacency

basis of H such that |(AG −NG(x)) ∪ (AH −NH(y))| ≥ k, for all x ∈ V (G)

and y ∈ V (H). By Theorem 3.61, adimk(G+H) ≥ adimk(G)+adimk(H). It
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remains to prove that adimk(G+H) ≤ adimk(G)+adimk(H). We will prove

that A = AG∪AH is a k-adjacency generator forG+H. We differentiate three

cases for two vertices x, y ∈ V (G+H). If x, y ∈ V (G), then the fact that AG

is a k-adjacency basis of G leads to k ≤ |AG ∩ CG(x, y)| = |A ∩ CG+H(x, y)|.
Analogously we deduce the case x, y ∈ V (H). If x ∈ V (G) and y ∈ V (H),

then the fact that CG+H(x, y) = (V (G) − NG(x)) ∪ (V (H) − NH(y)) and

|(AG−NG(x))∪(AH−NH(y))| ≥ k leads to |A∩CG+H(x, y)| ≥ k. Therefore,

A is a k-adjacency generator for G+H, as a consequence, |A| = |AG|+|AH | =
adimk(G) + adimk(H) ≥ adimk(G+H).

On the other hand, let B be a k-adjacency basis of G+H such that |B| =
adimk(G)+adimk(H) and let BG = B∩V (G) and BH = B∩V (H). Since for

any g1, g2 ∈ V (G) and h ∈ V (H), h 6∈ CG+H(g1, g2), we conclude that BG is a

k-adjacency generator for G and, by analogy, BH is a k-adjacency generator

for H. Thus, |BG| ≤ adimk(G), |BH | ≤ adimk(H) and |BG| + |BH | = |B| =
adimk(G) + adimk(H). Hence, |BG| = adimk(G), |BH | = adimk(H) and, as

a consequence, BG and BH are k-adjacency bases of G and H, respectively.

If there exists g ∈ V (G) and h ∈ V (H) such that |(BG − NG(g)) ∪ (BH −
NH(h))| < k, then |B ∩ CG+H(g, h)| = |(BG −NG(g)) ∪ (BH −NH(h))| < k,

which is a contradiction. Therefore, the result follows.

We would point out the following particular cases of the previous result1.

Corollary 3.65. Let Cn be a cycle graph of order n ≥ 5 and Pn′ a path graph

of order n′ ≥ 4. If G ∈ {Kt + Cn, Nt + Cn}, then

adim1(G) =

⌊
2n+ 2

5

⌋
+ t− 1 and adim2(G) =

⌈n
2

⌉
+ t.

If G ∈ {Kt + Pn′ , Nt + Pn′}, then

adim1(G) =

⌊
2n′ + 2

5

⌋
+ t− 1 and adim2(G) =

⌈
n′ + 1

2

⌉
+ t.

Proof. Let G1 ∈ {Kt, Nt} and G2 ∈ {Pn, Cn}. By Propositions 3.45 and

3.46 we deduce that adim2(G2) − ∆(G2) ≥ 1. On the other hand, for any

2-adjacency basis A of G1 and x ∈ V (G1) we have |B − NG1(y)| ∈ {1, t}.
Therefore, by Theorem 3.64 we obtain the result for G = G1 +G2.

1Notice that for n ≥ 7 and n′ ≥ 6, this result can be derived from Corollary 3.63.
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Corollary 3.66. Let G be a graph of order n ≥ 7 and maximum degree

∆(G) ≤ 3. Then for any integer r ≥ 2 and H ∈ {Kr, Nr},

adim2(G+H) = adim2(G) + r.

Proof. By Theorem 3.26 we deduce that adim2(G) ≥ 4, so for any 2-adjacency

basis A of G and x ∈ V (G) we have |A − NG(x)| ≥ 1. Moreover, for any

2-adjacency basis B of H and y ∈ V (H) we have |B − NH(y)| ∈ {1, r}.
Therefore, by Theorem 3.64 we obtain the result.

Corollary 3.67. Let G and H be two graphs of order at least seven such

that G is k1-adjacency dimensional and H is k2-adjacency dimensional. For

any integer k such that ∆(G) + ∆(H)− 4 ≤ k ≤ min{k1, k2},

adimk(G+H) = adimk(G) + adimk(H).

Proof. By Theorem 3.26, for any positive integer k ≤ min{k1, k2}, we have

adimk(G) ≥ k + 2 and adimk(H) ≥ k + 2. Thus, if k ≥ ∆(G) + ∆(H) − 4,

then (adimk(G)−∆(G)) + (adimk(H)−∆(H)) ≥ k. Therefore, by Theorem

3.64 we conclude the proof.

As a particular case of the result above we derive the following remark.

Remark 3.68. Let G and H be two 3-regular graphs of order at least seven.

Then

adim2(G+H) = adim2(G) + adim2(H).

General lexicographic product graphs

Note that a trivial upper bound on the k-metric dimension of G◦H is |V (G◦
H)|, which is tight at least for k = 2. To see this, we can firstly consult the

notation given by Section 1.1 and we can refer to Corollary 3.6, which states

that the 2-metric dimension of a graph G is equal to its order if and only if

G has no singleton twin equivalence classes. Considering this fact, we can

conclude the next result.

Remark 3.69. Let G be a connected graph of order n ≥ 2 and let H =

{H1, . . . , Hn} be a family composed by nontrivial graphs. Then dim2(G◦H) =

|V (G ◦ H)| if and only if the following statements hold.

(i) For every ui ∈ S(G), the graph Hi ∈ H has no singleton twin equiva-

lence classes.
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(ii) For every ui ∈ TT (G), either the graph Hi ∈ H has no singleton twin

equivalence classes or Hi has exactly one singleton twin equivalence

class {vi}, where δ(vi) = ni− 1, and there exists uj ∈ TT (ui) such that

Hj ∈ H has a vertex vj of degree δ(vj) = nj − 1.

(iii) For every ui ∈ FT (G), either the graph Hi ∈ H has no singleton twin

equivalence classes or Hi has exactly one singleton twin equivalence

class {vi}, where δ(vi) = 0, and there exists uj ∈ FT (ui) such that

Hj ∈ H has a vertex vj of degree δ(vj) = 0.

On the other hand, now we give a lower bound for dimk(G◦H), in terms

of adimk(Hi) for every Hi ∈ H, which is also tight.

Theorem 3.70. Let G be a connected graph of order n ≥ 2 and let H =

{H1, . . . , Hn} be a family composed by nontrivial graphs. For any k ∈ {1, . . . ,
min{T (G ◦H), C(H)}}, any k-metric basis B of G ◦H, and any ui ∈ V (G),

Bi = {v : (ui, v) ∈ B} is a k-adjacency generator for Hi and, as a conse-

quence, |Bi| ≥ adimk(Hi). Moreover,

dimk(G ◦ H) ≥
n∑
i=1

adimk(Hi).

Proof. Let B be a k-metric basis for G◦H and let Bi = {v : (ui, v) ∈ B}. By

Remark 1.1, we deduce that for any (ui, v), (ui, v
′) ∈ {ui} × V (Hi), v 6= v′,

it holds that |DG◦H((ui, v), (ui, v
′)) ∩ ({ui} × Bi)| ≥ k. Also, by Remark

1.1 again, DG◦H((ui, v), (ui, v
′)) = {ui} × CHi

(v, v′), and as a consequence,

|Bi ∩ CHi
(v, v′)| ≥ k. Thus, Bi is a k-adjacency generator for Hi and we

obtain that |Bi| ≥ adimk(Hi). Therefore, dimk(G ◦ H) = |B| =
∑n

i=1 |Bi| ≥∑n
i=1 adimk(Hi).

Later on, in Theorem 3.72, we show the tightness of the result above.

To this end we need some extra notation. Given a graph G with vertex set

V (G) = {u1, u2, . . . , un} and a family of graphs H = {H1, . . . , Hn}, we de-

fine the following properties on the triplet (G,H, k). We must remark that

in order to simplify the notations and statements of our exposition, even

though the graphs G and H has no any relationship between them, the next

properties are stated in such a way that seems there exists some connection.

Property P1: G is true twins free, otherwise for any ui ∈ TT (G), where

TT (ui) = {ui1 , ui2 , . . . , uir}, there exist ir k-adjacency bases Ati1 , A
t
i2
, . . . , Atir
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of Hi1 , Hi2 , . . . , Hir , respectively, such that for every j, l ∈ {1, . . . , r}, j 6= l,

and every x ∈ V (Hij) and y ∈ V (Hil) it follows,

|(Atij −NHij
(x)) ∪ (Atil −NHil

(y))| ≥ k.

Notice that Property P1 ensures that for any ui, uj ∈ TT (G), i 6= j,

there exist two k-adjacency bases Ati, A
t
j of Hi, Hj, respectively, such that

vertices belonging to {ui} ×Hi are distinguished from vertices belonging to

{uj} ×Hj by at least k vertices of ({ui} × Ati) ∪ ({uj} × Atj).
An example which helps to clarify the property above is, for instance, the

triplet (K3,H, 2), where V (K3) = {u1, u2, u3} and H = {C1
5 , C

2
5 , C

3
5}. Fig-

ure 3.7 shows the family of graphs H. In this case TT (u1) = {u1, u2, u3} =

TT (K3), since there is only one true twin equivalence class. If we take as 2-

adjacency bases A11 = {v11, v13, v14}, A12 = {v21, v23, v24} and A13 = {v31, v33, v34}
of C1

5 , C
2
5 and C3

5 , respectively, then (K3, C5, 2) satisfies Property P1. For

instance, if x = v12 and y = v35, then |(A11 − NC1
5
(v12)) ∪ (A13 − NC3

5
(v35))| =

|(A11 − {v11, v13}) ∪ (A13 − {v31, v34})| = |{v14} ∪ {v33}| = 2 ≥ 2.

v11
v12

v13

v14
v15

v11
v13

v14

v21
v22

v23
v24

v25

v21

v23
v24

v31

v32

v33 v34

v35

v31

v33 v34

Figure 3.7: Sketch of lexicographic product K3 ◦ C5, where the dashed line

between two cycles C5 means that each vertex of a cycle is connected to all

vertices of the other cycle. The vertices represented by thick lines form a

2-adjacency basis of each copy of C5.

Property P2: G is false twins free, otherwise for any ui ∈ FT (G), where

FT (ui) = {ui1 , ui2 , . . . , uir}, there exist ir k-adjacency bases Afi1 , A
f
i2
, . . . , Afir

of Hi1 , Hi2 , . . . , Hir , respectively, such that for every j, l ∈ {1, . . . , r}, j 6= l,
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and every x ∈ V (Hij) and y ∈ V (Hil) it follows,

|(Afij ∩NHij
[x]) ∪ (Afil ∩NHil

[y])| ≥ k.

Notice that Property P2 ensures that for any ui, uj ∈ FT (G), i 6= j,

there exist two k-adjacency bases Afi , A
f
j of Hi, Hj, respectively, such that

vertices belonging to {ui} ×Hi are distinguished from vertices belonging to

{uj} ×Hj by at least k vertices of
(
{ui} × Afi

)
∪
(
{uj} × Afj

)
.

Further on we will see a triplet (G,H, k) that satisfy Properties P1 and

P2 at the same time, when H is a family of paths of order greater than three

and/or cycles of order greater than four, G is any nontrivial connected graph

and k ∈ {2, 3}.
To continue our exposition we need some extra notation. Given a fam-

ily of graphs H = {H1, . . . , Hn}, we define H as the family of complement

graphs of each Hi ∈ H, i.e., H = {H1, . . . , Hn}. We now see how Properties

P1 and P2 behave for the case of the triplet (G,H, k). To this end, we need

to define two other properties on the triplet (G,H, k).

Property P3: G is true twins free, otherwise for any ui ∈ TT (G), where

TT (ui) = {ui1 , ui2 , . . . , uir}, there exist ir k-adjacency bases Ati1 , A
t
i2
, . . . , Atir

of Hi1 , Hi2 , . . . , Hir , respectively, such that for every j, l ∈ {1, . . . , r}, j 6= l,

and every x ∈ V (Hij) and y ∈ V (Hil), it follows

|(Atij ∩NHij
[x]) ∪ (Atil ∩NHil

[y])| ≥ k.

Property P4: G is false twins free, otherwise for any ui ∈ FT (G), where

FT (ui) = {ui1 , ui2 , . . . , uir}, there exist ir k-adjacency bases Afi1 , A
f
i2
, . . . , Afir

of Hi1 , Hi2 , . . . , Hir , respectively, such that for every j, l ∈ {1, . . . , r}, j 6= l,

and every x ∈ V (Hij) and y ∈ V (Hil) it follows,

|(Afij −NHij
(x)) ∪ (Afil −NHil

(y))| ≥ k.

Next claim relates all the properties above while using them in (G,H, k)

or (G,H, k).

Claim 3.71. Let G be a graph with vertex set V (G) = {u1, u2, . . . , un} and

let H = {H1, . . . , Hn} be a family of n graphs. Then,

(i) the triplet (G,H, k) satisfies Property P1 if and only if (G,H, k) satisfies

Property P3,
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(ii) the triplet (G,H, k) satisfies Property P2 if and only if (G,H, k) satisfies

Property P4.

Proof. For any graph H, any A ⊆ V (H), and any v ∈ V (H) we have that A−
NH(v) = A ∩NH [v]. Thus, for any ui ∈ TT (G) the set of k-adjacency bases

{Ati1 , A
t
i2
, . . . , Atir} which makes that the triplet (G,H, k) satisfies Property

P1, also makes that (G,H, k) satisfies Property P3 and vice versa. Therefore

(i) follows. The item (ii) follows similarly from the same fact that A∩NH [v] =

A−NH(v).

In this point we are able to give one of the main results of this work and

its powerful consequences.

Theorem 3.72. Let G be a connected graph of order n ≥ 2, let H be a family

composed by n nontrivial graphs and let k ∈ {1, . . . ,min{T (G ◦ H), C(H)}}.

(i) The triplet (G,H, k) satisfies Properties P1 and P2 if and only if

dimk(G ◦ H) =
n∑
i=1

adimk(Hi).

(ii) The triplet (G,H, k) satisfies Properties P3 and P4 if and only if

dimk(G ◦ H) =
n∑
i=1

adimk(Hi).

Proof.

(i) (Necessity) We assume that the triplet (G,H, k) satisfies Properties P1

and P2. If ui ∈ TT (G) or ui ∈ FT (G), then we take a k-adjacency basis Ati
or Afi of Hi as defined in Property P1 or Property P2, respectively. Also, if

ui ∈ V (G) is not a twin vertex, then we take any k-adjacency basis Ai of Hi.

We claim that

B =

 ⋃
ui∈TT (G)

{ui} × Ati

 ∪
 ⋃
ui∈FT (G)

{ui} × Afi

 ∪
 ⋃
ui∈S(G)

{ui} × Ai

 .

is a k-metric generator for G ◦ H.

We differentiate the following four cases for two different vertices (ui, v),

(uj, w) ∈ V (G ◦ H).

Case 1. i = j. In this case v 6= w. We have three possibilities for the

vertex ui
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• ui ∈ TT (G), in which case B ∩ ({ui} × V (Hi)) = {ui} × Ati,

• ui ∈ FT (G), in which case B ∩ ({ui} × V (Hi)) = {ui} × Afi ,

• ui ∈ S(G), in which case B ∩ ({ui} × V (Hi)) = {ui} × Ai.

SinceAti, A
f
i andAi are k-adjacency bases ofHi, we obtain that |CHi

(v, w)∩
Ati| ≥ k, |CHi

(v, w) ∩ Afi | ≥ k and |CHi
(v, w) ∩ Ai| ≥ k. In any case, as

DG◦H((ui, v), (ui, w)) = {ui}×CHi
(v, w), we conclude that |B∩DG◦H((ui, v),

(ui, w))| ≥ k.

Case 2. i 6= j and ui, uj are true twins. So DG◦H((ui, v), (uj, w)) = (V (Hi)−
NHi

(v)) ∪ (V (Hj) − NHj
(w)). Since (G,H, k) satisfies Property P1, there

exist at least k elements of ({ui} × Ati) ∪ ({uj} × Atj) ⊆ B distinguishing

(ui, v), (uj, w).

Case 3. i 6= j and ui, uj are false twins. Thus DG◦H((ui, v), (uj, w)) =

NHi
[v] ∪NHj

[w]. Since (G,H, k) satisfies Property P2, there exist at least k

elements of ({ui} × Afi ) ∪ ({uj} × Afj ) ⊆ B distinguishing (ui, v), (uj, w).

Case 4. i 6= j and ui, uj are not twins. Hence, there exists ul ∈ D∗G(ui, uj).

So, the set B ∩ ({ul} × V (Hl)) is either {ul} ×Atl or {ul} ×Afl or {ul} ×Al.
Hence, (ui, v) and (uj, w) are distinguished by, at least k elements of B.

Therefore, B is a k-metric generator forG◦H, and consequently, dimk(G◦
H) ≤ |B| =

∑n
i=1 adimk(Hi). By Theorem 3.70, we conclude that dimk(G ◦

H) =
∑n

i=1 adimk(Hi).

(Sufficiency) Assume that dimk(G ◦ H) =
∑n

i=1 adimk(Hi). Let B be a

k-metric basis of G ◦ H and let Bi = {v : (ui, v) ∈ B} for every ui ∈ V (G).

By Theorem 3.70, we have that |Bi| ≥ adimk(H). According to this fact and

since
∑n

i=1 adimk(Hi) = dimk(G ◦ H) = |B| =
∑n

i=1 |Bi| ≥
∑n

i=1 adimk(Hi),

we deduce that |Bi| = adimk(Hi). So Bi is a k-adjacency basis of Hi.

We first consider that G is not true twins free, i.e., there exist two true

twin vertices ui and uj. Let v ∈ V (Hi) and v′ ∈ V (Hj) such that Hi, Hj ∈ H.

In such case we obtain thatDG◦H((ui, v), (uj, v
′)) = ({ui} × (V (H)−NH(v)))

∪ ({uj} × (V (H)−NH(v′))). Suppose, for purposes of contradiction, that for

each k-adjacency basis Ai of Hi and each k-adjacency basis Aj of Hj there

exist two vertices x ∈ V (Hi) and x′ ∈ V (Hj) such that |(Ai − NHi
(x)) ∪
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(Aj − NHj
(x′))| < k. Since Bi, Bj are k-adjacency bases of Hi and Hj, re-

spectively, there exist two vertices w ∈ V (Hi) and w′ ∈ V (Hj) such that

|(Bi−NHi
(w))∪ (Bj −NHj

(w′))| < k. Hence, |B ∩DG◦H((ui, w), (uj, w
′))| =

| ({ui} × (Bi −NH(w))) ∪ ({uj} × (Bj −NH(w′))) | < k, which is a contra-

diction. Therefore, Bi and Bj satisfy the condition |({ui} × (Bi −NH(v)))

∪ ({uj} × (Bj −NH(v′)))| ≥ k for every v ∈ V (Hi) and every v′ ∈ V (Hj),

and as a consequence, the triplet (G,H, k) satisfies Property P1. If G is true

twins free, then the triplet (G,H, k) directly satisfies Property P1.

We now consider that G is not false twins free, i.e., there exist two false

twin vertices ui and uj. Let v ∈ V (Hi) and v′ ∈ V (Hj) such that Hi, Hj ∈
H. In this case, DG◦H((ui, v), (uj, v

′)) = ({ui} ×NHi
[v]) ∪

(
{uj} ×NHj

[v′]
)
.

Suppose, for purposes of contradiction, that for each k-adjacency basis Ai

of Hi and each k-adjacency basis Aj of Hj, there exist two vertices y ∈
V (Hi) and y′ ∈ V (Hj) such that |(Ai ∩ NHi

[y]) ∪ (Aj ∩ NHj
[y′])| < k.

