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por siempre apoyarme.

Y muy muy muy en especial, agradezco a mis princesas Sophy y
Gaby; y a mi esposa y reina Karem Yali. El sugbrafo inducido por
nosotros es isomorfo a K4. Hijas, a ustedes va dedicada esta Tesis. Amor,
gracias por estar siempre a mi lado, por aguantar mis maratones y madru-
gadas de trabajo; gracias por ser mi musa. Mi reina, a tı́ también dedico
esta Tesis.





Abstracts

Suppose that one or more entities are stationed at some of the vertices
of a simple graph and that an entity at a vertex can deal with a problem at
any vertex in its closed neighbourhood. In general, an entity could consist
of a robot, an observer, a legion, a guard, and so on. Informally, we say that
a graph is protected under a given placement of entities if there exists at
least one entity available to handle a problem at any vertex. Various strate-
gies (or rules for entities placements) have been considered, under each of
which the graph is deemed protected. These strategies for the protection
of graphs are framed within the theory of domination in graphs, or in the
theory of secure domination in graphs.

In this thesis, we introduce the study of (secure) w-domination in
graphs, which is a unified approach to the idea of protection of graphs,
that encompasses known variants of (secure) domination in graphs and in-
troduces new ones. The thesis is structured as a compendium of ten papers
which have been published in JCR-indexed journals. The first one is de-
voted to the study of w-domination, the fifth one is devoted to the study of
secure w-domination, while the other papers are devoted to particular cases
of total protection strategies. As we can expect, the minimum number of
entities required for protection under each strategy is of interest. In general,
we obtain closed formulas or tight bounds on the studied parameters.
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Introduction

Domination theory is a well-established topic in graph theory, as well as
one of the most active research area. Domination was first defined as a
graph-theoretical concept in 1958. This area experienced rapid growth re-
sulting in over 1200 papers published by the late 1990s. The explosive
growth has continued and today more than 4500 papers have been publi-
shed on domination in graphs. The increasing interest in this area is partly
explained by the diversity of applications to real-world problems, such as
facility location problems, computer and social networks, monitoring co-
mmunication, coding theory, algorithm design, among others. We refer to
[24, 25, 26] for theoretical results and practical applications.

In a graph, a vertex dominates itself and its neighbours. A set of ver-
tices of a graph is said to be a dominating set if dominates every vertex of
the graph. The solution of different real-world problems using dominating
sets has allowed new and interesting domination models to be defined. The
notion of protection of graphs is closely related to the idea of domination.
Recently, many authors have considered the following approach to the pro-
blem of protecting a graph [2, 11, 12, 16, 18, 28, 38]: suppose that one or
more “entities” are stationed at some of the vertices of a (simple) graph
and that an entity at a vertex can deal with a problem at any vertex in its
closed neighbourhood. In general, an entity could consist of a robot, an
observer, a legion, a guard, and so on. Informally, we say that a graph G is
protected under a given placement of entities if there exists at least one en-
tity available to handle a problem at any vertex of G. Various strategies (or
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rules for entities placements) have been considered, under each of which
the graph is deemed protected. As we can expect, the minimum number of
entities required for protection under each strategy is of interest.

The simplest strategies of graph protection are the strategy of domina-
tion and the strategy of total domination. In such cases, the sets of vertices
containing the entities are dominating sets and total dominating sets, res-
pectively. Among other studied strategies, we can cite, for instance, multi-
ple (total) domination, (total) Italian domination, secure (total) domination,
(total) weak Roman domination. In this thesis we propose to unify these
strategies under the following approach.

Let Z+ = {1,2,3, . . .} and N = Z+ ∪{0} be the sets of positive and
nonnegative integers, respectively. Let G be a graph, l ∈ Z+ and f :
V (G) −→ {0, . . . , l} a function, where f (v) is the number of entities sta-
tioned at vertex v. Let Vi = {v ∈V (G) : f (v) = i} for every i ∈ {0, . . . , l}.
We identify f with the subsets V0, . . . ,Vl associated with it, and thus we
use the unified notation f (V0, . . . ,Vl) for the function and these associated
subsets. The weight of f is defined to be

ω( f ) = f (V (G)) =
l

∑
i=1

i|Vi|.