Since Bi, Bj are k-adjacency bases of Hi an Hj, respectively, there exist

two vertices z ∈ V (Hi) and z′ ∈ V (Hj) such that |(Bi ∩ NHi
[z]) ∪ (Bj ∩

NHj
[z′])| < k. Hence, |B ∩DG◦H((ui, z), (uj, z

′))| = | ({ui} × (Bi ∩NH [z]))∪
({uj} × (Bj ∩NH [z′])) | < k, which is a contradiction. Therefore, Bi and

Bj satisfy | ({ui} × (Bi ∩NH [z])) ∪ ({uj} × (Bj ∩NH [z′])) | ≥ k for every

v ∈ V (Hi) and every v′ ∈ V (Hj), and as a consequence, the triplet (G,H, k)

satisfies Property P2. If G is false twins free, then the triplet (G,H, k) sat-

isfies Property P2.

(ii) Proceeding analogously to the proof of (i) and considering that adimk(H i)

= adimk(Hi) for every Hi ∈ H and also considering Claim 3.71, we conclude

this proof.

The previous theorem is a generalization for k ∈ {1, . . . , C(H)} of a result

obtained by Jannesari and Omoomi [67] for the 1-metric dimension of G◦H,

i.e, for dim1(G ◦H) when graphs belonging to H are isomorphic to the same

graph H.

Assume now that the k-adjacency dimension of every graph of a given

family H′ is known. Hence, as a measure of the reach of Theorem 3.72, the

following consequences are deduced. Notice that we can then compute, not

only the k-metric dimension of G ◦ H′, but also that of G ◦ H′, for a huge

quantity of graphs G. If G is a connected graph of order n ≥ 2 and H is

a family composed by n nontrivial graphs, then Theorem 3.72 gives us the

conditions for which the problem of computing the k-metric dimension of
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G ◦ H and G ◦ H is reduced to computing the k-adjacency dimension of the

graphs Hi ∈ H.

Corollary 3.73. Let G be a connected graph of order n ≥ 2, let H be a family

composed by n nontrivial graphs and let k ∈ {1, . . . ,min{T (G ◦ H), C(H)}}.
Then the following statements hold.

(i) If G is twins free, then

dimk(G ◦ H) = dimk(G ◦ H) =
n∑
i=1

adimk(Hi).

(ii) If G is false twins free and (G,H, k) holds Property P1,

dimk(G ◦ H) =
n∑
i=1

adimk(Hi).

(iii) If G is true twins free and (G,H, k) holds Property P2,

dimk(G ◦ H) =
n∑
i=1

adimk(Hi).

(iv) If G is false twins free and (G,H, k) holds Property P3,

dimk(G ◦ H) =
n∑
i=1

adimk(Hi).

(v) If G is true twins free and (G,H, k) holds Property P4,

dimk(G ◦ H) =
n∑
i=1

adimk(Hi).

A natural question is now the following one. Can we realize triplets

(G,H, k) satisfying Properties P1, P2, P3 or P4? To proceed in this direction,

we first need to present some useful lemmas which allow us to describe some

realizations of the triplet (G,H, k) in concordance with Properties P1 and

P2.

Lemma 3.74. Let G be a connected graph of order n ≥ 2 and let H be

a family composed by n nontrivial graphs. If adimk(H) − ∆(H) ≥ dk
2
e for

every H ∈ H and k ∈ {1, . . . ,min{T (G◦H), C(H)}}, then (G,H, k) satisfies

Properties P1 and P4.
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Proof. Let Ai, Aj, i 6= j, be two k-adjacency bases of Hi, Hj ∈ H, respec-

tively. Since adimk(Hi) − ∆(Hi) ≥ dk2e and adimk(Hj) − ∆(Hj) ≥ dk2e, it

follows that for every v ∈ V (Hi) and w ∈ V (Hj), |Ai − NHi
(v)| ≥ dk

2
e and

|Aj−NHj
(w)| ≥ dk

2
e, which implies that (G,H, k) satisfies Properties P1 and

P4.

Lemma 3.75. Let G be a connected graph of order n ≥ 2 and let H be a

family composed by n graphs without isolated vertices. If ∆(H)−1 ≤ bk
2
c for

every H ∈ H and k ∈ {1, . . . ,min{T (G◦H), C(H)}}, then (G,H, k) satisfies

Properties P2 and P3.

Proof. Let H ∈ H, let v ∈ V (H), and let A be k-adjacency basis of H. Since

NH(v) 6= ∅, for every w ∈ NH(v) we have that |NH(w)−{v}| ≤ ∆(H)− 1 ≤
bk
2
c. Now, as |A ∩ C(v, w)| ≥ k, we obtain |A ∩ NH [v]| ≥ dk

2
e. Thus, for

every Hl, Hj ∈ H, l 6= j, and every v ∈ V (Hl), w ∈ V (Hj) it follows that

|(Al ∩ NHl
[v]) ∪ (Aj ∩ NHj

[w])| ≥ k, where Al, Aj are k-adjacency bases of

Hl, Hj, respectively. Therefore, (G,H, k) satisfies Properties P2 and P3.

According to Proposition 3.45 and 3.46, and the lemmas above, we can

notice now that, for instance, any triplet (G,H, k), where G is any connected

graph, H is formed by paths of order greater than three and/or cycles of order

greater than four, and k ∈ {2, 3} (or if H is only formed by cycles, then also

happens for k = 4), satisfies Properties P1 and P2, and Properties P3 and

P4. In this sense, by Theorem 3.72, the previous lemmas and Propositions

3.45 and 3.46, we give a closed formulae for the lexicographic product of any

connected graph G and this family H of graphs.

Theorem 3.76. Let G be a connected graph of order n ≥ 2 and let H =

{Pq1 , . . . , Pqr , Cqr+1 , . . . , Cqn}. If qi ≥ 4 for 1 ≤ i ≤ r and qi ≥ 5 for r + 1 ≤
i ≤ n, then

(i) dim2(G ◦ H) = dim2(G ◦ H) =
r∑
i=1

⌈
qi + 1

2

⌉
+

n∑
i=r+1

⌈qi
2

⌉

(ii) dim3(G◦H) = dim3(G◦H) =
r∑
i=1

(
qi −

⌊
qi − 4

5

⌋)
+

n∑
i=r+1

(
qi −

⌊qi
5

⌋)
.

Moreover, if H = {Cq1 , . . . , Cqn} and qi ≥ 5, then dim4(G ◦ H) = dim4(G ◦

H) =
n∑
i=1

qi.
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Note that for any connected graph G of order n and any family H com-

posed by n graphs we have that dim4(G ◦ H) = dim4(G ◦ H) =
∑n

i=1 qi =

|V (G ◦H)|, and these are two other examples where the trivial upper bound

is reached.

On the other hand, Theorem 3.76 does not consider the case k = 1.

Note that from Proposition 3.44 and Lemma 3.74, we deduce that any triplet

(G,H, 1), where G is any connected graph, and H is formed by paths of order

at least seven and/or cycles of order at least seven, satisfies Properties P1

and P4. However, for k = 1 paths and cycles do not satisfy the condition

of Lemma 3.75. The following lemma provide us a family H composed by

paths and cycles where it makes sure that (G,H, 1) satisfies Properties P2

and P3.

Lemma 3.77. Let Pn and Cn be a path and a cycle graph of order n ≥ 7.

If n mod 5 ∈ {1, 3}, then no adjacency basis of Pn or Cn is a dominating

set. Otherwise, there exist adjacency bases of Pn and Cn that are dominating

sets.

Proof. In Cn, consider the path vivi+1vi+2vi+3vi+4, where the subscripts are

taken modulo n, and an adjacency basis B. If vi, vi+2 ∈ B and vi+1 /∈
B, then {vi+1} is said to be a 1-gap of B. Likewise, if vi, vi+3 ∈ B and

vi+1, vi+2 /∈ B, then {vi+1, vi+2} is said to be a 2-gap of B and if vi, vi+4 ∈ B
and vi+1, vi+2, vi+3 /∈ B, then {vi+1, vi+2, vi+3} is said to be a 3-gap of B.

Since B is an adjacency basis of Cn, it has no gaps of size 4 or larger and it

has at most one 3-gap. Moreover, every 2- or 3-gap must be neighboured by

two 1-gaps and the number of gaps of either size is at most adim1(Cn). We

now differentiate the following cases for Cn:

1. n = 5k, k ≥ 2. In this case, adim1(Cn) = 2k and n− adim1(Cn) = 3k.

Since any 2-gap must be neighboured by two 1-gaps, any adjacency

basis has at most k 2-gaps. Any set B having exactly k 2-gaps and

exactly k 1-gaps is an adjacency basis of Cn, as |B| ≥ 2k = adim1(Cn)

and |(NCn(x)∩B)O(NCn(y)∩B)| ≥ 1 for any pair of different vertices

x, y ∈ V (Cn)−B. Since the number of vertices of V (Cn)−B belonging

to a 1- or 2-gap is 3k = n− |B|, we deduce that B has no 3-gaps, i.e.

it is a dominating set.

2. n = 5k + 1, k ≥ 2. In this case, adim1(Cn) = 2k and n− adim1(Cn) =

3k + 1. As in the previous case, any adjacency basis B has at most k
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2-gaps. Now, assume that B has no 3-gaps. Then |V (Cn)−B| = 3k <

3k + 1 = n − |B|, which is a contradiction. Thus, any B has a 3-gap,

i.e. it is not dominating.

3. n = 5k+2, k ≥ 1. In this case, adim1(Cn) = 2k+1 and n−adim1(Cn) =

3k + 1. As in the previous cases, any adjacency basis has at most

k 2-gaps. Moreover, any set B having exactly k 2-gaps and exactly

k+ 1 1-gaps is an adjacency basis of Cn, and the number of vertices of

V (Cn)−B belonging to a 1- or 2-gap is 3k+ 1 = n− |B|, so B has no

3-gaps, i.e. it is a dominating set.

4. n = 5k+3, k ≥ 1. In this case, adim1(Cn) = 2k+1 and n−adim1(Cn) =

3k + 2. As in the previous cases, any adjacency basis B has at most

k 2-gaps. Now assume that B has no 3-gaps. Then |V (Cn) − B| =

3k + 1 < 3k + 2 = n− |B|, which is a contradiction. Thus, any B has

a 3-gap, i.e. it is not dominating.

5. n = 5k+4, k ≥ 1. In this case, adim1(Cn) = 2k+2 and n−adim1(Cn) =

3k+2. Assume that some adjacency basis B has k+1 2-gaps. Then, B

would have at least k+ 1 1-gaps, making |V (Cn)−B| ≥ 3k+ 3, which

is a contradiction. So, any adjacency basis has at most k 2-gaps. As

in cases 1 and 3 the previous cases, any set B having exactly k 2-gaps

and exactly k + 2 1-gaps is an adjacency basis of Cn, and the number

of vertices of V (Cn)−B belonging to a 1- or 2-gap is 3k+ 2 = n− |B|,
so B has no 3-gaps, i.e. it is a dominating set.

As a consequence of all the cases above, the results follows for Cn.

Consider now the path Pn, where n mod 5 ∈ {0, 2, 4}, and let C ′n be

the cycle obtained from Pn by joining its leaves v1 and vn by an edge. Let

B be an adjacency basis of C ′n which is also a dominating set and satisfies

v1, vn /∈ B (at least one such B exists). We have that every u ∈ B and every

v ∈ V (Pn) − B satisfy dC′n,2(u, v) = dPn,2(u, v), so B is also an adjacency

basis and a dominating set of Pn.

To conclude, consider the path Pn, n mod 5 ∈ {1, 3}, and let C ′n be the

cycle obtained from Pn by joining its leaves v1 and vn by an edge. Consider

V = V (Pn) = V (Cn), and let B be an adjacency basis of Pn. If v1, vn ∈
B or v1, vn /∈ B, then every vertex v ∈ V − B has the same adjacency

representation in C ′n with respect to B as in Pn, so B is an adjacency basis of
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Cn. Moreover, some vertex w ∈ V −B satisfies B∩NPn(w) = B∩NC′n(w) = ∅,
so B is not a dominating set of Pn. We now treat the case where v1 ∈
B and vn /∈ B. If vn−1 /∈ B then B is not a dominating set of Pn. If

vn−1 ∈ B and v2 /∈ B, we have that dC′n,2(v2, vn−1) = dPn,2(v2, vn−1) =

2 6= 1 = dPn,2(vn, vn−1) = dC′n,2(vn, vn−1), whereas for any other pair of

different vertices x, y ∈ V − B there exists z ∈ B such that dC′n,2(x, z) =

dPn,2(x, z) 6= dPn,2(y, z) = dC′n,2(y, z), so B is an adjacency basis of C ′n where

{vn} is a 1-gap. In consequence, some vertex w ∈ (V − B) − {vn} satisfies

B∩NPn(w) = B∩NC′n(w) = ∅, so B is not a dominating set of Pn. Finally, if

v2, vn−1 ∈ B, then for any pair of different vertices x, y ∈ V −B there exists

z ∈ B −{v1} such that dC′n,2(x, z) = dPn,2(x, z) 6= dPn,2(y, z) = dC′n,2(y, z), so

B is an adjacency basis of C ′n where {vn} is a 1-gap. As in the previous case,

some vertex w ∈ (V −B)−{vn} satisfies B ∩NPn(w) = B ∩NC′n(w) = ∅, so

B is not a dominating set of Pn. The proof is complete.

According to Lemma 3.77, we deduce that any triplet (G,H, 1) satisfies

Properties P2 and P3, whenever G is any connected graph, and H is formed

by paths of order at least seven and/or cycles of order at least seven, where

at most one of these orders ni holds that ni mod 5 ∈ {1, 3}. Therefore, by

Theorem 3.72 and Proposition 3.44 we can conclude the following result.

Theorem 3.78. Let G be a connected graph of order n ≥ 2 and let H =

{Pq1 , . . . , Pqr , Cqr+1 , . . . , Cqn}. If qi ≥ 7 and there exists at most one qj such

that qj mod 5 ∈ {1, 3}, then

dim1(G ◦ H) = dim1(G ◦ H) =
n∑
i=1

⌊
2qi + 2

5

⌋
.

To finish this subsection, we continue now with some examples of classes

of graphs achieving the equality in the bound of Theorem 3.70. To this

end, we need the following lemma, in order to give another possible triplet

satisfying Properties P1 and P4.

Lemma 3.79. Let G be a connected graph of order n ≥ 2 and let H =

{H1, . . . , Hn} be a family of graphs. If every H ∈ H has diameter D(H) ≥
6, or has girth g(H) ≥ 5 and minimum degree δ(H) ≥ 3, then for k ∈
{1, . . . ,min{T (G ◦ H), C(H)}} the triplet (G,H, k) satisfies Properties P1

and P4.
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Proof. By Corollaries 3.34 and 3.35, adimk(H) = dimk(K1 + H) for every

H ∈ H. By Theorem 3.32 there exists a k-adjacency basis A of H such that

|A − NH(v)| ≥ k for all v ∈ V (H). Thus, we deduce that for any G and

k ∈ {1, . . . , C(G)}, the triplet (G,H, k) satisfies Properties P1 and P4.

Finishing this subsection, as we mention before, now we are able to give a

result in which we describe some other classes of graphs achieving the bound

of Theorem 3.70. That is, by Corollary 3.73 (ii) and (v), and Lemma 3.79

we obtain the following.

Theorem 3.80. Let G be a connected false twins free graph of order n ≥ 2

and let H = {H1, . . . , Hn} be a family composed by n graphs such that every

H ∈ H has diameter D(H) ≥ 6, or has girth g(H) ≥ 5 and minimum degree

δ(H) ≥ 3. Then for any k ∈ {1, . . . ,min{T (G ◦ H), C(H)}}, dimk(G ◦ H) =
n∑
i=1

adimk(Hi). Moreover, if G is a connected true twins free graph of order

n ≥ 2, then dimk(G ◦ H) =
n∑
i=1

adimk(Hi).

The particular case of the 2-metric dimension of G ◦H

As it can be inferred from the seen so far, the closed formulae for the value

of dim2(G ◦ H) depends on the 2-adjacency dimension of H. Clearly, from

Theorem 3.70 we deduce that for any connected graph G of order n ≥ 2 and

any nontrivial graph H, it follows dim2(G ◦H) ≥ n · adim2(H), which leads

to the next result.

Corollary 3.81. Let G be a connected graph of order n ≥ 2 and let H be

a nontrivial graph. Then, there exists a non-negative integer f(G,H) such

that

dim2(G ◦H) = n · adim2(H) + f(G,H).

From now on, our goal is to determine the value of f(G,H). To begin

with, we rephrase the properties given above in order to facilitate their com-

prehension in this particular case. Since in this particular case k = 2, we

only define the properties for a pair of graphs (G,H).

Property P1: G is true twins free, otherwise there exists a 2-adjacency

basis A of H such that A 6⊆ NH(v), for all v ∈ V (H).
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Property P2: G is false twins free, otherwise there exists a 2-adjacency

basis A of H which is a dominating set of H.

To give the first case for a possible value of f(G,H), we will state two par-

ticular cases of two more general already known results (see Theorem 3.72

and Corollary 3.73).

Theorem 3.82. Let G be a connected graph of order n ≥ 2 and let H be a

nontrivial graph. Then dim2(G ◦ H) = n · adim2(H) if and only if the pair

(G,H) satisfies Properties P1 and P2.

Corollary 3.83. Let G be a connected graph of order n ≥ 2 and let H be a

nontrivial graph. Then the following statements hold.

(i) If G is a twins free graph, then

dim2(G ◦H) = dim2(G ◦H) = n · adim2(H).

(ii) If G is a false twins free graph and the pair (G,H) satisfies Property

P1, then

dim2(G ◦H) = n · adim2(H).

(iii) If G is true twins free graph and the pair (G,H) satisfies Property P2,

then

dim2(G ◦H) = n · adim2(H).

Theorem 3.82 leads to the case when f(G,H) = 0. We next define

the following four properties for a graph H which will be used to give the

remaining possible values of f(G,H). We must remark that the proofs of

the forthcoming results showing the values of f(G,H) are very similar with

respect to the structure and the technique used. However, the complemen-

tary use of the next four properties (and its negations) makes necessary the

almost complete development of each proof. Those analogous cases will be

avoided.

Property P3. For each 2-adjacency basis A of H there exists a vertex v

such that A ⊆ NH(v).



On the (k, t)-metric dimension of graphs 99

Property P4. For each 2-adjacency basis A of H there exists a vertex v

such that A ∩NH [v] = ∅.

Property P5. For each 2-adjacency generator S forH of cardinality adim2(H)+

1 there exists a vertex v such that |S −NH(v)| ≤ 1.

Property P6. For each 2-adjacency generator S forH of cardinality adim2(H)+

1 there exists a vertex v such that |S ∩NH [v]| ≤ 1.

Since the 2-adjacency generators of a graph H are simultaneously 2-

adjacency generators of its complement H, we deduce the following remark.

Remark 3.84. Let G be a connected nontrivial graph such that G is con-

nected and let H be a nontrivial graph. The following assertion hold.

(i) The pair (G,H) satisfies Property P1 if and only if the pair (G,H)

satisfies Property P2.

(ii) The graph H satisfies Property P3 if and only if H satisfies Property

P4.

(iii) The graph H satisfies Property P5 if and only if H satisfies Property

P6.

Our first result regarding the existence of a possibly non-zero value for

f(G,H) is given in the next theorem.

Theorem 3.85. Let G be a connected graph of order n ≥ 2 and let H be a

nontrivial graph. If the pair (G,H) satisfies P2 and H satisfies Properties

P3 and P5, then

dim2(G ◦H) = n · adim2(H) + |TT (G)|.

Proof. Let B be a 2-metric basis of G ◦ H and, for any ul ∈ V (G), let

Bl = {v : (ul, v) ∈ B}. Suppose that there exists ui ∈ TT (G). In this case

there exists uj ∈ TT (ui)−{ui}. We claim that |Bi ∪Bj| ≥ 2 · adim2(H) + 2.

Suppose, for purposes of contradiction, that

|Bi ∪Bj| ≤ 2 · adim2(H) + 1. (3.1)

By Theorem 3.70 we know that Bi and Bj are 2-adjacency generators for H

and so from (3.1) we have that at least one of them is a 2-adjacency basis of
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H, say Bi. By Property P3, there exists w ∈ V (H) such that Bi ⊆ NH(w). If

Bj is a 2-adjacency basis of H, then there exists w′ ∈ V (H) such that Bj ⊆
NH(w′). Thus, |B ∩ DG◦H((ui, w), (uj, w

′))| = | ({ui} × (Bi −NH(w))) ∪
({uj} × (Bj −NH(w′))) | = 0, which is a contradiction. If Bj is not a 2-

adjacency basis of H, then |Bj| = adim2(H) + 1. By Property P5, there

exists a vertex w′′ ∈ V (H) such that |Bj − NH(w′′)| ≤ 1. Thus, |B ∩
DG◦H((ui, w), (uj, w

′′))| = | ({ui} × (Bi −NH(w)))∪({uj} × (Bj −NH(w′′))) |
≤ 1, which is a contradiction again. As a consequence |Bi ∪ Bj| ≥ 2 ·
adim2(H)+2. Therefore, any two vertices ui, uj in the same true twin equiv-

alence class of G satisfy |Bi ∪Bj| ≥ 2 · adim2(H) + 2, which leads to∣∣∣∣∣∣
⋃

uj∈TT (ui)

Bj

∣∣∣∣∣∣ ≥ |TT (ui)|(adim2(H) + 1). (3.2)

Finally, since the intersection of any two true twin equivalence classes of a

graph is empty, by Theorem 3.70 and (3.2) we conclude that dim2(G ◦H) =

|B| =
∑n

i=1 |Bi| ≥ n · adim2(H) + |TT (G)|.
On the other hand, we consider a 2-adjacency basis A of H satisfying

the following. If G has at least a false twin equivalence class, then A is

taken such that every z ∈ V (H) satisfies A ∩ NH [z] 6= ∅, which is possible

by Property P2. Otherwise, we take an arbitrary 2-adjacency basis A of H.

Let vc be the vertex of H such that A ⊆ NH(vc), which exists by Property

P3. We shall show that B′ =
⋃
ui∈V (G)({ui} × A) ∪

⋃
ui∈TT (G){(ui, vc)} is

a 2-metric generator for G ◦ H. Note that |B′| = n · adim2(H) + |TT (G)|.
We analyse the following four cases in order to prove that any two different

vertices (ui, v), (uj, v
′) ∈ V (G ◦H) are distinguished by at least two vertices

in B′.

Case 1: i = j. In this case, v 6= v′. As A is a 2-adjacency basis of

H, we obtain that |A ∩ CH(v, v′)| ≥ 2 and since DG◦H((ui, v), (ui, v
′)) =

{ui} × CH(v, v′), we conclude that |B′ ∩ DG◦H((ui, v), (ui, v
′))| ≥ |({ui} ×

A) ∩ DG◦H((ui, v), (ui, v
′))| ≥ 2.

Case 2: i 6= j and ui, uj are true twins. In this case we have that, DG◦H((ui, v),

(uj, v
′)) = ({ui} × (V (H)−NH(v))) ∪ ({uj} × (V (H)−NH(v′))). If v = vc,

then |B′ ∩ ({ui} × (V (H) − NH(v)))| = |({ui} × (A ∪ {vc})) ∩ ({ui} ×
(V (H) − NH(v)))| = |{(ui, vc)}| = 1. Now, if v 6= vc, then due to the
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fact that A is a 2-adjacency basis of H and A ⊆ NH(vc), it follows that

2 ≤ |A ∩ CH(v, vc)| = |A − NH(v))| ≤ |B′ ∩ ({ui} × (V (H) − NH(v)))|. In

any case, |B′ ∩ ({ui} × (V (H)−NH(v)))| ≥ 1. Analogously, we deduce that

|B′∩({uj}×(V (H)−NH(v′)))| ≥ 1. Therefore, |B′∩DG◦H((ui, v), (uj, v
′))| ≥

2.

Case 3: i 6= j and ui, uj are false twins. In this case, DG◦H((ui, v), (uj, v
′)) =

({ui}×NH [v])∪ ({uj}×NH [v′]). Since A∩NH [w] 6= ∅ for all w ∈ V (H), we

deduce that |B′ ∩ DG◦H((ui, v), (uj, v
′))| = |({ui} × (A ∩ NH [v])) ∪ ({uj} ×

(A ∩NH [v′]))| ≥ 2.

Case 4: i 6= j and ui, uj are not twins. Clearly, there exists a vertex

ul ∈ D∗G(ui, uj), and as a consequence, the elements of B′∩({ul}×V (H)) dis-

tinguish the vertices (ui, v) and (uj, v
′). Since |B′∩({ul}×V (H))| ≥ |A| ≥ 2,

we have that |B′ ∩ DG◦H((ui, v), (ui, v
′))| ≥ 2.

Therefore, B′ is a 2-metric generator for G ◦ H and, as a consequence,

dim2(G◦H) ≤ |B′| = n·adim2(H)+|TT (G)|, which completes the proof.
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Figure 3.8: The set of black vertices {2, 3, 4, 5} is the only 2-adjacency basis

of this graph.

The premises of Theorem 3.85 are satisfied for the graph H shown in

Figure 3.8 and any nontrivial connected graph G. Notice that the set of

black vertices NH(1) = {2, 3, 4, 5} is the only 2-adjacency basis of H and so H

satisfies Property P3. It can be checked that for every 2-adjacency generator
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S for H of cardinality |S| = adim2(H) + 1 it follows that NH(1) ⊂ S. Thus,

Property P5 is satisfied. Since the 2-adjacency basis of H is a dominating

set, we conclude that for any connected nontrivial graph G, the pair (G,H)

satisfies Property P2. Note that this is an example where H does not have

any dominating vertex.

If H is a graph having exactly one dominating vertex which does not

belong to any 2-adjacency basis, then H satisfies Properties P3 and P5.

Corollaries 3.33, 3.34, 3.35 and Proposition 3.47 allow us to state the

following consequences of Theorem 3.85.

Proposition 3.86. Let G be a connected false twins free graph of order n ≥ 2

and let H be a graph having at least one of the following properties.

(i) H = K1 +H ′, where H ′ is a graph of diameter D(H ′) ≥ 6.

(ii) H = K1 +H ′, where g(H ′) ≥ 5 and δ(H ′) ≥ 3.

(iii) H = K1+H
′, such that H ′ is a tree that does not belong to {Pr, K1,n, T

′},
where r ∈ {2, . . . , 5}, n ≥ 3 and T ′ is a graph obtained from K1,n ∪K2

by joining by an edge one leaf of K1,n to one leaf of K2.

Then, dim2(G ◦H) = n · adim2(H
′) + |TT (G)|.

We now show several others consequences of Theorem 3.85 for some

particular families of graphs.

Proposition 3.87. Let G be connected graph of order n ≥ 2.

(i) If H is a fan graph K1 + Pn′ such that n′ ≥ 6, then dim2(G ◦ H) =

ndn′+1
2
e+ |TT (G)|.

(ii) If H is a wheel graph K1 + Cn′ such that n′ ≥ 7, then dim2(G ◦H) =

ndn′
2
e+ |TT (G)|.

(iii) If H is a star graph K1,n′ such that n′ ≥ 2, then dim2(G ◦H) = nn′ +

|TT (G)|.

Proof. (i) By Corollary 3.33 and Proposition 3.47, the vertex of K1 does not

belong to any 2-adjacency basis of K1 + Pn′ . Hence, H satisfies Properties

P3 and P5. It only remains to prove that the pair (G,H) satisfies Property

P2.
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Let v0 be the vertex of K1, let A be a 2-adjacency basis of K1 + Pn′

and let V (Pn′) = {v1, . . . , vn′} where vj ∼ vj+1 for 1 ≤ j ≤ n′ − 1. If

vj−1, vj, vj+1 /∈ A, then |A∩CK1+Pn′
(vj−1, vj)| ≤ 1 and |A∩CK1+Pn′

(vj, vj+1)| ≤
1, which is a contradiction. Thus, for every j ∈ {2, . . . , n′ − 1}, it fol-

lows that |A ∩ NK1+Pn′
[vj]| ≥ 1. If v1, v2 /∈ A or vn′−1, vn′ /∈ A, then

|A ∩ CK1+Pn′
(v1, v2)| ≤ 1 or |A ∩ CK1+Pn′

(vn′−1, vn′)| ≤ 1, respectively, which

is a contradiction. So, |A∩NK1+Pn′
[v1]| ≥ 1 and |A∩NK1+Pn′

[vn′ ]| ≥ 1. Now,

since |A| ≥ 2, we deduce that |A ∩ NK1+Pn′
[v0]| = |A ∩ V (K1 + Pn′)| ≥ 2.

Thus, the pair (G,H) satisfies Property P2. Therefore, by Theorem 3.85 and

Propositions 3.39 and 3.45, we conclude the proof.

(ii) Proceeding analogously to the previous case, but now using Propositions

3.43 and 3.46 instead of Propositions 3.39 and 3.45, the result follows.

(iii) Let K1,n′ = K1 + Nn′ . Note that the vertices of Nn′ are twins in K1,n′

and, as a consequence, V (Nn′) is the only 2-adjacency basis of K1,n′ . Thus,

K1,n′ satisfies Properties P3 and P5. Note that for every v ∈ V (K1,n′) it

follows that |V (Nn′) ∩ NK1,n′
[v]| ≥ 1. So, the pair (G,H) satisfies Property

P2. Therefore, by Theorem 3.85 we conclude the proof.

In order to present other possible values for f(G,H), from now on, we

will refer to ¬Pi as the negation of Pi. Besides, we will say that ϕ(G)

and τ(G) are the number of false and true equivalence classes of a graph

G, respectively. Last, we denote by ν(G) the number of non-singleton twin

equivalence classes, i.e., ν(G) = ϕ(G) + τ(G).

Theorem 3.88. Let G be a connected graph of order n ≥ 2 and let H be

a nontrivial graph. If the pair (G,H) satisfies Property P2 and H satisfies

Properties P3 and ¬P5, then

dim2(G ◦H) = n · adim2(H) + |TT (G)| − τ(G).

Proof. Let B be a 2-metric basis of G ◦ H. For any ul ∈ V (G) we define

Bl = {v : (ul, v) ∈ B}. Suppose that there exists ui ∈ TT (G) and let

uj ∈ TT (ui) − {ui}. We claim that |Bi ∪ Bj| ≥ 2 · adim2(H) + 1. Sup-

pose, for purposes of contradiction, that |Bi ∪ Bj| = 2 · adim2(H). Since

by Theorem 3.70 we have that Bi and Bj are 2-adjacency generators for H,

we deduce that Bi and Bj are 2-adjacency bases of H. By Property P3,
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there exist two vertices w,w′ ∈ V (H) such that Bi ⊆ NH(w) and Bj ⊆
NH(w′). Thus, |B ∩ DG◦H((ui, w), (uj, w

′))| = | ({ui} × (Bi −NH(w))) ∪
({uj} × (Bj −NH(w′))) | = 0, which is a contradiction. Thus, |Bi ∪ Bj| ≥
2 · adim2(H) + 1 and, as a consequence,∣∣∣∣∣∣

⋃
uj∈TT (ui)

Bj

∣∣∣∣∣∣ ≥ |TT (ui)|(adim2(H) + 1)− 1. (3.3)

Finally, since the intersection of any two true twin equivalence classes of a

graph is empty, by Theorem 3.70 and (3.3) we conclude that dim2(G ◦H) =

|B| =
∑n

i=1 |Bi| ≥ n · adim2(H) + |TT (G)| − τ(G).

We will now show that

B′ =
⋃

ui∈(V (G)−TT (G))∪M(G)

({ui} × A) ∪
⋃

ui∈TT (G)−M(G)

({ui} × S)

is a 2-metric generator for G ◦H, where M(G) is a set composed by exactly

one vertex of each true twin equivalence class of G. Also, A and S are a 2-

adjacency basis and a 2-adjacency generator for H, respectively, as described

at next. If G has at least a false twin equivalence class, then we take A as

a 2-adjacency basis of H such that every z ∈ V (H) satisfies A ∩NH [z] 6= ∅,
which is possible by Property P2. Otherwise, we take A as an arbitrary

2-adjacency basis of H. We take S as a 2-adjacency generator for H of

cardinality adim2(H) + 1 that satisfies |S −NH(v)| ≥ 2 for every v ∈ V (H),

which exists by Property ¬P5. Note that, |B′| = n · adim2(H) + |TT (G)| −
τ(G).

We differentiate the following four cases in order to prove that any two

different vertices (ui, v), (uj, v
′) ∈ V (G ◦H) are distinguished by at least two

vertices in B′.

Case 1: i = j. It is analogous to Case 1 of the proof of Theorem 3.85.

Case 2: i 6= j and ui, uj are true twins. In this case, we have thatDG◦H((ui, v),

(uj, v
′)) = ({ui} × (V (H)−NH(v)))∪({uj} × (V (H)−NH(v′))). Note that

ui /∈M(G) or uj /∈M(G), say uj /∈M(G). Thus, B′∩({uj}×V (H)) = {uj}×
S and, since |S−NH(v′)| ≥ 2, we deduce that |B′ ∩DG◦H((ui, v), (uj, v

′))| ≥
|{uj} × (S −NH(v′))| ≥ 2.
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Case 3: i 6= j and ui, uj are false twins. It is analogous to Case 3 of the proof

of Theorem 3.85.

Case 4: i 6= j and ui, uj are not twins. It is analogous to Case 4 of the proof

of Theorem 3.85.

Therefore, B′ is a 2-metric generator for G ◦ H and, as a consequence,

dim2(G ◦H) ≤ |B′| = n · adim2(H) + |TT (G)| − τ(G), which completes the

proof.

1

2

3

4

5

10

6

7

8

9

Figure 3.9: In the graph H, any 2-adjacency basis is given by NH(v) with

v ∈ V (H).

Consider the graph H shown in Figure 3.9. Notice that only the sets

NH(v), with v ∈ V (H) form 2-adjacency bases of H, and as a consequence, H

satisfies Property P3. In addition, the 2-adjacency generator S = {1, 2, 3, 4, 8}
for H satisfies that |S| = adim2(H) + 1 and |S − NH(v)| ≥ 2 for ev-

ery v ∈ V (H). Thus, H satisfies Property ¬P5. Note that the value

min
v∈V (H)

{|S − NH(v)|} = 2 is attained for vertices belonging to {1, 4, 5, 6}.

Besides, the 2-adjacency basis NH(4) = {1, 2, 7, 8} of H is also a domina-

ting set, and as a consequence, the pair (G,H) satisfies Property P2 for any

connected nontrivial graph G. Therefore, by Theorem 3.88, we have that

dim2(G ◦H) = n · adim2(H) + |TT (G)| − τ(G) = 4n+ |TT (G)| − τ(G). For

instance, if G = Kn, then we have dim2(Kn ◦H) = 4n+ |TT (Kn)|−τ(Kn) =

4n+ n− 1 = 5n− 1.

Theorem 3.89. Let G be a connected graph of order n ≥ 2 and let H be

a nontrivial graph. If the pair (G,H) satisfies Property P1 and H satisfies

Properties P4 and P6, then

dim2(G ◦H) = n · adim2(H) + |FT (G)|.
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Proof. Let B be a 2-metric basis of G ◦ H and let Bi = {v : (ui, v) ∈ B}.
Suppose that ui and uj are false twins in G. We claim that |Bi ∪ Bj| ≥
2 · adim2(H) + 2. Suppose, for purposes of contradiction, that |Bi ∪ Bj| ≤
2 · adim2(H) + 1. According to Theorem 3.70, Bi and Bj are 2-adjacency

generators for H. Hence, Bi or Bj, say Bi, is a 2-adjacency basis of H.

By Property P4, there exists w ∈ V (H) such that Bi ∩ NH [w] = ∅. If

Bj is a 2-adjacency basis of H, then by Property P4, there exists w′ ∈
V (H) such that Bj ∩ NH [w′] = ∅. Thus, |B ∩ DG◦H((ui, w), (uj, w

′))| =

| ({ui} × (Bi ∩NH [w])) ∪ ({uj} × (Bj ∩NH [w′])) | = 0, which is a contra-

diction. If Bj is not a 2-adjacency basis of H, then |Bj| = adim2(H) + 1.

Now, by Property P6, there exists a vertex w′′ ∈ V (H) such that |Bj ∩
NH [w′′]| ≤ 1. Thus, |B∩DG◦H((ui, w), (uj, w

′′))| = | ({ui} × (Bi ∩NH [w]))∪
({uj} × (Bj ∩NH [w′′])) | ≤ 1, which is a contradiction again. So, as we have

claimed, |Bi ∪ Bj| ≥ 2 · adim2(H) + 2. Hence, any two vertices ui, uj in the

same false twin equivalence class of G satisfy |Bi ∪ Bj| ≥ 2 · adim2(H) + 2,

and as a consequence, we obtain that∣∣∣∣∣∣
⋃

uj∈FT (ui)

Bj

∣∣∣∣∣∣ ≥ |FT (ui)|(adim2(H) + 1). (3.4)

Finally, since the intersection of any two false twin equivalence classes of a

graph is empty, by Theorem 3.70 and (3.4) we conclude that dim2(G ◦H) =

|B| =
∑n

i=1 |Bi| ≥ n · adim2(H) + |FT (G)|.
On the other hand, we consider a 2-adjacency basis A of H satisfying the

following. IfG has at least a true twin equivalence class, then we choose the 2-

adjacency basis A, such that every z ∈ V (H) satisfies A−NH(z) 6= ∅, which is

possible by Property P1. Otherwise, we choose A as an arbitrary 2-adjacency

basis of H. Let vc be the vertex of H such that A∩NH [vc] = ∅, which exists by

Property P4. We will show that B′ =
⋃
ui∈V (G)({ui}×A)∪

⋃
ui∈FT (G){(ui, vc)}

is a 2-metric generator for G ◦H. Note that |B′| = n · adim2(H) + |FT (G)|.
We analyse the following four cases in order to prove that any two different

vertices (ui, v), (uj, v
′) ∈ V (G ◦H) are distinguished by at least two vertices

in B′.

Case 1: i = j. It is analogous to Case 1 of the proof of Theorem 3.85.

Case 2: i 6= j and ui, uj are true twins. In this case we have that DG◦H((ui, v),
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(uj, v
′)) = ({ui} × (V (H)−NH(v)))∪({uj} × (V (H)−NH(v′))). Since A−

NH(z) 6= ∅ for all z ∈ V (H), we deduce that |B′ ∩ DG◦H((ui, v), (uj, v
′))| =

|({ui} × (A−NH(v))) ∪ ({uj} × (A−NH(v′)))| ≥ 2.

Case 3: i 6= j and ui, uj are false twins. In this case, DG◦H((ui, v), (uj, v
′)) =

({ui} × NH [v]) ∪ ({uj} × NH [v′]). If v = vc, then |B′ ∩ ({ui} × NH [v])| =

|({ui} × (A ∪ {vc})) ∩ ({ui} × NH [v])| = |{(ui, vc)}| = 1. Now, if v 6= vc,

then, due to the fact that A is a 2-adjacency basis of H and A∩NH [vc] = ∅,
it follows that 2 ≤ |A ∩ CH(v, vc)| = |A ∩ NH [v]| ≤ |B′ ∩ ({ui} × NH [v])|.
In both cases, |B′ ∩ ({ui} × NH [v])| ≥ 1. Analogously, we deduce that

|B′ ∩ ({uj} ×NH [v′])| ≥ 1. Therefore, |B′ ∩ DG◦H((ui, v), (uj, v
′))| ≥ 2.

Case 4: i 6= j and ui, uj are not twins. It is analogous to Case 4 of the proof

of Theorem 3.85.

Therefore, B′ is a 2-metric generator for G ◦ H and, as a consequence,

dim2(G◦H) ≤ |B′| = n·adim2(H)+|FT (G)|, which completes the proof.

v

H

Figure 3.10: The set of black vertices A is the only 2-adjacency basis of the

graph H.