Let w = (w0, . . . ,wl) ∈ Z+ ×Nl . A function f (V0, . . . ,Vl) is a w-
dominating function on a graph G if f (N(v)) ≥ wi for every vertex v ∈ Vi

and i ∈ {0, . . . , l}. The w-domination number of G, denoted by γw(G),
is the minimum weight among all w-dominating functions. For simplicity,
a w-dominating function f of weight ω( f ) = γw(G) is called a γw(G)-
function. A similar agreement will be assumed when referring to optimal
sets associated to other parameters used in the thesis.

As mentioned above, this unified approach allows us to encompass the
definition of several well-known domination parameters, and also intro-
duce new ones. For instance, we highlight the following particular cases
of known domination parameters, which we define here in terms of w-
domination.
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• The domination number of G is defined to be γ(G) = γ(1,0)(G) =

γ(1,0,0)(G). Obviously, every γ(1,0,0)(G)-function f (V0,V1,V2) satis-
fies that V2 =∅ and V1 is a dominating set of cardinality |V1|= γ(G).
For more information on domination in graphs we suggest the books
[24, 26].

• The total domination number of a graph G with no isolated vertex
is defined to be γt(G) = γ(1,1)(G) = γ(1,1,w2,...,wl)(G), for every inte-
gers w2, . . . ,wl ∈ {0,1}. Notice that every γ(1,1,w2,...,wl)(G)-function
f (V0, . . . ,Vl) satisfies that Vi = ∅ for every i ∈ {2, . . . , l} and V1 is
a total dominating set of cardinality |V1| = γt(G). For more infor-
mation on total domination we suggest the book [31] or the survey
[27].

• Given a positive integer k, the k-domination number of a graph G is
defined to be γk(G) = γ(k,0)(G). In this case, V1 is a k-dominating
set of cardinality |V1|= γk(G). The study of k-domination in graphs
was introduced in [22].

• Given a positive integer k, the k-tuple domination number of a graph
G with δ (G) ≥ k− 1 is defined to be γ×k(G) = γ(k,k−1)(G). In this
case, V1 is a k-tuple dominating set of cardinality |V1| = γ×k(G).
In particular, γ×1(G) = γ(G) and γ×2(G) is known as the double
domination number of G. This parameter was introduced in [23].

• Given a positive integer k, the k-tuple total domination number of a
graph G of minimum degree δ (G) ≥ k is defined to be γ×k,t(G) =

γ(k,k)(G). In particular, γ×1,t(G) = γt(G) and γ×2,t(G) is known as
the double total domination number, and V1 is a double total domi-
nating set of cardinality |V1| = γ×2,t(G). The k-tuple total domina-
tion number was introduced in [29].

• The Italian domination number of a graph G is defined to be γI(G) =

γ(2,0,0)(G). This parameter was introduced by Chellali et al. in [15]
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under the name of Roman {2}-domination number. The concept was
studied further in [30, 34].

• The total Italian domination number of a graph G with no isolated
vertex is defined to be γtI(G) = γ(2,1,1)(G). This parameter was intro-
duced in this thesis, and independently by Abdollahzadeh Ahangar
et al. in [1], under the name of total Roman {2}-domination number.
The total Italian domination number of lexicographic product graphs
was studied in [7].

• The {k}-domination number of a graph G is defined as γ{k}(G) =

γ(k,k−1,...,0)(G). This parameter was introduced by Domke et al. in
[20] and studied further in [4, 32, 37].

Observe that the concept of w-domination does not include the cases in
which the graph is deemed protected under a placement of entities, and also
protected under the new placement of entities obtained from the previous
one, when an entity moves to a neighbour vertex to deal with a problem.
For instance, this is the case of secure (total) domination and (total) weak
Roman domination. The general approach for these cases will be called
secure w-domination.

For any function f (V0, . . . ,Vl) and any pair of adjacent vertices v ∈V0

and u ∈V (G)\V0, the function fu→v is defined by fu→v(v) = 1, fu→v(u) =
f (u)−1 and fu→v(x) = f (x) whenever x ∈V (G)\{u,v}. We say that a w-
dominating function f (V0, . . . ,Vl) is a secure w-dominating function if for
every v ∈ V0 there exists u ∈ N(v) \V0 such that fu→v is a w-dominating
function as well. The secure w-domination number of G, denoted by
γs

w(G), is the minimum weight among all secure w-dominating functions.
For simplicity, a secure w-dominating function f of weight ω( f ) = γs

w(G)

is called a γs
w(G)-function.