The premises of Theorem 3.89 are satisfied for the graph H shown in

Figure 3.10 and any connected nontrivial graph G. Note that the black

vertices are twins and thus, they belong to any 2-adjacency basis of H. In

addition, the set of black vertices A is a 2-adjacency generator for H and

therefore, it is the only 2-adjacency basis of H. Since A ∩ N [v] = ∅, the

graph H satisfies Property P4. Since any 2-adjacency generator S for H

must contain the set of twin vertices of H, we deduce that A ⊆ S. Thus, if

|S| = adim2(H) + 1 = |A|+ 1, then |S −NH(v)| ≤ 1, and as a consequence,
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H satisfies Property P6. Since A 6⊆ NH(v) for all v ∈ V (H), we conclude

that for any connected nontrivial graph G, the pair (G,H) satisfies Property

P1. Note that this is an example where H does not have any isolated vertex.

Note that by Remark 3.84, any pair of graph (G,H) satisfies the condi-

tions of Theorem 3.85 if and only if (G,H) satisfies the conditions of Theorem

3.89. Thus, in the next two propositions we give some families of pairs of

graphs satisfying the conditions of Theorem 3.89 from Propositions 3.86 and

3.87.

Proposition 3.90. Let G be a connected true twins free graph of order n ≥ 2

and let H be a graph having at least one of the following properties.

(i) H = K1 ∪H ′, where H ′ is a graph of diameter D(H ′) ≥ 6.

(ii) H = K1 ∪H ′, where g(H ′) ≥ 5 and δ(H ′) ≥ 3.

(iii) H = K1∪H ′ such that H ′ is a tree that does not belong to {Pr, K1,n, T
′},

where r ∈ {2, . . . , 5}, n ≥ 3 and T ′ is a graph obtained from K1,n ∪K2

by joining by an edge one leaf of K1,n to one leaf of K2.

Then dim2(G ◦H) = n · adim2(H
′) + |FT (G)|.

Proposition 3.91. Let G be a connected graph of order n ≥ 2.

(i) If H = K1∪P n′ such that n′ ≥ 6, then dim2(G◦H) = ndn′+1
2
e+|FT (G)|.

(ii) If H = K1∪Cn′ such that n′ ≥ 7, then dim2(G◦H) = ndn′
2
e+ |FT (G)|.

(iii) If H = K1 ∪Kn′ such that n′ ≥ 2, then dim2(G ◦H) = nn′ + |FT (G)|.

Theorem 3.92. Let G be a connected graph of order n ≥ 2 and let H be

a nontrivial graph. If the pair (G,H) satisfies Property P1 and H satisfies

Properties P4 and ¬P6, then

dim2(G ◦H) = n · adim2(H) + |FT (G)| − ϕ(G).

Proof. Let B be a 2-metric basis of G ◦ H and let Bi = {v : (ui, v) ∈ B}.
Suppose that ui and uj are false twins in G. We claim that |Bi ∪ Bj| ≥
2 · adim2(H) + 1. Suppose, for purposes of contradiction, that |Bi ∪ Bj| =

2 · adim2(H). According to Theorem 3.70, Bi and Bj are 2-adjacency ge-

nerators for H. Hence, Bi and Bj are 2-adjacency bases of H. By Prop-

erty P4, there exist w,w′ ∈ V (H) such that Bi ∩ NH [w] = ∅ and Bj ∩
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NH [w′] = ∅. Thus, |B ∩ DG◦H((ui, w), (uj, w
′))| = | ({ui} × (Bi ∩NH [w])) ∪

({uj} × (Bj ∩NH [w′])) | = 0, which is a contradiction. So, as we have

claimed before, |Bi∪Bj| ≥ 2 ·adim2(H)+1. Hence, any two vertices ui, uj in

the same false twin equivalence class of G satisfy |Bi∪Bj| ≥ 2 ·adim2(H)+1,

and as a consequence, we obtain that∣∣∣∣∣∣
⋃

uj∈FT (ui)

Bj

∣∣∣∣∣∣ ≥ |FT (ui)|(adim2(H) + 1)− 1. (3.5)

Finally, since the intersection of any two false twin equivalence classes of a

graph is empty, by Theorem 3.70 and (3.5) we conclude that dim2(G ◦H) =

|B| =
∑n

i=1 |Bi| ≥ n · adim2(H) + |FT (G)| − ϕ(G).

We will show that

B′ =
⋃

ui∈(V (G)−FT (G))∪M(G)

({ui} × A) ∪
⋃

ui∈FT (G)−M(G)

({ui} × S)

is a 2-metric generator for G ◦H, where M(G) is a set composed by exactly

one vertex of each false twin equivalence class of G. Also A and S are a

2-adjacency basis and a 2-adjacency generator for H, respectively, chosen as

follows. If G has at least a true twin equivalence class, then we take A as a 2-

adjacency basis of H such that every z ∈ V (H) satisfies A∩NH [z] 6= ∅, which

is possible by Property P1. Otherwise, we take A as an arbitrary 2-adjacency

basis of H. Also, we take S as a 2-adjacency generator for H of cardinality

adim2(H)+1 that satisfies |S∩NH [z′]| ≥ 2 for every z′ ∈ V (H), which exists

by Property ¬P6. Note that, |B′| = n · adim2(H) + |TT (G)| − ϕ(G).

We differentiate the following four cases in order to prove that any two

different vertices (ui, v), (uj, v
′) ∈ V (G ◦H) are distinguished by at least two

vertices in B′.

Case 1: i = j. It is analogous to Case 1 of the proof of Theorem 3.85.

Case 2: i 6= j and ui, uj are true twins. It is analogous to Case 2 of the proof

of Theorem 3.89.

Case 3: i 6= j and ui, uj are false twins. In this case, DG◦H((ui, v), (uj, v
′)) =

({ui}×NH [v])∪({uj}×NH [v′]). Note that ui /∈M(G) or uj /∈M(G), say uj /∈
M(G). Thus, B′∩({uj}×V (H)) = {uj}×S. By the definition of S, we have
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that it is a 2-adjacency generator for H such that |S∩NH [v′]| ≥ 2. Therefore,

we deduce that |B′ ∩ DG◦H((ui, v), (uj, v
′))| ≥ |{uj} × (S ∩NH [v′])| ≥ 2.

Case 4: i 6= j and ui, uj are not twins. It is analogous to Case 4 of the proof

of Theorem 3.85.

Therefore, B′ is a 2-metric generator for G ◦ H and, as a consequence,

dim2(G ◦H) ≤ |B′| = n · adim2(H) + |FT (G)| − ϕ(G), which completes the

proof.

Consider the graph H shown in Figure 3.9. Note that by Remark 3.84,

any pair of graphs (G,H) satisfies the conditions of Theorem 3.88 if and

only if (G,H) satisfies the conditions of Theorem 3.92. Therefore, by Theo-

rem 3.92, we have that dim2(G ◦ H) = n · adim2(H) + |FT (G)| − ϕ(G) =

4n+ |FT (G)|−ϕ(G) for any connected graph G of order n ≥ 2. For instance,

if G = K1,n−1, then we can compute dim2(K1,n−1 ◦H) = 4n+ |FT (K1,n−1)|−
ϕ(K1,n−1) = 4n+ (n− 1)− 1 = 5n− 2.

Theorem 3.93. Let G be a connected graph of order n ≥ 2 and let H be a

nontrivial graph. If H satisfies Properties P3, P4, P5 and P6, then

dim2(G ◦H) = dim2(G ◦H) = n · adim2(H) + |TT (G)|+ |FT (G)|.

Proof. Let B be a 2-metric basis of G ◦ H and let Bi = {v : (ui, v) ∈ B}.
If ui and uj are true twins in G, then by using an analogous procedure as

in the first part of the proof of Theorem 3.85 we obtain that |Bi ∪ Bj| ≥
2 · adim2(H) + 2, which leads to∣∣∣∣∣∣

⋃
uj∈TT (ui)

Bj

∣∣∣∣∣∣ ≥ |TT (ui)|(adim2(H) + 1). (3.6)

Similarly, if ui and uj are false twins in G, then as in the first part of the

proof of Theorem 3.89 we obtain that |Bi ∪ Bj| ≥ 2 · adim2(H) + 2, which

leads to ∣∣∣∣∣∣
⋃

uj∈FT (ui)

Bj

∣∣∣∣∣∣ ≥ |FT (ui)|(adim2(H) + 1). (3.7)

Now, since the intersection of any two (true and false) twin equivalence classes

of a graph is empty, by Theorem 3.70, (3.6) and (3.7) we conclude that

dim2(G ◦H) = |B| =
∑n

i=1 |Bi| ≥ n · adim2(H) + |TT (G)|+ |FT (G)|.
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On the other hand, we take an arbitrary 2-adjacency basis A of H. Let

vc, v
′
c be the two vertices of H such that A ⊆ NH(vc) and A ∩ NH [v′c] =

∅, which exist by Properties P3 and P4, respectively. We will show that

B′ =
⋃

ui∈V (G)

({ui} × A) ∪
⋃

ui∈TT (G)

{(ui, vc)} ∪
⋃

ui∈FT (G)

{(ui, v′c)} is a 2-metric

generator for G ◦ H. Note that |B′| = n · adim2(H) + |TT (G)| + |FT (G)|.
We analyse the following four cases in order to prove that any two different

vertices (ui, v), (uj, v
′) ∈ V (G ◦H) are distinguished by at least two vertices

in B′.

Case 1: i = j. It is analogous to Case 1 of the proof of Theorem 3.85.

Case 2: i 6= j and ui, uj are true twins. It is analogous to Case 2 of the proof

of Theorem 3.85.

Case 3: i 6= j and ui, uj are false twins. We proceed analogously to Case 3

of the proof of Theorem 3.89, using v′c instead of vc.

Case 4: i 6= j and ui, uj are not twins. It is analogous to Case 4 of the proof

of Theorem 3.85.

Thus, B′ is a 2-metric generator forG◦H and, as a consequence, dim2(G◦
H) ≤ |B′| = n · adim2(H) + |TT (G)| + |FT (G)|. Therefore dim2(G ◦H) =

n · adim2(H) + |TT (G)| + |FT (G)|. Finally, since each 2-adjacency basis of

H is also a 2-adjacency basis of H, by Remark 3.84 we conclude that H

satisfies the conditions of the theorem, which means that dim2(G ◦ H) =

n · adim2(H) + |TT (G)|+ |FT (G)| and the proof is complete.

For instance, we take a family of graphs H such that for any H ∈ H we

have that ∆(H) ≥ 1 and every vertex in V (H) belongs to a non-singleton

twin equivalence class. If
⋃
H∈H V (H) is different from a complete graph,

then the set
⋃
H∈H V (H) belongs to any 2-adjacency generator of H ′ = K1 +

(K1 ∪
⋃
H∈HH). Moreover,

⋃
H∈H V (H) is a 2-generator for H ′, and as a

consequence, it is the only 2-adjacency basis. Let u be the universal vertex

of H ′ and let v ∈ V (H ′) be the vertex of degree 1. Note that NH′(u) ⊆⋃
H∈H V (H) and NH′ [v] ∩

⋃
H∈H V (H) = ∅. Thus, Properties P3 and P4 are

satisfied. Since
⋃
H∈H V (H) is subset of any 2-adjacency generator for H ′,
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Properties P5 and P6 are also satisfied. Therefore, if we take any connected

graph G of order n ≥ 2, then by Theorem 3.93 we have that dim2(G ◦H ′) =

n · adim2(H
′) + |TT (G)|+ |FT (G)| = n(|V (H ′)| − 2) + |TT (G)|+ |FT (G)|.

In Figure 3.11 we show an example of a graph H ′ = K1 + (K1 ∪ C4 ∪ K2)

that satisfies the Properties P3, P4, P5 and P6.

Figure 3.11: The graph K1 + (K1 ∪ C4 ∪K2) satisfies Properties P3, P4, P5

and P6, and the set of black vertices is its only 2-adjacency basis.

Theorem 3.94. Let G be a connected graph of order n ≥ 2 and let H be a

nontrivial graph. If H satisfies Properties P3, P4, ¬P5 and ¬P6, then

dim2(G ◦H) = dim2(G ◦H) = n · adim2(H) + |TT (G)|+ |FT (G)| − ν(G).

Proof. Let B be a 2-metric basis of G◦H and let Bi = {v : (ui, v) ∈ B}. If ui

and uj are true twins in G, then as in the first part of the proof of Theorem

3.88 we obtain that |Bi ∪Bj| ≥ 2 · adim2(H) + 1. Thus∣∣∣∣∣∣
⋃

uj∈TT (ui)

Bj

∣∣∣∣∣∣ ≥ |TT (ui)|(adim2(H) + 1)− 1. (3.8)

Also, if ui and uj are false twins in G, then as in the first part of the proof

of Theorem 3.92 we obtain that |Bi ∪Bj| ≥ 2 · adim2(H) + 1, which leads to∣∣∣∣∣∣
⋃

uj∈FT (ui)

Bj

∣∣∣∣∣∣ ≥ |FT (ui)|(adim2(H) + 1)− 1. (3.9)

Since the intersection of any two twin equivalence classes of a graph is empty,

by Theorem 3.70, (3.8) and (3.9) we conclude that dim2(G ◦ H) = |B| =∑n
i=1 |Bi| ≥ n · adim2(H) + |FT (G)| − ν(G).

On the other hand, we take an arbitrary 2-adjacency basis A of H. Let

vc, v
′
c be the two vertices of H such that A ⊆ NH(vc) and A ∩ NH [v′c] = ∅,
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which exist by Properties P3 and P4, respectively. Also, we take two 2-

adjacency generators S and S ′ for H of cardinality adim2(H) + 1 that satisfy

|S − NH(v)| ≥ 2 and |S ′ ∩ NH [v]| ≥ 2 for every v ∈ V (H), which exist by

Properties ¬P5 and ¬P6, respectively. Last, we take two vertex sets M(G)

and M ′(G) such that M(G) is composed by exactly one vertex of each true

twin equivalence class of G and M ′(G) is composed by exactly one vertex of

each false twin equivalence class of G.

We will show that

B′ =
⋃

ui∈(V (G)−TT (G)−FT (G))∪M(G)∪M ′(G)

({ui} × A)∪

∪
⋃

ui∈TT (G)−M(G)

({ui} × S)∪

∪
⋃

ui∈FT (G)−M ′(G)

({ui} × S ′)

is a 2-metric generator for G◦H. Note that, |B′| = n ·adim2(H)+ |TT (G)|+
|FT (G)| − ν(G). We analyse the following four cases in order to prove that

any two different vertices (ui, v), (uj, v
′) ∈ V (G ◦H) are distinguished by at

least two vertices in B′.

Case 1: i = j. It is analogous to Case 1 of the proof of Theorem 3.85.

Case 2: i 6= j and ui, uj are true twins. It is analogous to Case 2 of the proof

of Theorem 3.88.

Case 3: i 6= j and ui, uj are false twins. We proceed analogously to Case 3

of the proof of Theorem 3.92, using S ′ instead of S.

Case 4: i 6= j and ui, uj are not twins. It is analogous to Case 4 of the proof

of Theorem 3.85.

Therefore, B′ is a 2-metric generator for G ◦ H and, as a consequence,

dim2(G ◦H) ≤ |B′| = n · adim2(H) + |TT (G)|+ |FT (G)| − ν(G). Finally, as

in Theorem 3.93, we also have that dim2(G◦H) = n ·adim2(H) + |TT (G)|+
|FT (G)| − ν(G), which completes the proof.

The graph H shown in Figure 3.12 has only two 2-adjacency bases A =

{2, 3, 4, 5} and A′ = {6, 7, 8, 9}. Note that NH(1) ⊆ A and NH [10] ∩ A = ∅,
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Figure 3.12: This graph satisfies the conditions of Theorem 3.94 and its only

two adjacency bases are {2, 3, 4, 5} and {6, 7, 8, 9}.

as well as, NH(10) ⊆ A′ and NH [1] ∩ A′ = ∅. Thus, H satisfies Properties

P3 and P4. The set S = {1, 2, 3, 8, 10} is a 2-adjacency generator for H such

that |S| = adim(H) + 1, |S − NH(v)| ≥ 2 and |S ∩ NH [v]| ≥ 2 for every

v ∈ V (H). Note that the value min
v∈V (H)

{|S − NH(v)|} = 2 is attained for

vertices belonging to {4, 5, 6, 7, 9} and the value min
v∈V (H)

{|S ∩ NH [v]|} = 2 is

attained for vertices belonging to {2, 3, 8, 10}. Hence, H satisfies Properties

¬P5 and ¬P6, and as a consequence, it satisfies conditions of Theorem 3.94.

Theorem 3.95. Let G be a connected graph of order n ≥ 2 and let H be a

nontrivial graph. If H satisfies Properties P3, P4, P5 and ¬P6, then

dim2(G ◦H) = n · adim2(H) + |TT (G)|+ |FT (G)| − ϕ(G).

Proof. Let B be a 2-metric basis of G◦H and let Bi = {v : (ui, v) ∈ B}. If ui

and uj are true twins in G, then as in the first part of the proof of Theorem

3.85 we obtain that |Bi ∪Bj| ≥ 2 · adim2(H) + 2, which leads to∣∣∣∣∣∣
⋃

uj∈TT (ui)

Bj

∣∣∣∣∣∣ ≥ |TT (ui)|(adim2(H) + 1). (3.10)

Also, if ui and uj are false twins in G, then as in the first part of the proof

of Theorem 3.92 we have |Bi∪Bj| ≥ 2 · adim2(H) + 1, and as a consequence,∣∣∣∣∣∣
⋃

uj∈FT (ui)

Bj

∣∣∣∣∣∣ ≥ |FT (ui)|(adim2(H) + 1)− 1. (3.11)

Since the intersection of any two twin equivalence classes of a graph is empty,

by Theorem 3.70, (3.10) and (3.11) we conclude that dim2(G ◦H) = |B| =∑n
i=1 |Bi| ≥ n · adim2(H) + |FT (G)| − ϕ(G).
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On the other hand, we take an arbitrary 2-adjacency basis A of H. Let

vc, v
′
c be the two vertices of H such that A ⊆ NH(vc) and A ∩ NH [v′c] =

∅, which exist by Properties P3 and P4, respectively. Also, we take a 2-

adjacency generator S for H of cardinality adim2(H) + 1 satisfying |S ∩
NH(v)| ≥ 2 for every v ∈ V (H), which exists by Property ¬P6. Last, we

take a vertex set M(G) composed by exactly one vertex of each false twin

equivalence class of G.

We will show that

B′ =
⋃

ui∈(V (G)−FT (G))∪M(G)

({ui}×A)∪
⋃

ui∈TT (G)

{(ui, vc)}∪
⋃

ui∈FT (G)−M(G)

({ui}×S)

is a 2-metric generator for G◦H. Note that, |B′| = n ·adim2(H)+ |TT (G)|+
|FT (G)| − ϕ(G). We analyse the next four cases in order to prove that any

two different vertices (ui, v), (uj, v
′) ∈ V (G ◦H) are distinguished by at least

two vertices in B′.

Case 1: i = j. It is analogous to Case 1 of the proof of Theorem 3.85.

Case 2: i 6= j and ui, uj are true twins. It is analogous to Case 2 of the proof

of Theorem 3.85.

Case 3: i 6= j and ui, uj are false twins. It is analogous to Case 3 of the proof

of Theorem 3.92.

Case 4: i 6= j and ui, uj are not twins. It is analogous to Case 4 of the proof

of Theorem 3.85.

Therefore, B′ is a 2-metric generator for G ◦ H and, as a consequence,

dim2(G ◦H) ≤ |B′| = n · adim2(H) + |TT (G)|+ |FT (G)| − ϕ(G).

The graph H shown in Figure 3.13 has only one 2-adjacency basis given

by A = {2, 3, 4, 5}. Note that NH(1) ⊆ A and NH [10] ∩ A = ∅. Thus, H

satisfies Properties P3 and P4. The set S = {2, 3, 6, 9, 10} is a 2-adjacency

generator for H such that |S| = adim(H) + 1 and |S ∩NH [v]| ≥ 2 for every

v ∈ V (H). Note that the value min
v∈V (H)

{|S ∩ NH [v]|} = 2 is attained for

vertices belonging to {1, 2, 3, 4, 5}. Hence, H satisfies Property ¬P6. It can

be checked that there exists at least one vertex v ∈ V (H) such that |S −
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Figure 3.13: This graph satisfies Properties P3, P4, P5 and ¬P6, and the set

of black vertices {2, 3, 4, 5} is its only 2-adjacency basis.

NH(v)| = 1 for each one of the eleven 2-adjacency generators for H having

cardinality adim(H) + 1. So, H satisfies Property P5, and as a consequence,

it satisfies conditions of Theorem 3.95.

Theorem 3.96. Let G be a connected graph of order n ≥ 2 and let H be a

nontrivial graph. If H satisfies Properties P3, P4, ¬P5 and P6, then

dim2(G ◦H) = n · adim2(H) + |TT (G)|+ |FT (G)| − τ(G).

Proof. Let B be a 2-metric basis of G◦H and let Bi = {v : (ui, v) ∈ B}. If ui

and uj are true twins in G, then as in the first part of the proof of Theorem

3.88 we obtain that |Bi ∪Bj| ≥ 2 · adim2(H) + 1. So we have∣∣∣∣∣∣
⋃

uj∈TT (ui)

Bj

∣∣∣∣∣∣ ≥ |TT (ui)|(adim2(H) + 1)− 1. (3.12)

Also, if ui and uj are false twins in G, then as in the first part of the proof

of Theorem 3.89 we obtain that |Bi ∪Bj| ≥ 2 · adim2(H) + 2. Thus,∣∣∣∣∣∣
⋃

uj∈FT (ui)

Bj

∣∣∣∣∣∣ ≥ |FT (ui)|(adim2(H) + 1). (3.13)

Since the intersection of any two twin equivalence classes of a graph is empty,

by Theorem 3.70, (3.12) and (3.13) we conclude that dim2(G ◦H) = |B| =∑n
i=1 |Bi| ≥ n · adim2(H) + |TT (G)|+ |FT (G)| − τ(G).

On the other hand, we take an arbitrary 2-adjacency basis A of H. Let

vc, v
′
c be the two vertices of H such that A ⊆ NH(vc) and A ∩ NH [v′c] =

∅, which exist by Properties P3 and P4, respectively. Also, we take a 2-

adjacency generator S for H of cardinality adim2(H) + 1 satisfying |S −
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NH(v)| ≥ 2 for every v ∈ V (H), which exists by Property ¬P5. Last, we

take a vertex set M(G) composed by exactly one vertex of each true twin

equivalence class of G.

We will show that

B′ =
⋃

ui∈(V (G)−TT (G))∪M(G)

({ui}×A)∪
⋃

ui∈TT (G)−M(G)

({ui}×S)∪
⋃

ui∈FT (G)

{(ui, v′c)}

is a 2-metric generator for G◦H. Note that, |B′| = n ·adim2(H)+ |TT (G)|+
|FT (G)| − ν(G). We analyse the following four cases in order to prove that

any two different vertices (ui, v), (uj, v
′) ∈ V (G ◦H) are distinguished by at

least two vertices in B′.

Case 1: i = j. It is analogous to Case 1 of the proof of Theorem 3.85.

Case 2: i 6= j and ui, uj are true twins. It is analogous to Case 2 of the proof

of Theorem 3.88.

Case 3: i 6= j and ui, uj are false twins. We proceed analogously to Case 3

of the proof of Theorem 3.89, using v′c instead of vc.

Case 4: i 6= j and ui, uj are not twins. It is analogous to Case 4 of the proof

of Theorem 3.85.

Therefore, B′ is a 2-metric generator for G ◦ H and, as a consequence,

dim2(G ◦H) ≤ |B′| = n · adim2(H) + |TT (G)|+ |FT (G)| − τ(G).

Note that by Remark 3.84, any graph H satisfies the conditions of Theo-

rem 3.95 if and only if H satisfies the conditions of Theorem 3.96. The graph

H shown in Figure 3.13 satisfies the conditions of Theorem 3.95. Therefore,

H is an example of a graph satisfying the conditions of Theorem 3.96.

Notice that the assumptions of Theorems 3.82, 3.85, 3.88, 3.89, 3.92,

3.93, 3.94, 3.95 and 3.96 cover all the possible values for f(G,H) while com-

puting dim2(G ◦ H), where G is a connected nontrivial graph and H is a

nontrivial graph. Therefore, it is possible to compute dim2(G ◦H) in terms

of the values of adim2(H), |TT (G)|, |FT (G)|, τ(G), ϕ(G) and ν(G).
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3.4.2 Corona product graphs

In this subsection we compute or bound the k-metric dimension of corona

product graphs. To do so, we present a generalization of a result obtained in

[41, 42] for k = 1. At the same time, this result shows the strong relation-

ship existing between the k-metric dimension of G�H and the k-adjacency

dimension of the graphs belonging to H. By Remark 3.24, this relationship

can be extended to G�H.

Theorem 3.97. If G is a connected graph of order n ≥ 2 and H = {H1, . . . ,

Hn} is a family composed by n nontrivial graphs, then for k ∈ {1, . . . , C(H)}

dimk(G�H) =
n∑
i=1

adimk(Hi) = dimk(G�H).

Proof. We will show that dimk(G � H) ≤
∑n

i=1 adimk(Hi). Let Si be a

k-adjacency basis of Hi. In order to show that S =
⋃n
i=1 Si is a k-metric

generator for G � H, we analyse the following four cases for two different

vertices x, y ∈ V (G�H).

1. x, y ∈ V (Hi). Since Si is a k-adjacency basis of Hi, it follows that

|Si ∩ CHi
(x, y)| ≥ k. Since CHi

(x, y) = DG�H(x, y), we deduce that

|S ∩ DG�H(x, y)| ≥ k.

2. x ∈ V (Hi) and y ∈ V (Hj), j 6= i. For every v ∈ Sj, we have dG�H(y, v) ≤
2 < 3 ≤ dG�H(x, v). Since Sj is a k-adjacency basis of Hj, we deduce that

|Sj| ≥ k, and consequently, |S ∩ DG�H(x, y)| ≥ k.

3. x ∈ V (Hi) and y ∈ V (G). If y = ui, then for every v ∈ Sj such that

j 6= i, we have dG�H(x, v) = dG�H(x, y) + dG�H(y, v) > dG�H(y, v). Now,

if y = uj such that j 6= i, then for every v ∈ Sj we have dG�H(x, v) =

dG�H(x, y) + dG�H(y, v) > dG�H(y, v). Since Sj is a k-adjacency basis of

Hj, we deduce that |Sj| ≥ k, and as a consequence, |S ∩DG�H(x, y)| ≥ k.

4. x = ui ∈ V (G) and y = uj ∈ V (G). For every v ∈ Sj, we have

dG�H(x, v) = dG�H(x, y) + dG�H(y, v) > dG�H(y, v). Since Sj is a k-

adjacency basis ofHj, we deduce that |Sj| ≥ k, and thus, |S∩DG�H(x, y)| ≥
k.

Hence, S is a k-metric generator for G�H and, as a consequence,

dimk(G�H) ≤
n∑
i=1

|Si| =
n∑
i=1

adimk(Hi).
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It only remains to prove that dimk(G � H) ≥
∑n

i=1 adimk(Hi). To do

this, let B be a k-metric basis of G�H and, let Bi = B ∩ V (Hi). We claim

that Bi is a k-adjacency generator for Hi. To this end, consider two different

vertices x, y ∈ V (Hi). Since DG�H(x, y) ∩ (V (G � H) − V (Hi)) = ∅, we

deduce that |DG�H(x, y) ∩ Bi| ≥ k. Since for every u ∈ Bi we have that

dG�H(x, u) = dG�H,2(x, u) and dG�H(y, u) = dG�H,2(y, u), we conclude that

CHi
(x, y) = DG�H(x, y) and, as a consequence, |CHi

(x, y) ∩ Bi| ≥ k. So,

Bi is a k-adjacency generator for Hi and, consequently, |Bi| ≥ adimk(Hi).

Therefore,

dimk(G�H) = |B| ≥
n∑
i=1

|Bi| ≥
n∑
i=1

adimk(Hi).

We have shown that dimk(G � H) =
∑n

i=1 adimk(Hi) and by analogy we

deduce that dimk(G�H) =
∑n

i=1 adimk(H i). By Remark 3.24, we have that∑n
i=1 adimk(Hi) =

∑n
i=1 adimk(H i), and so, the result follows.

Note that the k-metric dimension of corona product graphs is not equiv-

alent to its k-adjacency dimension as in the case of lexicographic product

graphs. For the graph G ∼= P4 � P5 shown in Figure 3.3 we have dim1(G) =

8 < 9 = adim1(G), dim2(G) = 12 < 14 = adim2(G) and dim3(G) = 20 =

adim3(G). The only 3-adjacency basis of G, and at the same time the only

3-metric basis, is V (G)− {0, 6, 12, 18}.
According to Theorem 3.97, dimk(G �H) =

∑n
i=1 adimk(Hi), and con-

sidering that adimk(Hi) ≥ k, we have a lower bound of kn on dimk(G�H).

By Proposition 3.12 and Theorem 3.97, we can deduce when this lower bound

is tight.

Proposition 3.98. For any connected graph G of order n ≥ 2 and any

family H composed by n nontrivial graphs, dimk(G�H) = kn if and only if

k ∈ {1, 2} and for every H ∈ H we have that H ∈ {P2, P3, P 2, P 3}.

Our next result is obtained as a consequence of Theorem 3.97 and the

fact that dimk(H) ≤ adimk(H) ≤ |V (H)| for any nontrivial graph H and

k ∈ {1, . . . , CH)}.

Theorem 3.99. Let G be a connected graph of order n ≥ 2 and let H be a

family composed by n nontrivial graphs. Then for every k ∈ {1, . . . , C(H)},
n∑
i=1

dimk(Hi) ≤ dimk(G�H) ≤
n∑
i=1

|V (Hi)|.
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By Theorem 3.97 it follows when the lower bound of Theorem 3.99 is

achieved.

Theorem 3.100. Let G be a connected graph of order n ≥ 2 and let H be a

family composed by n nontrivial graphs. Then dimk(G�H) =
∑n

i=1 dimk(Hi)

if and only if dimk(Hi) = adimk(Hi) for every Hi ∈ H.

We know that if a graph H has diameter D(H) ≤ 2, then dH,t and dH,2

are equivalents. So dimk(H) = adimk(H). Thus, the following result is a

particular case of previous theorem.

Theorem 3.101. Let G be a connected graph of order n ≥ 2 and let H be a

family composed by n nontrivial graphs such that every Hi ∈ H has D(Hi) ≤
2. Then for every k ∈ {1, . . . , C(H)}, dimk(G�H) =

∑n
i=1 dimk(Hi).

By Theorem 3.13, we have that dimk(G◦H) = adimk(G◦H) for any con-

nected graph G and any family H composed by nontrivial graphs. Therefore,

by Theorem 3.100 we deduce the following result.

Theorem 3.102. Let G be a connected graph of order n ≥ 2 and let H =

{G1◦H1, G2◦H2, . . . , Gn◦Hn}, where Gi is a connected graph of order ni ≥ 2

and Hi is a family composed by ni nontrivial graphs with i ∈ {1, 2, . . . , n}.
Then for every k ∈ {1, . . . , C(H)}, dimk(G�H) =

∑n
i=1 dimk(Gi ◦ Hi).

By Theorems 3.76 and 3.102, we deduce the following two results.

Proposition 3.103. Let G be a connected graph of order n ≥ 2 and let

H = {G1 ◦H1, G2 ◦H2, . . . , Gn ◦Hn}, where Gi is a connected graph of order

ni ≥ 2 and Hi is a family composed by ni paths with i ∈ {1, 2, . . . , n}. If

every path Pi,j ∈ Hi has order qi,j ≥ 4, then

(i) dim2(G�H) =
n∑
i=1

ni∑
j=1

⌈
qi,j + 1

2

⌉
.

(ii) dim3(G�H) =
n∑
i=1

ni∑
j=1

(
qi,j −

⌊
qi,j − 4

5

⌋)
.

Note that Theorem 3.76 leads to the conclusion that in the previous

proposition each Hi, where i ∈ {1, 2, . . . , n}, can also be formed by the

complement of paths of order at least four.
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Proposition 3.104. Let G be a connected graph of order n ≥ 2 and let

H = {G1 ◦H1, G2 ◦H2, . . . , Gn ◦Hn}, where Gi is a connected graph of order

ni ≥ 2 and Hi is a family composed by ni cycles with i ∈ {1, 2, . . . , n}. If

every cycle Ci,j ∈ Hi has order qi,j ≥ 5, then

(i) dim2(G�H) =
n∑
i=1

ni∑
j=1

⌈qi,j
2

⌉
.

(ii) dim3(G�H) =
n∑
i=1

ni∑
j=1

(
qi,j −

⌊qi,j
5

⌋)
.

(iii) dim4(G�H) =
n∑
i=1

ni∑
j=1

qi,j.

By Theorem 3.76 we deduce that in the previous proposition each Hi,

where i ∈ {1, 2, . . . , n}, can also be formed by the complement of cycles of

order at least five.

By Theorems 3.78 and 3.102, we deduce the following result.

Proposition 3.105. Let G be a connected graph of order n ≥ 2 and let

H = {G1 ◦ H1, G2 ◦ H2, . . . , Gn ◦ Hn}, where Gi is a connected graph of

order ni ≥ 2 and Hi is a family composed by ni paths and/or cycles with

i ∈ {1, 2, . . . , n}. If every Hi,j ∈ Hi has order qi,j ≥ 7 and in each family Hi

there exists at most one qi,l such that qi,l mod 5 ∈ {1, 3}, then

dim1(G�H) =
n∑
i=1

ni∑
j=1

⌊
2qi,j + 2

5

⌋
Our following result is a direct consequence of Theorems 3.5 and 3.97.

Proposition 3.106. Let G be a connected graph of order n ≥ 2 and let H
be a family composed by n nontrivial graphs. Then dimk(G�H) =

∑n
i=1 |Vi|

if and only if k = C(H) and Dk,2(Hi) = V (Hi) for every graph Hi ∈ H.

The graphs P4 and C6 are two examples for a graph H satisfying the

conditions of Proposition 3.106. Notice that C(P4) = 3 and adim3(P4) = 4.

Also, C(C6) = 4 and adim4(C6) = 6. Therefore, for any nontrivial graph G

of order n, dim3(G� P4) = 4n and dim4(G� C6) = 6n.

From Corollary 3.6 we can deduce the particular case of Proposition

3.106 for k = 2.
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Proposition 3.107. Let G be a connected graph of order n ≥ 2, and let H
be a family composed by nontrivial graphs. Every vertex of Hi ∈ H belongs

to a non-singleton twin equivalence class if and only if

dim2(G�H) =
n∑
i=1

|Vi|.

We must point out that Theorems 3.99 and 3.101 are generalizations of

previous results established in [132] for the case k = 1.

Notice that there are values for dimk(G�H) non-achieving the bounds

given in Theorem 3.99. If there exists a graph Hi ∈ H such that dimk(Hi) <

adimk(Hi) < |V (Hi)|, then

n∑
i=1

dimk(Hi) < dimk(G�H) <
n∑
i=1

|Vi|.

The results given in Proposition 3.109 show some examples. Note that

dimk(Pni
) = k+1 < adimk(Pni

) < ni = |V (Pni
)| for ni ≥ 9 and k ∈ {1, 2, 3}.

In order to present our next result we introduce a new definition. Given

a family of n graphs H, we denote by K1 � H the family of graphs formed

by the graphs K1 + Hi for every Hi ∈ H, i.e., K1 � H = {K1 + H1, K1 +

H2, . . . , K1 +Hn}.

Proposition 3.108. Let G be a connected graph of order n ≥ 2, and let H be

a family composed by n nontrivial graphs. Then for any k ∈ {1, . . . , C(H)},

dimk(G�H) = dimk(G�H) = dimk (G� (K1 � H))

if each Hi ∈ H holds one of the following statements.

(i) Hi has diameter D(Hi) ≥ 6.

(ii) Hi has girth g(H) ≥ 5 and minimum degree δ(H) ≥ 3.

(iii) Hi is a cycle graph of order at least seven.

(iv) Hi is a tree T such that the following statements hold.

(a) If k = 1, then T 6∈ F1 = {P2, P3, P6, K1,n, T
′}, where n ≥ 3 and T ′

is obtained from P5 ∪ {K1} by joining by an edge the vertex of K1

to the central vertex of P5.
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(b) If k = 2, then T 6∈ F2 = {Pr, K1,n, T
′}, where r ∈ {2, . . . , 5}, n ≥ 3

and T ′ is a graph obtained from K1,n ∪ K2 by joining by an edge

one leaf of K1,n to one leaf of K2.

(c) If k = 3, then T 6∈ F3 = {P4, P5}.

Proof. Since for every Hi ∈ H, it follows D(K1 + Hi) = 2, by Theorem

3.101, dimk (G� (K1 � H)) =
∑n

i=1 dimk(K1 + Hi). Also, by Corollaries

3.33, 3.34, 3.35, Propositions 3.43, 3.44, 3.46 and 3.47, and Theorem 3.97,

dimk(G�H) = dimk(G�H) =
∑n

i=1 adimk(Hi) =
∑n

i=1 dimk(K1 +Hi). So,

the result follows.

The next result shows a relationship between dimk(G�H) and dimk(G�
(K1 �H)) for a family H of paths of order greater than five and k ∈ {1, 2, 3}.
We only consider k ∈ {1, 2, 3}, since for n′ ≥ 6 we have that C(Pn′) =

C(F1,n′) = 3, and as a consequence, by Theorem 2.35, G�H and G�(K1�H)

are 3-metric dimensional. Thus, by Theorem 3.101 and Propositions 3.36,

3.39 and 3.108, we obtain the following result.

Proposition 3.109. Let G be a connected graph of order n ≥ 2, and let H
be a family of paths. If every path Pi ∈ H has order ni, then the following

statements hold.

(i) If ni ≥ 7 for i ∈ {1, . . . , n}, then dim1(G � H) = dim1(G � H) =

dim1(G� (K1 � H)) =
∑n

i=1

⌊
2ni+2

5

⌋
.

(ii) If ni ≥ 6 for i ∈ {1, . . . , n}, then dim2(G � H) = dim2(G � H) =

dim2(G� (K1 � H)) =
∑n

i=1

⌈
ni+1
2

⌉
.

(iii) If ni ≥ 6 for i ∈ {1, . . . , n}, then dim3(G � H) = dim3(G � H) =

dim3(G� (K1 � H)) =
∑n

i=1

(
ni −

⌊
ni−4
5

⌋)
.

Finally, we present a relationship between dimk(G �H) and dimk(G �
(K1�H)) for a familyH of cycles of order greater than six and k ∈ {1, 2, 3, 4}.
We only consider k ∈ {1, 2, 3, 4}, since for n′ ≥ 7 we have that C(Cn′) =

C(W1,n′) = 4, as a consequence, by Corollary 2.36, G�H and G� (K1 � H)

are 4-metric dimensional. Thus, by Theorem 3.101 and Propositions 3.36,

3.43 and 3.108, we obtain the following result.

Proposition 3.110. Let G be a connected graph of order n ≥ 2, and let H
be a family of n cycles. If every cycle Ci ∈ H has order ni ≥ 7, then
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(i) dim1(G�H) = dim1(G�H) = dim1(G� (K1 � H)) =
∑n

i=1

⌊
2ni+2

5

⌋
.

(ii) dim2(G�H) = dim2(G�H) = dim2(G� (K1 � H)) =
∑n

i=1

⌈
ni

2

⌉
.

(iii) dim3(G�H) = dim3(G�H) = dim3(G�(K1�H)) =
∑n

i=1

(
ni −

⌊
ni

5

⌋)
.