This approach to the theory of secure domination covers the different
versions of secure domination known so far. For instance, we emphasize
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the following cases of known parameters that we define here in terms of
secure w-domination.

• The secure domination number of a graph G is defined to be γs(G) =

γs
(1,0)(G). In this case, for any secure (1,0)-dominating function

f (V0,V1), the set V1 is known as a secure dominating set. This con-
cept was introduced by Cockayne et al. [18] and studied further in
several papers (e.g.,[3, 5, 14, 17, 33, 35, 40]).

• The secure total domination number of a graph G of minimum de-
gree at least one is defined to be γst(G) = γs

(1,1)(G). In this case,
for any secure (1,1)-dominating function f (V0,V1), the set V1 is
known as a secure total dominating set of G. This concept was in-
troduced by Benecke et al. [2] and studied further in several papers
(e.g., [11, 12, 21, 35, 36]).

• The weak Roman domination number of a graph G is defined to be
γr(G) = γs

(1,0,0)(G). This concept was introduced by Henning and
Hedetniemi [28] and studied in several papers (e.g., [10, 14, 17, 39]).

• The total weak Roman domination number of a graph G of minimum
degree at least one is defined to be γtr(G) = γs

(1,1,1)(G). This concept
was introduced in this thesis.

• The secure Italian domination number of a graph G is defined to be
γs

I
(G) = γs

(2,0,0)(G). This parameter was introduced by Dettlaff et
al. [19].

Observe that the word “total” is used whenever a w-dominating func-
tion f satisfies the restriction f (N(v))≥ 1 for every vertex v∈V (G). Most
of the results of this thesis are focused on these strategies of protection of
graphs, which will be called total protection strategies.

This thesis is structured as a compendium of ten papers which have
been published in JCR-indexed journals. These papers are presented in
separated chapters.
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In Chapter 1 we introduce the study of w-domination in graphs, and
provide general results on the w-domination number.

The next three chapters are dedicated to the study of total protection
strategies, associated to the w-domination in graphs. The first one, deal
with the problem of finding the total domination number for the case of
rooted product graphs. This covers a gap in the theory of total domination
in graphs, since there are more than 580 published papers on this topic,
among which at least 50 concern the case of product graphs, and none of
these papers discusses the case of rooted product graphs. Chapters 3 and
4 are devoted to total Italian domination in graphs. In the first one, we
introduce this parameter and then we study its combinatorial and compu-
tational properties. The second one deals with the case of lexicographic
product graphs and, in particular, we show that the total Italian domina-
tion number and the double domination number coincide for this class of
graphs.

In Chapter 5 we introduce the study of secure w-domination in graphs,
we provide general results on the secure w-domination number and propose
the challenge of conducting a detailed study of the topic.

The next four chapters are devoted to the study of two total protection
strategies, associated to secure w-domination in graphs. Chapter 6 intro-
duces the study of the total weak Roman domination number of a graph.
For this parameter, we study combinatorial and computational properties.
In Chapter 7 we obtain new relationships between the secure total domina-
tion number and other graph parameters. Some of these results are tight
bounds that improve some well-known results. Chapter 8 considers the
secure total domination number for the particular case of rooted product
graphs. Finally, Chapter 9 deals with the case of lexicographic product
graphs, where we show that the secure total domination number and the
total weak Roman domination number coincide for this class of graphs,
and we obtain closed formulas and tight bounds for these parameters.

In Chapter 10 we show how the secure (total) domination number
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and the (total) weak Roman domination number of lexicographic product
graphs G ◦H are related to γs

w(G) or γw(G). For the case of the secure
domination number and the weak Roman domination number, the deci-
sion on whether w takes specific components will depend on the value of
γs
(1,0)(H), while in the case of the total version of these parameters, the

decision will depend on the value of γs
(1,1)(H).

In Chapter Conclusions, we present some concluding remarks, sum-
marize the contributions of the thesis, and give a list of future works. Fi-
nally, we present the references.