(iv) dim4(G�H) = dim4(G�H) = dim4(G� (K1 � H)) =
∑n

i=1 ni.



Chapter 4

Computability of the

(k, t)-dimensional problem and

the k-metric dimension problem

Overview

In this chapter we study the computability of some problems concerning the

(k, t)-metric dimension of graphs. Namely, we propose an algorithm which

can be solved in cubic time with regard to order of the graph, for finding the

value of k such that a graph is (k, t)-dimensional. We devise others particular

algorithms for computing the value of k such that the lexicographic product

and the corona product are k-metric dimensional. Despite these algorithms

can also be solved in cubic time, we reduce its constant factor. Moreover,

we prove that the problem of computing the k-metric dimension of graphs

is NP-hard. However, the problem of computing the k-metric dimension of

trees is solved in linear time with respect to the order of trees. To this end,

we give three algorithms, the first one is for computing the value of k such

that a tree is k-metric dimensional, the second one is for finding the value of

the k-metric dimension of a tree, and the last one is for finding a k-metric

basis of a tree.

125
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4.1 The (k, t)-metric dimensional graph prob-

lem

We now consider the problem of finding the integer k for which a given graph

G of order n is (k, t)-metric dimensional for an integer t ≥ 2. By Remark 2.1

we know that if G is a (k, t)-metric dimensional graph of order n ≥ 3, then

2 ≤ k ≤ n− 1. Therefore, the above mentioned problem would be expressed

in the following way.

(k, t)-DIMENSIONAL GRAPH PROBLEM

INSTANCE: A connected graph G of order n ≥ 3 and an integer t ≥ 2.

PROBLEM: Find the integer k, 2 ≤ k ≤ n− 1, such that G is

(k, t)-metric dimensional.

Theorem 4.1. Let G be a connected graph of order n ≥ 3, and let t ≥ 2

be an integer. The time complexity of computing the value k for which G is

(k, t)-metric dimensional is O(n3).

Proof. We assume that the graph G is represented by its adjacency matrix

AG. We recall that AG is a symmetric (n× n)-matrix given by

AG(i, j) =

{
1, if ui ∼ uj,

0, otherwise.

By Theorem 2.2, the problem is reduced to finding the value of D(G, t). To

this end, we can initially compute the distance matrix DG from the matrix

AG by using the well-known Floyd-Warshall algorithm [109, 125], which has

time complexity O(n3). The distance matrix DG is symmetric of order n×n
whose rows and columns are labelled by vertices, with entries between 0 and

n−1 (or∞ if G is not connected). Now observe that for every x, y ∈ V (G) we

have that z ∈ DG,t(x, y) if and only if min{DG(x, z), t} 6= min{DG(x, z), t}.
Given the distance matrix DistMG, computing how many vertices belong

to DG,t(x, y) for each of the

(
|V (G)|

2

)
pairs x, y ∈ V (G) can be checked in

linear time. Therefore, the overall running time of such a process is bounded

by the cubic time of the Floyd-Warshall algorithm.
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4.1.1 The particular case of product graphs

In this section we analyse the (k, t)-DIMENSIONAL GRAPH PROBLEM for

the particular case of join graphs, corona and lexicographic product graphs.

In the study of these graphs the parameter C(G) is involved, as we have seen

in Propositions 2.21 and 2.28, and Theorems 2.29 and 2.35. By Theorem

4.1 we learned that C(G) can be computed in O(|V (G)|3) time. However, we

propose an algorithm for the computability of this parameter, where the value

of the constant factor is reduced, despite the fact that the time complexity

remains of the same order.

Theorem 4.2. For any nontrivial graph G, the value of C(G) can be com-

puted in O(|V (G)|3) time.

Proof. We assume that the graph G is represented by its adjacency matrix

AG. Now observe that for every x, y ∈ V (G) we have that any z ∈ V (G)−
{x, y} belongs to CG(x, y) if and only if AG(x, z) 6= AG(y, z). Considering

this, we can compute |CG(x, y)| in linear time for each pair x, y ∈ V (G).

Therefore, the overall running time for determining C(G) is dominated by

the cubic time of computing the value of |CG(x, y)| for the

(
|V (G)|

2

)
pairs

of vertices x, y of G.

Considering that the minimum and the maximum degree of any graph

of order n can be computed in O(n2) time, by Propositions 2.21 and 2.28,

and Corollary 2.31, we deduce the following result.

Proposition 4.3. The following assertions hold:

(i) For any graph H of order n ≥ 2, the value of k for which K1 + H is

k-metric dimensional can be computed in O(n3) time.

(ii) For any two graphs G and H of order n ≥ 2 and n′ ≥ 2, respectively,

the value of k for which G+H is k-metric dimensional can be computed

in O (max{n3, n′3}) time.

(iii) For any connected nontrivial graph G and any graph H of order n′ ≥ 2,

the value of k for which G◦H is k-metric dimensional can be computed

in O(n′3) time.

The following result is direct consequence of Theorems 2.35 and 4.2.
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Remark 4.4. Let G be a connected nontrivial graph of order n and let

H = {H1, . . . , Hn} be a family composed by nontrivial graphs. Then the

value of k for which G � H is k-metric dimensional can be computed in

O(
∑n

i=1 |V (Hi)|3) time.

It was shown in Theorem 4.1 that the value of k for which a graph G is

k-metric dimensional can be computed in cubic time with regard to the order

of G. The value of k for which G ◦ H is k-metric dimensional can compute

in O

(n+
n∑
i=1

ni

)3
 time. A natural question which raises now regards

with the existence of an algorithm that could allow us to compute the value

of k for which G◦H is k-metric dimensional in a lower order. The next result

solves precisely that fact, where the general complexity is slightly improved.

Proposition 4.5. Let G be a connected graph of order n ≥ 2 and let

H = {H1, . . . , Hn} be a family composed by nontrivial graphs. Then the

value of k for which G ◦ H is k-metric dimensional can be computed in

O

max

n3 +
∑

ui∈TT (G)∪TF (G)

|V (Hi)|2,
n∑
i=1

|V (Hi)|3

.

Proof. By Theorem 2.29 we learn that k = min{T (G◦H, C(H)). To compute

T (G◦H), it is first necessary to obtain the twin equivalence classes of G. We

assume that the graph G is represented by its adjacency matrix AG. Now,

note that ui, uj are twins if and only if for every ur ∈ V (G)−{ui, uj}, we have

that AG(i, r) = AG(j, r). Given two twin vertices ui, uj, if AG(i, j) = 1, then

ui, uj are true twins, otherwise they are false twins. Note that determining if

two vertices are twins can be checked in linear time. In the worst case, when

all twin equivalence classes are singletons, it would be necessary to check that

any two vertices are twins between them or not. Thus, we conclude that

determining the twin equivalence classes of G can be computed in O(n3).

Once determined the twin equivalence classes of G, we have the following

three possibilities for each twin equivalence class UG of G.

• If UG = {ui}, then we take the order ni of Hi, as the representative

value of this class.

• If UG is a false twin equivalence class, then we take min
uj ,ul∈UG

{δ(Hj) +

δ(Hl) + 2} as the representative value of this class.
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• If UG is a true twin equivalence class, then we take min
uj ,ul∈UG

{|V (Hj)| −

∆(Hj) + |V (Hl)| −∆(Hl)} as the representative value of this class.

We observe that T (G ◦ H) is the minimum of the representative values of

each twin equivalence class. The minimum and maximum degrees δ(Hi)

and ∆(Hi) of the graphs Hi (of order ni) can be computed in O(n2
i ). So,

computing the representative value of each non-singleton twin equivalence

class UG can be done in O(
∑

ui∈UG
n2
i ). Therefore, we can compute the value

of T (G ◦ H) in O(n3 +
∑

ui∈TT (G)∪TF (G) n
2
i ).

On the other hand, by Proposition 4.5 we have that C(H) can be com-

puted in O(
∑n

i=1 n
3
i ), which completes the proof.

4.2 The k-metric dimension problem

Since the problem of computing the value k′ for which a given graph is

k′-metric dimensional can be solved in polynomial time, we can study the

problem of deciding whether the k-metric dimension, k ≤ k′, of G is less than

or equal to r, for some r ≥ k + 1, i.e., the following decision problem.

k-METRIC DIMENSION PROBLEM

INSTANCE: A k′-metric dimensional graph G of order n ≥ 3 and integers

k, r such that 1 ≤ k ≤ k′ and k + 1 ≤ r ≤ n.

QUESTION: Is dimk(G) ≤ r?

We next prove that the k-METRIC DIMENSION PROBLEM is NP-

complete. We must remark that for k = 1 the problem above was proved to

be NP-complete by Khuller et al. [72], although a previous claim about it

was first presented in [49]. Moreover, the NP-completeness of this problem

(when k = 1) restricted to the case of planar graphs was settled in [27].

As a kind of generalization of the technique used in [72] for k = 1, we also

use a reduction from 3-SAT in order to prove the NP-completeness of the

k-METRIC DIMENSION PROBLEM. We recall 3-SAT decision problem.
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SATISFIABILITY (3-SAT)

INSTANCE: Collection Q = {Q1, . . . , Qs} of clauses on finite set U of

variables such that |Qi| = 3 for i ∈ {1, . . . , s}.
QUESTION: Is there a truth assignment for U that satisfies all the

clauses in Q?

Our problem is clearly in NP, since verifying that a given subset S ⊆
V (G) with k + 1 ≤ |S| ≤ r is a k-metric generator for a graph G, can be

done in polynomial time by using some similar procedure like that described

in the proof of Theorem 4.1. In order to present the reduction from 3-SAT,

we need some terminology and notation. From now on, we assume x1, . . . , xn

are variables; Q1, . . . , Qs are clauses; and x1, x1, x2, x2, . . . , xn, xn are literals,

where xi represents a positive literal of the variable while xi represents a

negative literal.

We consider an arbitrary input to 3-SAT, that is, a boolean formula F
with n variables and s clauses. In this reduction, without loss of generality,

we assume that the formula F has n ≥ 4 variables. Let X = {x1, x2, . . . , xn}
be the set of variables and let Q = {Q1, Q2, . . . , Qs} be the set of clauses.

Now we construct a graph GF in the following way.

• For every xi ∈ X, we take an even cycle Ci of order 4
⌈
k
2

⌉
+ 2 and we

denote by Fi (the false node) and by Ti (the true node) two diametral

vertices of Ci. Then we denote by f 1
i , f

2
i , . . . , f

2d k2e
i the half vertices of

Ci closest to Fi and we denote by t1i , t
2
i , . . . , t

2d k2e
i the half vertices of

Ci closest to Ti (see Figure 4.1).

Ti

t
dk/2e+1
i t

dk/2e+2
i t

2dk/2e
i f

2dk/2e
i f

dk/2e+2
i f

dk/2e+1
i

t1i t2i t
dk/2e
i f

dk/2e
i

f 2
i f 1

i

Fi

Figure 4.1: The cycle Ci associated to the variable xi.
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• For every clause Qj ∈ Q, we take a star graph K1,4 with central vertex

uj and leaves u1j , u
2
j , u

3
j , u

4
j . If k ≥ 3, then we subdivide the edge uju

2
j

until we obtain a shortest uj − u2j path of order
⌈
k
2

⌉
+ 1, as well as, we

subdivide the edge uju
3
j until we obtain a shortest uj−u3j path of order⌊

k
2

⌋
+ 1 (see Figure 4.2). We denote by P (u2j , u

3
j) the shortest u2j − u3j

path of length k obtained after subdivision. The star graph remains

unchanged for k ∈ {1, 2}.

u2j u3j

u1j u4juj

Figure 4.2: The subgraph associated to the clause Qj.

• If a variable xi occurs as a positive literal in a clause Qj, then we add

the edges Tiu
1
j , Fiu

1
j and Fiu

4
j (see Figure 4.3).

• If a variable xi occurs as a negative literal in a clause Qj, then we add

the edges Tiu
1
j , Fiu

1
j and Tiu

4
j (see Figure 4.3).

uju1j u4j

u2j u3j

T1 F1t11 t21 f 2
1 f 1

1

t31 t41 f 4
1f 3

1

F3T3 f 1
3f 2

3t23t13

f 3
3f 4

3t43t33

T2 F2t12 t22 f 2
2 f 1

2

f 3
2f 4

2t42t32

Figure 4.3: The subgraph associated to the clause Qj = (x1∨x2∨x3) (taking

k = 4).

• Finally, for every l ∈ {1, . . . , n} such that xl and xl do not occur in a

clause Qj we add the edges Tlu
1
j , Tlu

4
j , Flu

1
j and Flu

4
j .
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Notice that the graph GF obtained from the procedure above has order

n
(
4
⌈
k
2

⌉
+ 2
)

+ s(k + 3). We also observe that given the formula F , the

graph GF can be constructed in polynomial time. Next we prove that F is

satisfiable if and only if dimk(GF ) = k(n+ s). To do so, we first notice some

properties of GF .

Remark 4.6. Let xi ∈ X. Then there exist two different vertices a, b ∈
V (Ci) such that they are distinguished only by vertices of the cycle Ci and,

as consequence, for any k-metric basis S of GF , we have that |S∩V (Ci)| ≥ k.

Proof. To observe that it is only necessary to take the two vertices of Ci

adjacent to Ti or adjacent to Fi.

Remark 4.7. Let Qj ∈ Q. Then there exist two different vertices x, y in the

shortest u2j − u3j path such that they are distinguished only by vertices of the

itself shortest u2j − u3j path and, as consequence, for any k-metric basis S of

GF , we have that |S ∩ V (P (u2j , u
3
j))| ≥ k.

Proof. To observe that it is only necessary to take the two vertices of P (u2j , u
3
j)

adjacent to uj.

Proposition 4.8. Let F be an arbitrary input to 3-SAT problem. Then the

graph GF associated to F satisfies that dimk(GF ) ≥ k(n+ s).

Proof. As a consequence of Remarks 4.6 and 4.7 we obtain that for every

variable xi ∈ X and for every clause Qj ∈ Q the set of vertices of GF

associated to each variable or clause, contains at least k vertices of every

k-metric basis for GF . Thus, the result follows.

Theorem 4.9. k-METRIC DIMENSION PROBLEM is NP-complete.

Proof. Let F be an arbitrary input to 3-SAT problem having more than three

variables and let GF be the graph associated to F . We shall show that F is

satisfiable if and only if dimk(GF ) = k(n+ s).

We first assume that F is satisfiable. From Proposition 4.8 we have that

dimk(GF ) ≥ k(n+ s). Now, based on a satisfying assignment of F , we shall

give a set S of vertices of GF , of cardinality |S| = k(n+ s), which is k-metric

generator.

Suppose we have a satisfying assignment for F . For every clause Qj ∈ Q
we add to S all the vertices of the set V (P (u2j , u

3
j)) − {uj}. For a variable
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xi ∈ X we consider the following. If the value of xi is true, then we add to S

the vertices t1i , t
2
i , . . . , t

2d k2e
i . On the contrary, if the value of xi is false, then

we add to S the vertices f 1
i , f

2
i , . . . , f

2d k2e
i .

We shall show that S is a k-metric generator for GF . Let a, b be two

different vertices of GF . We consider the following cases.

Case 1. a, b ∈ V (Ci) for some i ∈ {1, . . . , n}. Hence, there exists at most

one vertex y ∈ S ∩ V (Ci) such that d(a, y) = d(b, y). If d(a, w) 6= d(b, w)

for every vertex w ∈ S ∩ V (Ci), then since |S ∩ V (Ci)| = k, we have that

|DG(a, b)∩S| = k. On the other hand, if there exist one vertex y ∈ S∩V (Ci)

such that d(a, y) = d(b, y), then d(a, Ti) 6= d(b, Ti) and d(a, Fi) 6= d(b, Fi).

Thus, for every w ∈ S − V (Ci) it follows that d(a, w) 6= d(b, w) and a, b are

distinguished by more than k vertices of S.

Case 2. a, b ∈ V (P (u2j , u
3
j)). Hence, there exists at most one vertex y′ ∈ S ∩

V (P (u2j , u
3
j)) such that d(a, y′) = d(b, y′). But, in this case, d(a, uj) 6= d(b, uj)

and so for every w ∈ S − V (P (u2j , u
3
j)) it follows that d(a, w) 6= d(b, w) and

a, b are distinguished by at least k vertices of S.

Case 3. a = u1j and b = u4j . Since the clause Qj is satisfied, there exists

i ∈ {1, . . . , n}, i.e, a variable xi occurring in the clause Qj such that either

• a ∼ Ti, b 6∼ Ti and S ∩ V (Ci) =

{
t1i , t

2
i , . . . , t

2d k2e
i

}
, i.e, a variable

xi occurring as a positive literal in Qj and has the value true in the

assignment, or

• a ∼ Fi, b 6∼ Fi and S ∩ V (Ci) =

{
f 1
i , f

2
i , . . . , f

2d k2e
i

}
, i.e, a variable

xi occurring as a negative literal in Qj and has the value false in the

assignment.

Thus, in any case we have that for every w ∈ S ∩ V (Ci) it follows d(a, w) <

d(b, w) and a, b are distinguished by at least k vertices of S.

Case 4. a ∈ V (Ci) and b ∈ V (C l) for some i, l ∈ {1, . . . , n}, i 6= l. In this

case, if there is a vertex z ∈ S ∩ V (Ci) such that d(a, z) = d(b, z), then for

every vertex w ∈ S ∩ V (C l) it follows that d(a, w) 6= d(b, w). So a, b are
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resolved by at least k vertices of S.

Case 5. a ∈ V (Ci) and b ∈ V (P (u2j , u
3
j)). It is similar to the case above.

Case 6. a ∈ {u1j , u4j} and b /∈ {u1j , u4j}. If b ∈ V (Ci), for some i ∈ {1, . . . , n},
then all elements of S ∩ V (P (u2j , u

3
j) distinguish a, b. Now, let w be one of

the two vertices adjacent to uj in P (u2j , u
3
j). If b ∈ V (P (u2j , u

3
j))− {w}, then

all elements of S ∩ V (Ci) distinguish a, b. On the other hand, since n ≥ 4, if

b = w, then there exists a variable xl not occurring in the clause Qj. Thus,

the vertex a is adjacent to Tl and to Fl and, as a consequence, the vertices

of S ∩ V (C l) distinguish a, b.

As a consequence of the cases above, we have that S is a k-metric gene-

rator for GF . Therefore, dimk(GF ) = k(n+ s).

Next we prove that, if dimk(GF ) = k(n + s), then F is satisfiable. To

this end, we show that there exists a k-metric basis S of GF such that we

can set an assignment of the variables, so that F is satisfiable. We take S

in the same way as the k-metric generator for GF described above. Since S

is a k-metric generator for GF of cardinality k(n + s), it is also a k-metric

basis. Note that for any cycle Ci either S ∩ V (Ci) =

{
t1i , t

2
i , . . . , t

2d k2e
i

}
or

S ∩ V (Ci) =

{
f 1
i , f

2
i , . . . , f

2d k2e
i

}
.

In this sense, we set an assignment of the variables as follows. Given a

variable xi ∈ X, if S ∩
{
t1i , t

2
i , . . . , t

2d k2e
i

}
= ∅, then we set xi to be false.

Otherwise we set xi to be true. We claim that this assignment satisfies F .

Consider any clause Qj ∈ Q and let xj1 , xj2 , xj3 the variables occurring

in Qj. Recall that for each clause Qh, we have that S ∩ V (P (u2h, u
3
h)) =

V (P (u2h, u
3
h))− {uh}. Besides no vertex of V (Cl) associated to a variable xl,

l 6= j1, j2, j3, nor any vertex of S ∩ V (P (u2h, u
3
h)) associated to a clause Qh,

distinguishes the vertices u1j and u4j . Thus u1j and u4j must be distinguished

by at least k vertices belonging to V (Cj1) ∪ V (Cj2) ∪ V (Cj3) associated to

the variables xj1 , xj2 , xj3 .

Now, according to the way in which we have added the edges between

the vertices Tj1 , Tj2 , Tj3 , Fj1 , Fj2 , Fj3 and u1j , u
4
j , we have that u1j and u4j are

distinguished by at least k vertices of S if and only if one of the following

statements holds.
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• There exists l ∈ {1, 2, 3} for which the variable xjl occurs as a negative

literal in the clause Qj and S ∩
{
t1j , t

2
j , . . . , t

2d k2e
j

}
= ∅ (in such a case

xjl is set to be false).

• There exists l ∈ {1, 2, 3} for which the variable xjl occurs as a positive

literal in the clause Qj and S ∩
{
t1j , t

2
j , . . . , t

2d k2e
j

}
6= ∅ (in such a case

xjl is set to be true).

As a consequence of the two cases above, we have that if at least k vertices

of S distinguish u1j , u
4
j , then the setting of xjl , l ∈ {1, 2, 3}, is such that it

satisfies the clause Qj. Therefore F is satisfiable.

According to the theorem above we have the following result.

Corollary 4.10. The problem of finding the k-metric dimension of graphs

is NP-hard.

4.3 The particular case of trees

We must first recall that for the particular case of trees, it is already known

from [72] that the problem of computing its 1-metric dimension can be done

in linear time. Moreover, it was recently proved in [27] that also for the case

of outerplanar graphs, this problem can be solved in polynomial time. We

next deal with the problem of computing the k-metric dimension of trees for

k ≥ 2.

In order to continue presenting our results, we need to use some defi-

nitions exposed at the beginning of subsection 2.2.1. An example of a tree

T which helps to remember the notation of this subsection is given in Fi-

gure 4.4. In such a case we have thatM(T ) = {6, 12, 26}, {1, 4} is the set of

terminal vertices of vertex 6, {9, 11} is the set of terminal vertices of vertex

12 and {15, 20, 23} is the set of terminal vertices of vertex 26. For instance,

for the vertex 26 we have that l(26) = min{l(15, 26), l(20, 26), l(23, 26)} =

min{5, 3, 3} = 3 and ς(26) = min{ς(15, 20), ς(15, 23), varsigma(20, 23)} =

min{8, 8, 6} = 6. Analogously, we deduce that l(6) = 2, ς(6) = 5, l(12) = 1

and ς(12) = 3. Therefore, we conclude that ς(T ) = min{ς(6), ς(12), ς(26)} =

min{5, 3, 6} = 3.
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Figure 4.4: A tree T where ς(T ) = 3. Note that vertices are labeled through

a post-order traversal.

4.3.1 On k-metric dimensional trees different from

paths

In this subsection we focus on the problem of finding the integer k for which

a tree is k-metric dimensional. By Theorem 2.9, we know that a graph G of

order n ≥ 3 is (n − 1)-metric dimensional if and only if G is a path or G is

an odd cycle. Thus, this result allows us to consider only those trees that

are not paths. Theorem 2.13 is the base of the algorithm presented in this

subsection.

Now we consider the problem of finding the integer k such that a tree T

of order n is k-metric dimensional.

k-DIMENSIONAL TREE PROBLEM

INSTANCE: A tree T different from a path of order n

PROBLEM: Find the integer k, 2 ≤ k ≤ n− 1, such that T is k-metric

dimensional

Algorithm 1:

Input: A tree T different from a path rooted in a major vertex v.

Output: The value k for which T is k-metric dimensional.

1. For any vertex u ∈ V (T ) visited by post-order traversal as shown in

Figure 4.4, assign a pair (au, bu) in the following way:

(a) If u does not have any child (u is a leaf), then au = 1 and bu =∞.
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(b) If u has only one child (u has degree 2), then au = au′ + 1 and

b = bu′ , where the pair (au′ , bu′) was assigned to the child vertex

of u. Note that au′ can be ∞. Thus, in such case, au =∞.

(c) If u has at least two children (u is a major vertex), then au =∞
and bu = min{au1 + au2 , bmin}, where au1 and au2 are the two

minimum values among all possible pairs (aui , bui) assigned to the

children of u, and bmin is the minimum value among all the bui ’s.

2. The value k for which T is k-metric dimensional equals bv (the second

element of the pair assigned to the root v).

Figure 4.5 shows an example of a run of Algorithm 1 for the tree shown

in Figure 4.4.

(1,∞)

(2,∞)

(3,∞)

(1,∞)

(2,∞)

(∞, 5)

(1,∞)

(2,∞)

(1,∞)

(2,∞)
(1,∞)

(∞, 3)

(∞, 3)

(∞, 3)

(1,∞)

(2,∞)

(3,∞)

(4,∞)

(5,∞)

(1,∞)

(2,∞)

(3,∞)

(1,∞)

(2,∞)

(3,∞)

(∞, 6)

(1,∞)

(2,∞)

(∞, 3)

Figure 4.5: Algorithm 1 yields that this tree is 3-metric dimensional.

Remark 4.11. Let T be a tree different from a path of order n. Algorithm 1

computes the integer k, 2 ≤ k ≤ n− 1, such that T is k-metric dimensional.

Proof. Let v be the major vertex taken as the root of the tree T different

from a path, and let (av, bv) be the pair stored in v by Algorithm 1. We show

that bv = ς(T ). Since v is a major vertex, it has at least three children. Let

t ≥ 3 be the number of children of v and let S1, . . . , St be the subtrees whose

roots are the children v1, . . . , vt of v, respectively. We differentiate two cases:
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1. There exist at least two subtrees that are paths. In this case v ∈M(T ).

Let S1, . . . , St′ be the subtrees that are paths, where 2 ≤ t′ ≤ t. In this

case, after running Algorithm 1, each root vi of Si, 1 ≤ i ≤ t′, stores

the pair (avi ,∞), where avi is the number of vertices of Si. Note that

ς(v) = av1 + av2 , where av1 and av2 are the two minimum values among

all avi ’s belonging to the pairs (avi , bvi) stored by the children of v

such that 1 ≤ i ≤ t′. If t′ = t, then v is the only exterior major

vertex of T , and Algorithm 1 stores in v the pair (av, bv) = (∞, ς(v)) =

(∞, ς(T )). Assume now that t′ < t. Thus, there exists at least one

subtree that is not a path. Let St′+1, . . . , St be the subtrees that are

not paths. For each root vi of Si, t
′ + 1 ≤ i ≤ t, if vi is a major vertex,

then we take the vertex v′i = vi. Otherwise, v′i is the first descendant

of vi that is a major vertex. In this case, Algorithm 1 recursively

stores in v′i the pair (∞, bv′i), where bv′i = min
v′∈M(T )∩V (Si)

{ς(v′)}. In both

cases, bvi = bv′i , where (∞, bvi) is the pair stored in vi by Algorithm

1. Therefore, by Algorithm 1, the root v stores the pair (av, bv) =

(∞,min{ς(v), bmin}) = (∞, ς(T )), where bmin = min
t′+1≤i≤t

{bi}.

2. There exists at most one subtree that is a path. In this case v /∈M(T ).

Let S1, . . . , S
′
t be the subtrees that are not paths, where 1 ≤ t′ ≤ t. For

each root vi of Si, 1 ≤ i ≤ t′, if vi is a major vertex, then we take

the vertex v′i = vi. Otherwise, v′i is the first descendant of vi that is

a major vertex. In this case, Algorithm 1 recursively stores in v′i the

pair (∞, bv′i), where bv′i = min
v′∈M(T )∩V (Si)

{ς(v′)}. In both cases, bvi = bv′i ,

where (∞, bvi) is the pair stored in vi by Algorithm 1. Note in this case,

at least one of two minimum values among all avi of pairs (avi , bvi) stored

by the children of v is infinity. Therefore, by Algorithm 1, v stores the

pair (av, bv) = (∞, bmin) = (∞, ς(T )), where bmin = min
1≤i≤t′

{bvi}.

In any case, bv = ς(T ), and by Theorem 2.13 the result follows.

Corollary 4.12. The positive integer k for which a tree different from a path

is k-metric dimensional can be computed in linear time with respect to the

order of the tree.
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4.3.2 On the k-metric bases and the k-metric dimen-

sion of trees different from paths

In this subsection we propose an algorithm to compute the k-metric dimen-

sion of a tree and another to determine a k-metric basis. By Proposition

3.11 we know that for any integer k ≥ 3 and any path graph Pn of order

n ≥ k + 1, dimk(Pn) = k + 1. We observe that, for instance, if Pn is a path

of order n and the two leaves of Pn belong to a set S ⊆ V (Pn) of cardinality

k + 1, then S is a k-metric basis of Pn. Thus, we center our attention to

those trees different from paths.

We recall a function for any exterior major vertex w ∈ M(T ), shown

in Section 3.2, that allows us to compute the k-metric dimension of any

k ≤ ς(T ). Notice that this function uses the concepts already defined at the

beginning of Subsection 2.2.1. Given an integer k ≤ ς(T ),

Ik(w) =


(ter(w)− 1) (k − l(w)) + l(w), if l(w) ≤ bk

2
c,

(ter(w)− 1) dk
2
e+ bk

2
c, otherwise.

Theorem 3.20 is the base of the two algorithms presented in this subsec-

tion. Now we consider the problem of computing the k-metric dimension of

a tree T of order n, different from a path, for any k ≤ ς(T ).

k-METRIC DIMENSION TREE PROBLEM

INSTANCE: A tree T of order n

PROBLEM: Compute the k-metric dimension of T , for any k ≤ ς(T )

Algorithm 2:

Input: A tree T different from a path rooted in a major vertex v.

Output: The k-metric dimension of T for any k ≤ ς(T ).

1. For any vertex u ∈ V (T ) visited by post-order traversal as shown in

Figure 4.4, assign a pair (au, bu) in the following way:

(a) If u does not have any child (u is a leaf), then au = 1 and bu =∞.

(b) If u has only one child (u has degree 2), then au = au′ + 1 and

bu = bu′ , where the pair (au′ , bu′) was assigned to the child vertex

of u. Note that au′ can be ∞, in which case au =∞.
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(c) If u has at least two children (u is a major vertex), then au =

∞. Let amin be the minimum value among all aui ’s in the pairs

(aui , bui) assigned to the children of u, let cu be the number of

labels aui different from ∞, and let su be the sum of all bui 6=∞.

If cu ≤ 1, then bu = su. If cu ≥ 2 and amin ≤ b r2c, then bu =

amin + (cu − 1)(r − amin) + su. If cu ≥ 2 and amin > b r2c, then

bu =
⌊r

2

⌋
+ (cu − 1)

⌈r
2

⌉
+ su.

2. The k-metric dimension of T is bv.

Figure 4.6 shows an example of a run of Algorithm 2 for computing the

3-metric dimension of the tree shown in Figure 4.4.

(1,∞)

(2,∞)

(3,∞)

(1,∞)

(2,∞)

(∞, 3)

(1,∞)

(2,∞)

(1,∞)

(2,∞)
(1,∞)

(∞, 3)

(∞, 3)

(∞, 6)

(1,∞)

(2,∞)

(3,∞)

(4,∞)

(5,∞)

(1,∞)

(2,∞)

(3,∞)

(1,∞)

(2,∞)

(3,∞)

(∞, 5)

(1,∞)

(2,∞)

(∞, 11)

Figure 4.6: Algorithm 2 yields that 3-metric dimension of this tree is 11.

Remark 4.13. Let T be a tree different from a path. Algorithm 2 computes

the k-metric dimension of T for any k ≤ ς(T ).

Proof. Let v be the major vertex taken as a root of the tree T different

from a path and let (a, b) be the pair stored in v once Algorithm 2 has been

executed. We shall show that bv =
∑

v′∈M(T )

Ik(v
′). Since v is a major vertex,

it has at least three children. Let t ≥ 3 be the number of children of v and

let S1, . . . , St be the subtrees whose roots are the children v1, . . . , vt of v,

respectively. We differentiate two cases:
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1. There exist at least two subtrees that are paths. In this case v ∈M(T ).

Let S1, . . . , St′ be the subtrees that are paths, where 2 ≤ t′ ≤ t. Hence,

once executed Algorithm 2, each root vi of Si, 1 ≤ i ≤ t′, stores the pair

(avi ,∞), where avi is the number of vertices of S ′i. Note that in this

case ter(v) = cv = t′ ≥ 2 and l(v) = amin. If amin ≤ bk2c, then Ik(v) =

amin+(cv−1)(k−amin). Otherwise, Ik(v) = bk
2
c+(cv−1)dk

2
e. If t′ = t,

then v is the only exterior major vertex and sv = 0. As a consequence,

Algorithm 2 has assigned to v the pair (av, bv) = (∞, Ik(v)). Assume

that t′ < t. Thus, there exists at least one subtree that is not path. Let

St′+1, . . . , St be the subtrees that are not paths. We consider the root

vi of Si, t
′ + 1 ≤ i ≤ t. If vi is a major vertex, then we take the vertex

v′i = vi. Otherwise, v′i is the first descendant of vi that is a major vertex.

In this case, Algorithm 2 recursively assigns to v′i the pair (∞, bv′i),
where bv′i =

∑
v′∈M(T )∩V (Si)

Ik(v
′). In both cases, bvi = bv′i , where (∞, bvi)

is the pair assigned to vi by Algorithm 2. Hence, sv =
∑

v′∈M(T )−{v}

Ik(v
′).

Therefore, the execution of Algorithm 2 assigns to v the pair (av, bv) =∞, Ik(v) +
∑

v′∈M(T )−{v}

Ik(v
′)

 =

∞, ∑
v′∈M(T )

Ik(v
′)

.

2. There exists at most one subtree that is a path. In this case v /∈M(T )

and cv ≤ 1. Let S1, . . . , S
′
t be the subtrees that are not paths, where

1 ≤ t′ ≤ t. For each root vi of Si, 1 ≤ i ≤ t′, if vi is a major vertex,

then we take the vertex v′i = vi. Otherwise, v′i is the first descendant

of vi that is a major vertex. Hence, Algorithm 2 recursively assigns

to v′i the pair (∞, bv′i), where bv′i =
∑

v′∈M(T )∩V (Si)

Ik(v
′). In both cases,

bvi = bv′i , where (∞, bvi) is the pair stored in vi by an execution of

Algorithm 2. Hence, sv =
∑

v′∈M(T )

Ik(v
′). Note in this case, at most one

of all the avi ’s belonging to the pairs (avi , bvi) assigned to the children

of v is different from infinity. As a consequence, cv ≤ 1. Therefore,

Algorithm 2 assigns to v the pair (av, bv) =

∞, ∑
v′∈M(T )

Ik(v
′)

.

In any case, bv =
∑

v′∈M(T )

Ik(v
′), and by Theorem 3.20 the result follows.
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Corollary 4.14. The k-metric dimension of any tree T different from a path,

for any k ≤ ς(T ), can be computed in linear time with respect to the order of

T .

Now we consider the problem of finding a k-metric basis of a tree different

from a path for any k ≤ ς(T ). To this end, we present an algorithm quite

similar to Algorithm 2, which is based on the k-metric basis of T proposed

in the proof of Theorem 3.20.

k-METRIC BASIS TREE PROBLEM

INSTANCE: A tree T of order n different from a path

PROBLEM: Find a k-metric basis of T , for any k ≤ ς(T )

Algorithm 3:

Input: A tree T different from a path rooted in a major vertex v.

Output: A k-metric basis of T for any k ≤ ς(T ).

1. For any vertex u ∈ V (T ) visited by post-order traversal as shown in

Figure 4.4, assign a pair (au, bu) in the following way:

(a) If u does not have any child (u is a leaf), then a = {u} and b = ∅.

(b) If u has only one child (u has degree 2), then bu = bu′ , where the

pair (au′ , bu′) was assigned to the child vertex of u. If au′ = ∅,
then au = ∅. If au′ 6= ∅, then au = au′ ∪ {u}.

(c) If u has at least two children (u is a major vertex), then au = ∅.
Let amin be a set of minimum cardinality among all aui belonging

to the pairs (aui , bui) assigned to the children of u, let cu be the

number of aui which are different from an empty set, and let du

be the union of all bui . If cu ≤ 1, then bu = du. If cu ≥ 2 and

|amin| ≤ bk2c, then we remove elements of each aui 6= amin until

its cardinality is k − |amin|. If cu ≥ 2 and |amin| > bk2c, then we

remove elements of each aui 6= amin until its cardinality is dk
2
e,

and we remove elements of amin until its cardinality is bk
2
c. Then

bu = amin ∪

 ⋃
aui 6=amin

aui

 ∪ du.
2. A k-metric basis of T is stored in bv.
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Remark 4.15. Let T be a tree different from a path. Algorithm 3 finds a

k-metric basis of T for any k ≤ ς(T ).

Proof. Given an exterior major vertex w ∈M(T ) such that u1, u2, . . . , ut are

its terminal vertices and l(w) = l(umin, w), we define the vertex set Bk(w)

in the following way. If l(v) ≤ bk
2
c, then |Bk(w) ∩ (V (P (uj, w)) − {w})| =

k − l(v), for any j 6= min, and V (P (umin, w)) − {w} ⊂ Bk(w). Other-

wise, |Bk(w) ∩ (V (P (uj, w))− {w})| = dk
2
e, for any j 6= min, and |Bk(w) ∩

(V (P (umin, w))− {w})| = bk
2
c. It was shown in [34], that

⋃
w∈M(T )Bk(w) is

a k-metric basis of T . Let v be the major vertex taken as a root of the tree T

different from a path, and let (av, bv) be the pair assigned to v once executed

Algorithm 3. We show that the vertex set bv =
⋃
w∈M(T )Bk(w). Since v is

a major vertex, it has at least three children. Let t ≥ 3 be the number of

children of v and let S1, . . . , St be the subtrees whose roots are the children

v1, . . . , vt of v, respectively. We differentiate two cases:

1. There exist at least two subtrees that are paths. In this case v ∈M(T ).

Let S1, . . . , St′ be the subtrees that are paths, where 2 ≤ t′ ≤ t. Hence,

Algorithm 3 assigns to each root vi of Si, 1 ≤ i ≤ t′, the pair (avi , ∅),
where avi = V (Si). Note that in that situation ter(v) = cv = t′ ≥ 2

and l(v) = |amin|. If t′ = t, then v is the only exterior major vertex

and dv = ∅. As a consequence, Algorithm 3 assigns to v the pair

(∅, Bk(v)). Assume now that t′ < t. Thus, there exists at least one

subtree that is not a path. Let St′+1, . . . , St be the subtrees that are

not paths. For each root vi of Si, t
′ + 1 ≤ i ≤ t, if vi is a major vertex,

then we take the vertex v′i = vi. Otherwise, v′i is the first descendant

of vi that is a major vertex. Hence, Algorithm 3 recursively stores in

v′i the pair (∞, bv′i), where bv′i =
⋃

v′∈M(T )∩V (Si)

Bk(v
′). In both cases,

bvi = bv′i , where (∞, bvi) is the pair stored in vi by Algorithm 3. Hence,

dv =
⋃

v′∈M(T )−{v}

Bk(v
′). Therefore, Algorithm 3 assigns to v the pair

(av, bv) =

∅, Bk(v) ∪
⋃

v′∈M(T )−{v}

Bk(v
′)

 =

∅, ⋃
v′∈M(T )

Bk(v
′)

.

2. There exists at most one subtree that is a path. In this case v /∈M(T )

and cv ≤ 1. Let S1, . . . , S
′
t be the subtrees that are not paths, where

1 ≤ t′ ≤ t. For each root vi of Si, 1 ≤ i ≤ t′, if vi is a major vertex, then
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we take the vertex v′i = vi. Otherwise, v′i is the first descendant of vi

that is a major vertex. Hence, Algorithm 3 has recursively assigned to

v′i the pair (∞, bv′i), where bv′i =
⋃

v′∈M(T )∩V (Si)

Bk(v
′). Again, bvi = bv′i ,

where (∞, bvi) is the pair stored in vi by Algorithm 3. Thus, dv =⋃
v′∈M(T )

Bk(v
′). Note in such case, that at most one of all possible avi ’s

belonging to the pairs (avi , bvi) assigned to the children of v, is different

from infinity. As a consequence, cv ≤ 1. Therefore, Algorithm 3 assigns

to v the pair (av, bv) =

∅, ⋃
v′∈M(T )

Bk(v
′)

.