7





From Italian domination in
lexicographic product graphs
to w-domination in graphs

This chapter includes a complete copy of the following paper.

A. Cabrera Martı́nez, A. Estrada-Moreno, J.A. Rodrı́guez-Velázquez. From
Italian domination in lexicographic product graphs to w-domination in graphs,
ARS Math. Contemp. In press.
URL: https://doi.org/10.26493/1855-3974.2318.fb9

Quality indicators:
2020 JCR Impact factor: 0.669, Q4 (251/330), Mathematics.

9

https://doi.org/10.26493/1855-3974.2318.fb9




Acc
ep

te
d m

an
usc

rip
tISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.)

ARS MATHEMATICA CONTEMPORANEA
https://doi.org/10.26493/1855-3974.2318.fb9

(Also available at http://amc-journal.eu)

From Italian domination in lexicographic
product graphs to w-domination in graphs∗

Abel Cabrera Martı́nez, Alejandro Estrada-Moreno,
Juan Alberto Rodrı́guez-Velázquez

Universitat Rovira i Virgili, Departament d’Enginyeria Informàtica i Matemàtiques,
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Abstract

In this paper, we show that the Italian domination number of every lexicographic prod-
uct graph G ◦ H can be expressed in terms of five different domination parameters of G.
These parameters can be defined under the following unified approach, which encompasses
the definition of several well-known domination parameters and introduces new ones.

Let N(v) denote the open neighbourhood of v ∈ V (G), and let w = (w0, w1, . . . , wl)
be a vector of nonnegative integers such that w0 ≥ 1. We say that a function f : V (G) −→
{0, 1, . . . , l} is a w-dominating function if f(N(v)) =

∑
u∈N(v) f(u) ≥ wi for every

vertex v with f(v) = i. The weight of f is defined to be ω(f) =
∑
v∈V (G) f(v). The

w-domination number of G, denoted by γw(G), is the minimum weight among all w-
dominating functions on G.

Specifically, we show that γI(G ◦ H) = γw(G), where w ∈ {2} × {0, 1, 2}l and
l ∈ {2, 3}. The decision on whether the equality holds for specific values ofw0, . . . , wl will
depend on the value of the domination number of H . This paper also provides preliminary
results on γw(G) and raises the challenge of conducting a detailed study of the topic.

Keywords: Italian domination, w-domination, k-domination, k-tuple domination, lexicographic prod-
uct graph.

Math. Subj. Class. (2020): 05C69, 05C76
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1 Introduction
Let G be a graph, l a positive integer, and f : V (G) −→ {0, . . . , l} a function. For every
i ∈ {0, . . . , l}, we define Vi = {v ∈ V (G) : f(v) = i}. We will identify f with the
subsets V0, . . . , Vl associated with it, and so we will use the unified notation f(V0, . . . , Vl)
for the function and these associated subsets. The weight of f is defined to be

ω(f) = f(V (G)) =
l∑

i=1

i|Vi|.

An Italian dominating function (IDF) on a graph G is a function f(V0, V1, V2) satisfy-
ing that f(N(v)) =

∑
u∈N(v) f(u) ≥ 2 for every v ∈ V0, where N(v) denotes the open

neighbourhood of v. Hence, f(V0, V1, V2) is an IDF if N(v)∩V2 6= ∅ or |N(v)∩V1| ≥ 2
for every v ∈ V0. The Italian domination number, denoted by γI(G), is the minimum
weight among all IDFs on G. This concept was introduced by Chellali et al. in [6] under
the name of Roman {2}-domination. The term “Italian domination” comes from a subse-
quent paper by Henning and Klostermeyer [13].

In this paper we show that the Italian domination number of every lexicographic product
graphG◦H can be expressed in terms of five different domination parameters ofG. These
parameters can be defined under the following unified approach.

Let w = (w0, . . . , wl) be a vector of nonnegative integers such that w0 ≥ 1. We say
that f(V0, . . . , Vl) is a w-dominating function if f(N(v)) ≥ wi for every v ∈ Vi. The
w-domination number of G, denoted by γw(G), is the minimum weight among all w-
dominating functions on G. For simplicity, a w-dominating function f of weight ω(f) =
γw(G) will be called a γw(G)-function.