In any case, bv =
⋃

v′∈M(T )

Bk(v
′), and the result follows.

Corollary 4.16. A k-metric basis of any tree different from a path, for any

k ≤ ς(T ), can be computed in linear time with respect to the order of T .

We have proved that for any k ≥ 1 the problem of determining the k-

metric dimension of any tree can be solved in linear time, as it was done before

for the case k = 1. It is known that the 1-metric dimension of the outerplanar

graphs can be computed in polynomial time [27], and we conjecture that for

k ≥ 2 the problem of determining the k-metric dimension of any outerplanar

graph can also be solved in polynomial time.



Conclusions

In this thesis we have studied the (k, t)-metric dimension of graphs. The

central results of the thesis are focused on the k-metric dimension and the

k-adjacency dimension as particular cases of the (k, t)-metric dimension of a

graph G.

We were interested in finding the largest integer k for which there exist

(k, t)-metric bases of a graph. To this end, we have introduced the concept of

(k, t)-metric dimensional graph. We have analytically determined or bounded

the value of k for some specific classes of graphs. Moreover, we have devised

a cubic time algorithm for computing this value in the general case.

We have obtained closed formulae and tight bounds for the (k, t)-metric

dimension of some graphs. For instance, we have described those graphs

that, for some values of k, have (k, t)-metric dimension equal to k. We have

characterized the paths where the (k, t)-metric dimension equals k + 1. We

have also shown how to construct large families of graphs having a (k, t)-

metric basis of a graph as a common (k, t)-metric generator. On the other

hand, we have bounded the value of the k-metric dimension in terms of

distance-related parameters, pointing out some cases where these bounds are

reached. In particular, we have given a formula for computing the k-metric

dimension of any tree.

We have found a strong relationship between the k-metric dimension of

some product graphs and the k-adjacency dimension of one of its factors.

Therefore, we have also studied this parameter, in more detail. In particular,

we have proved that the k-metric dimension of corona product graphs equals

the sum of the k-adjacency dimensions of the second factors. For lexico-

graphic product graphs, we have characterized the cases where this relation

holds, deepening in the particular case of join graphs.

Finally, we have analysed the computability of the studied parameters.

We have shown that the problem of finding the value k such that a graph

145
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is (k, t)-metric dimensional can be solved in cubic time with respect to the

order of the graph. Moreover, we have proposed linear-time algorithms for

computing the k-metric dimension and a k-metric basis of any tree. However,

we have proved that computing the k-metric dimension of arbitrary graphs

is NP-hard, so the problem is difficult in the general case.

Contributions of the thesis

The results presented in this work led to elaborate six papers, four of

which has been published or accepted. Three of these papers have been ac-

cepted in ISI-JCR journals and the other was published in a peer-reviewed

journal that, in the year 2013 ranked 53/251 (first quartile) in the category

“Mathematics, Applied” of ISI-JCR, having Impact Factor 1.232. Further-

more, the two other paper has been submitted to ISI-JCR journals. Other

results have been presented in international conferences or workshops.

Publications in ISI-JCR journals

• A. Estrada-Moreno, Y. Ramı́rez-Cruz, J.A. Rodŕıguez-Velázquez. On

the adjacency dimension of graphs. Applicable Analysis and Discrete

Mathematics, in press.

https://doi.org/10.2298/AADM151109022E.

• A. Estrada-Moreno, I. G. Yero, J.A. Rodŕıguez-Velázquez. The k-

metric dimension of corona product graphs. Bulletin of the Malaysian

Mathematical Sciences Society, in press.

http://dx.doi.org/10.1007/s40840-015-0282-2.

• A. Estrada-Moreno, I. G. Yero, J.A. Rodŕıguez-Velázquez. The k-

metric dimension of the lexicographic product of graphs. Discrete Ma-

thematics, in press.

http://dx.doi.org/10.1016/j.disc.2015.12.024

Publications in a peer-reviewed journal (ISI-JCR, Q1, until 2014)

• A. Estrada-Moreno, J. A. Rodŕıguez-Velázquez, I. G. Yero. The k-

metric dimension of a graph. Applied Mathematics & Information

Sciences, 9(6), 2829–2840, 2015. http://naturalspublishing.com/

files/published/05a21265hsd7y2.pdf.

https://doi.org/10.2298/AADM151109022E
http://dx.doi.org/10.1007/s40840-015-0282-2
http://dx.doi.org/10.1016/j.disc.2015.12.024
http://naturalspublishing.com/files/published/05a21265hsd7y2.pdf
http://naturalspublishing.com/files/published/05a21265hsd7y2.pdf
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Papers submitted to ISI-JCR journals

• Ismael G. Yero, Alejandro Estrada-Moreno, Juan A. Rodŕıguez-Velázquez.

On the complexity of computing the k-metric dimension of graphs.

Submitted to Discrete Applied Mathematics (2015).

• Alejandro Estrada-Moreno, Ismael G. Yero, Juan A. Rodŕıguez-Velázquez.

Relationships between the 2-metric dimension and the 2-adjacency di-

mension in the lexicographic product of graphs. Submitted to Graphs

and Combinatorics (2015).

Other Publications

• Alejandro Estrada-Moreno, Ismael G. Yero, Juan A. Rodŕıguez-Velázquez.

k-metric resolvability in graphs. Electronic Notes in Discrete Mathema-

tics, 46, 121–128, 2014. http://dx.doi.org/10.1016/j.endm.2014.

08.017.

Participations in specialized conferences

• Ismael G. Yero, Alejandro Estrada-Moreno, Juan A. Rodŕıguez-Velázquez,

On the complexity of computing the k-metric dimension of graphs,

Algorithmic Graph Theory on the Adriatic Coast, Koper, Eslovenia

(2015).

• Alejandro Estrada-Moreno, Ismael G. Yero, Juan A. Rodŕıguez-Velázquez,

k-metric resolvability in graphs, Jornadas de Matemática Discreta y

Algoŕıtmica, Spain (2014).

• Ismael G. Yero, Alejandro Estrada-Moreno, Juan A. Rodŕıguez-Velázquez,

The k-metric dimension of graphs, Seventh Cracow Conference on Graph

Theory, Rytro, Poland (2014).

Workshops

1. Alejandro Estrada-Moreno, Ismael G. Yero, Juan A. Rodŕıguez-Velázquez,

Yunior Ramı́rez-Cruz. The k-adjacency dimension of graphs in 2nd

URV Doctoral Workshop in Computer Science and Mathematics, pp

47–50, 2015, Llibres URV, ISBN-13: 978-84-8424-399-1.

http://dx.doi.org/10.1016/j.endm.2014.08.017
http://dx.doi.org/10.1016/j.endm.2014.08.017
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2. Alejandro Estrada-Moreno, Ismael G. Yero, Juan A. Rodŕıguez-Velázquez.

The k-metric dimension of a graph. 1st URV Doctoral Workshop in

Computer Science and Mathematics, pp 37–40, 2014, Llibres URV,

ISBN-13: 978-84-8424-339-7.

Future works

• The (k, t)-metric dimension of a graph.

The central results of the thesis are focused on the k-metric dimension

and the k-adjacency dimension as particular cases of the (k, t)-metric

dimension of a graph G for t ≥ D(G) and t = 2, respectively. However,

it would be interesting to particularly study the (k, t)-metric dimension

of a graph for others values of t. We have also shown a motivation for

the (k, t)-metric dimension of a graph related to robot’s navigation in

network. A natural question would be if there is another interesting

application of the (k, t)-metric dimension of a graph.

• The (k, t)-metric dimension of product graphs.

We have proved that the (k, t)-metric dimension of lexicographic pro-

duct graphs is the same for any t ≥ 2. However, this does not happen

in the case of corona product graphs. Therefore, it would be interest-

ing to study the (k, t)-metric dimension of corona product graphs for

different values of t. Moreover, is it possible to extend the study of the

(k, t)-metric dimension to other graph product?

• Computability of the (k, t)-metric dimension.

We have proved that the problem of determining the k-metric dimen-

sion of a graph is NP-Hard. A natural question would be if it is possible

to extend this previous study to the problem of computing the (k, t)-

metric dimension of any graph G for values of t less than the diameter

of G.

• Computability of the (k, t)-metric dimension for the case of outerplanar

graphs.

Given that the 1-metric dimension of the outerplanar graphs can be

computed in polynomial time [27], one could conjecture that for k ≥ 2

the analogous problem can also be solved in polynomial time. More-

over, a natural question would be if it is possible to extend this previous
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study to the problem of computing the (k, t)-metric dimension of any

graph G for values of t less than the diameter of G.
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[82] D. Kuziak, J. A. Rodŕıguez-Velázquez, I. G. Yero, Computing the met-

ric dimension of a graph from primary subgraphs, arXiv:1309.0641v2

[math.CO].

URL http://arxiv.org/abs/1309.0641

[83] D. Kuziak, I. G. Yero, J. A. Rodŕıguez-Velázquez, On the strong
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[113] A. Sebö, E. Tannier, On metric generators of graphs, Mathematics of

Operations Research 29 (2) (2004) 383–393.

URL http://dx.doi.org/10.1287/moor.1030.0070

[114] B. Shanmukha, B. Sooryanarayana, K. Harinath, Metric dimension of

wheels, Far East Journal of Applied Mathematics 8 (3) (2002) 217–229.

URL http://www.pphmj.com/abstract/1365.htm

[115] T. Sitthiwirattham, Domination on lexicographical product of com-

plete graphs, International Journal of Pure and Applied Mathematics

85 (4) (2013) 745–750.

URL http://www.ijpam.eu/contents/2013-85-4/10/

[116] P. J. Slater, Leaves of trees, Congressus Numerantium 14 (1975) 549–

559.

http://www.sciencedirect.com/science/article/pii/S0166218X13004319
http://www.sciencedirect.com/science/article/pii/S0166218X13004319
http://cms.math.ca/cjm/v9/cjm1957v09.0515-0525.pdf
http://www.hindawi.com/journals/ijmms/2004/247096/abs/
http://www.hindawi.com/journals/ijmms/2004/247096/abs/
http://www.sciencedirect.com/science/article/pii/S0012365X13000496
http://www.sciencedirect.com/science/article/pii/S0012365X13000496
http://dx.doi.org/10.1287/moor.1030.0070
http://www.pphmj.com/abstract/1365.htm
http://www.ijpam.eu/contents/2013-85-4/10/


Bibliography 166

[117] P. J. Slater, Dominating and reference sets in a graph, Journal of Ma-

thematical and Physical Sciences 22 (4) (1988) 445–455.

URL http://www.ams.org/mathscinet-getitem?mr=0966610

[118] I. Tomescu, Discrepancies between metric dimension and partition

dimension of a connected graph, Discrete Applied Mathematics

308 (22) (2008) 5026–5031.

URL http://www.sciencedirect.com/science/article/pii/

S0012365X07007200

[119] R. Trujillo-Rasua, I. G. Yero, k-metric antidimension: A privacy

measure for social graphs, Information Sciences 328 (2016) 403–417.

URL http://www.sciencedirect.com/science/article/pii/

S0020025515006477

[120] K. Vesztergombi, Some remarks on the chromatic number of the

strong product of graphs, Acta Cybernetica 4 (2) (1978/79) 207–212.

URL http://www.inf.u-szeged.hu/actacybernetica/edb/

vol04n2/pdf/Vesztergombi_1979_ActaCybernetica.pdf

[121] V. G. Vizing, The cartesian product of graphs, Vyčisl. Sistemy No. 9
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[123] S. Špacapan, Connectivity of Cartesian products of graphs, Applied

Mathematics Letters 21 (2008) 682–685.

URL http://www.sciencedirect.com/science/article/pii/

S0893965907002327
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Symbol Index

The symbols are arranged in the order of the first appearance in the work.

Page numbers refer to definitions.

d metric, 1

(X, d) metric space, 1

G simple graph, 2

dG(u, v) standard distance between two vertices u and v in G, 2

dG,t(u, v) generalized distance between two vertices u and v in G, 2

dimk,t(G) (k, t)-metric dimension of a graph G, 4

adimk(G) k-adjacency dimension of a graph G, 5

dimk(G) k-metric dimension of a graph G, 5

V (G) vertex set of G, 9

E(G) edge set of G, 9

n order of a graph, 9

G ∼= H graphs G and H are isomorphic, 9

u ∼ v vertex u is adjacent to v, 9

NG(v) open neighbourhood of a vertex v in G, 9

NG[v] closed neighbourhood of a vertex v in G, 9

δG(v) degree of a vertex v of G, 9

NS(v) open neighbourhood of a vertex v in the set S, 9

NS [v] closed neighbourhood of a vertex v in the set S, 9

δ(G) minimum degree of the graph G, 9

∆(G) maximum degree of the graph G, 9

g(G) girth of the graph G, 9

AOB symmetric difference of two sets A and B, 9

Kn complete graph of order n, 9
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Cn cycle of order n, 9

Pn path of order n, 9

Nn empty graph of order n, 9

Ks,t complete bipartite graph of order s+ t, 9

K1,n star of order n+ 1, 9

T tree, 9

D(G) diameter of the graph G, 10

G complement of the graph G, 10

〈X〉 subgraph induced by the set X, 10

ω(G) clique number of G, 10

TT (x) true twin equivalence class to which vertex x belongs, 10

FT (x) false twin equivalence class to which vertex x belongs, 10

S(G) the union of the singletons equivalence classes of a graph G, 10

FT (G) the union of the false equivalence classes of a graph G, 10

TT (x) the union of the true equivalence classes of a graph G, 10

G ∪H union of two graphs G and H, 11

G ◦H lexicographic product of two graphs G and H, 12

H family of n nontrivial graphs H1, H2,...,Hn, 13

G ◦ H lexicographic product of a graph G of order n and a family H
composed by n graphs, 13

G+H join graph of two graphs G and H, 14

Kp1,...,pk complete k-partite graph of order p1 + ...+ pk, 14

G�H corona product of two graphs G and H, 14

G�H corona product of a graph G of order n and a family H
composed by n graphs, 15

G�H Cartesian product of two graphs G and H, 16

Qn hypercube of order 2n, 16

G�H strong product of two graphs G and H, 17

DG,t(x, y) the vertex set that distinguish two different vertices

x, y ∈ V (G) with regard to dG,t, 19

D∗G,t(x, y) the nontrivial vertex set that distinguish two different vertices

x, y ∈ V (G) with regard to dG,t, 20

D(G, t) the vertex set that distinguish two different vertices

x, y ∈ V (G) of minimum cardinality in G with regard to dG,t, 20
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DG(x, y) the vertex set that distinguish two different vertices

x, y ∈ V (G) with regard to dG, 25

D∗G(x, y) the nontrivial vertex set that distinguish two different vertices

x, y ∈ V (G) with regard to dG, 25

D(G) the vertex set that distinguish two different vertices

x, y ∈ V (G) of minimum cardinality in G with regard to dG, 25

ter(v) terminal degree of a major vertex v, 26

M(G) set of exterior major vertices of G having terminal degree greater

than one, 26

P (u,w) the shortest path between terminal vertex u and its exterior major

vertex w, 26

l(u,w) the length of P (u,w), 26

P (u,w, v) the shortest path between two terminal vertices u, v of the exterior

major vertex w, 26

ς(u, v) the length of P (u,w, v), 26

ς(w) the minimum ς(u, v) between all terminal vertices u, v of the

exterior major vertex w, 26

l(w) the minimum l(u,w) between all terminal vertex u of the exterior

major vertex w, 26

ς(G) the minimum ς(w) between all exterior major vertex w ∈M, 26

CG(x, y) the vertex set that distinguish two different vertices

x, y ∈ V (G) with regard to dG,2, 31

C∗G(x, y) the nontrivial vertex set that distinguish two different vertices

x, y ∈ V (G) with regard to dG,2, 31

C(G) the vertex set that distinguish two different vertices

x, y ∈ V (G) of minimum cardinality in G with regard to dG,2, 31

F1,n fan graph of order n+ 1, 34

W1,n wheel graph order n+ 1, 34

T (u,H) parameter of G ◦ H, where u ∈ V (G), 35

T (G ◦ H) the minimum T (u,H) for every u ∈ V (G), 35

C(H) the minimum C(H) for every H ∈ H, 35

Dk,t(G) the set obtained as the union of the sets DG,t(x, y)

such that |DG,t(x, y)| = k, 44

Br(B) closed ball of radius r on the vertex set B, 50

GB(G) family of graphs having a common (k, t)-metric generator B
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for G, 50

Ir(w) Number of vertices associated to exterior major vertex w

that belongs to an r-metric basis of a graph, 53

µ(G) the sum of terminal degree of all exterior major vertex with

terminal degree greater than one, 54

Dk(G) the set Dk,t(G) for t ≥ D(G), 58

H the family of complement graphs of each Hi ∈ H, 88

ϕ(G) the number of false equivalence classes of a graph G, 103

τ(G) the number of true equivalence classes of a graph G, 103

ν(G) the number of non-singleton twin equivalence classes of

a graph G, 103

K1 � H the family of graphs formed by the graphs K1 +Hi for every

Hi ∈ H, 122
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2

2-antipodal graph, 11, 23

B

branch of a tree, 29, 55

C

Cartesian product, 16, 22

closed neighbourhood, 9

complement of a graph, 10, 59, 75, 76,

88, 89, 92, 93, 96, 97, 118

complete bipartite graph, 9

complete graph, 9

corona product, 14, 39, 118, 127

cycle graph, 9, 23, 24, 71, 72, 76, 84,

93 94, 96, 121, 122, 124

cut vertex, 21

D

degree, 9

diameter, 10, 33, 41, 43, 50, 63, 96,

97, 122

distance dG, 2

distance dG,t, 2

distinguish, 3

dominating set, 9, 94, 97

E

eccentricity of a vertex, 73

empty graph, 9

end vertex, 9, 25, 32, 41

exterior major vertex, 26, 28, 52, 55,

73, 136, 139

F

false twin vertices, 10, 37, 38, 85, 97

false twins, 10, 49, 85, 97

false twin equivalence class, 10, 45,

85, 97

false twins free graph, 10, 85, 97

fan graph, 34, 64, 65, 102, 123

G

graph, 9

graph family, 13, 15, 35, 39, 49, 50,

85, 118

generalized tree, 22

girth, 9, 27, 32, 41, 64, 96, 97, 122

H

hypercube, 16, 31

J

join graph, 14, 33, 45, 62, 127

K

k-adjacency basis, 5

173
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k-adjacency dimension, 5

k-adjacency dimensional, 31

k-adjacency generator, 5

k-metric basis, 5

k-metric dimension, 5

k-metric dimensional, 25

k-metric generator, 5

(k, t)-metric basis, 4

(k, t)-metric dimension, 4

(k, t)-metric dimensional, 19

(k, t)-metric generator, 3

L

leaf, 10, 21, 32, 55,73, 136, 139

lexicographic product, 12, 33 35, 49,

85, 127

M

major vertex, 26

maximum degree, 9

metric, 1

metric basis, 2

metric dimension, 2

metric generator, 2

metric space, 1

minimum degree, 9

M -coordinates, 1

M -representation, 1

N

neighbours, 9

O

open neighbourhood, 9

P

path graph, 9, 23, 24, 28, 71, 75, 84,

93, 94, 96, 120, 123

S

star graph, 9

strong product graph, 17, 46

subgraph induced by a set, 10, 50

support vertex, 9, 21, 32, 41, 73

symmetric difference, 9, 31, 69

T

terminal degree, 26, 32, 52

terminal vertex, 26, 28, 32, 52, 55, 73,

135, 139

tree, 9, 21, 28, 55, 73, 75, 102, 108,

122, 135, 136, 139

true twin vertices, 10

true twins, 10

true twin equivalence class, 10

true twins free graph, 10

twin vertices, 10

twins, 10

twin equivalence class, 10, 21

twins free graph, 10

U

union of two graph, 11

W

wheel graph, 34, 64, 68, 69, 102, 124

ω

ω(G)-clique, 10, 27
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