This unified approach allows us to encompass the definition of several well-known
domination parameters and introduce new ones. For instance, we would highlight the fol-
lowing particular cases of known domination parameters that we define here in terms of
w-domination.

• The domination number of G is defined to be γ(G) = γ(1,0)(G) = γ(1,0,0)(G).
Obviously, every γ(1,0,0)(G)-function f(V0, V1, V2) satisfies that V2 = ∅ and V1 is
a dominating set of cardinality |V1| = γ(G), i.e., V1 is a γ(G)-set.

• The total domination number of a graph G with no isolated vertex is defined to be
γt(G) = γ(1,1)(G) = γ(1,1,w2,...,wl)(G), for every w2, . . . , wl ∈ {0, 1}. Notice
that there exists a γ(1,1,w2,...,wl)(G)-function f(V0, V1, . . . , Vl) such that Vi = ∅ for
every i ∈ {2, . . . , l} and V1 is a total dominating set of cardinality |V1| = γt(G),
i.e., V1 is a γt(G)-set.

• Given a positive integer k, the k-domination number of a graph G is defined to be
γk(G) = γ(k,0)(G). In this case, V1 is a k-dominating set of cardinality |V1| =
γk(G), i.e., V1 is a γk(G)-set. The study of k-domination in graphs was initiated by
Fink and Jacobson [8] in 1984.

• Given a positive integer k, the k-tuple domination number of a graph G of minimum
degree δ ≥ k−1 is defined to be γ×k(G) = γ(k,k−1)(G). In this case, V1 is a k-tuple
dominating set of cardinality |V1| = γ×k(G), i.e., V1 is a γ×k(G)-set. In particular,
γ×1(G) = γ(G) and γ×2(G) is known as the double domination number of G. This
parameter was introduced by Harary and Haynes in [9].

From Italian domination in lexicographic product graphs to ... 12
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• Given a positive integer k, the k-tuple total domination number of a graph G of
minimum degree δ ≥ k is defined to be γ×k,t(G) = γ(k,k)(G). In particular,
γ×1,t(G) = γt(G) and γ×2,t(G) is known as the double total domination number,
and V1 is a double total dominating set of cardinality |V1| = γ×2,t(G), i.e., V1 is a
γ×2,t(G)-set. The k-tuple total domination number was introduced by Henning and
Kazemi in [12].

• The Italian domination number of G is defined to be γ
I
(G) = γ(2,0,0)(G). As

mentioned earlier, this parameter was introduced by Chellali et al. in [6] under the
name of Roman {2}-domination number. The concept was studied further in [13,
16].

• The total Italian domination number of a graph G with no isolated vertex is defined
to be γtI(G) = γ(2,1,1)(G). This parameter was introduced by Cabrera et al. in
[4], and independently by Abdollahzadeh Ahangar et al. in [1], under the name of
total Roman {2}-domination number. The total Italian domination number of lexi-
cographic product graphs was studied in [5].

• The {k}-domination number of G is defined to be γ{k}(G) = γ(k,k−1,...,1,0)(G).
This parameter was introduced by Domke et al. in [7] and studied further in [3, 15,
17].

Notice that the concept of Y -dominating function introduced by Bange et.al. [2] is quite
different from the concept of w-dominating function introduced in this paper. Given a set
Y of real numbers, a function f : V (G) −→ Y is a Y -dominating function if f(N [v]) =
f(v) +

∑
u∈N(v) f(u) ≥ 1 for every v ∈ V (G). The Y -domination number, denoted

by γ
Y

(G), is the minimum weight among all Y -dominating functions on G. Hence, if
Y = {0, 1, . . . , l}, then γ

Y
(G) = γ(1,0,...,0)(G) = γ(G).

11

1 1

G1

1

1

1
G2

22

2 2

G3

Figure 1: The labels of black-coloured vertices describe a γ(2,1,0)(G1)-function, a
γ(2,2,0)(G2)-function and a γ(2,2,2)(G3)-function, respectively.

For the graphs shown in Figure 1 we have the following values.

• γI(G1) = γ(2,1,0)(G1) = γ(2,2,0)(G1) = 4 < 6 = γ(2,2,1)(G1) = γ(2,2,2)(G1).

• γI(G2) = γ(2,1,0)(G2) = γ(2,2,0)(G2) = γ(2,2,1)(G2) = γ(2,2,2)(G2) = 3.

• γI(G3) = γ(2,1,0)(G3) = 6 < 8 = γ(2,2,0)(G3) = γ(2,2,1)(G3) = γ(2,2,2)(G3).

The remainder of the paper is organized as follows. In Section 2 we show that for any
graph G with no isolated vertex and any nontrivial graph H with γ(H) 6= 3 or γ

I
(H) 6= 3,

From Italian domination in lexicographic product graphs to ... 13
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the Italian domination number ofG◦H equals one of the following parameters: γ(2,1,0)(G),
γ(2,2,0)(G), γ(2,2,1)(G) or γ(2,2,2)(G). The specific value γ

I
(G ◦H) takes depends on the

value of γ(H). For the cases where γ
I
(H) = γ(H) = 3, we show that γ

I
(G ◦ H) =

γ(2,2,2,0)(G). Section 3 is devoted to providing some preliminary results on w-domination.
We first describe some general properties of γw(G) and then dedicate a subsection to each
of the specific cases declared of interest in Section 2.

We assume that the reader is familiar with the basic concepts, notation and terminology
of domination in graph. If this is not the case, we suggest the textbooks [10, 11, 14]. For
the remainder of the paper, definitions will be introduced whenever a concept is needed.

2 Italian domination in lexicographic product graphs
The lexicographic product of two graphs G and H is the graph G ◦H whose vertex set is
V (G ◦ H) = V (G) × V (H) and (u, v)(x, y) ∈ E(G ◦ H) if and only if ux ∈ E(G) or
u = x and vy ∈ E(H).

Notice that for any u ∈ V (G) the subgraph of G ◦ H induced by {u} × V (H) is
isomorphic to H . For simplicity, we will denote this subgraph by Hu. Moreover, the
neighbourhood of (x, y) ∈ V (G)×V (H) will be denoted byN(x, y) instead ofN((x, y)).
Analogously, for any function f on G ◦H , the image of (x, y) will be denoted by f(x, y)
instead of f((x, y)).

Lemma 2.1. For any graph G with no isolated vertex and any nontrivial graph H with
γ

I
(H) 6= 3 or γ(H) 6= 3, there exists a γ

I
(G◦H)-function f satisfying that f(V (Hu)) ≤ 2

for every u ∈ V (G).

Proof. Given an IDF f on G ◦H , we define the set Rf = {x ∈ V (G) : f(V (Hx)) ≥ 3}.
Let f be a γ

I
(G ◦H)-function such that |Rf | is minimum among all γ

I
(G ◦H)-functions.

Suppose that |Rf | ≥ 1. Let u ∈ Rf such that f(V (Hu)) is maximum among all vertices
belonging toRf . Suppose that f(V (Hu)) > γ

I
(H). In this case we take a γ

I
(H)-function

h and construct an IDF g defined on G ◦ H as g(u, y) = h(y) for every y ∈ V (H) and
g(x, y) = f(x, y) for every x ∈ V (G) \ {u} and y ∈ V (H). Obviously, ω(g) < ω(f),
which is a contradiction. Thus, 3 ≤ f(V (Hu)) ≤ γ

I
(Hu) = γ

I
(H). Now, we analyse the

following two cases.

Case 1. f(V (Hu)) ≥ 4. Let u′ ∈ N(u) and v ∈ V (H). We define a function f ′ on G ◦H
as f ′(u, v) = f ′(u′, v) = 2, f ′(u, y) = f(u′, y) = 0 for every y ∈ V (H) \ {v}, and
f ′(x, y) = f(x, y) for every x ∈ V (G) \ {u, u′} and y ∈ V (H). Notice that f ′ is an IDF
on G ◦H with ω(f ′) ≤ ω(f) and |Rf ′ | < |Rf |, which is a contradiction.

Case 2. f(V (Hu)) = 3. Suppose that γ
I
(H) 6= 3. Since γ

I
(H) ≥ 4, there exist u′ ∈ N(u)

and v ∈ V (H) such that f(u′, v) ≥ 1. Hence, the function f ′ defined in Case 1 is an IDF
on G ◦H with ω(f ′) ≤ ω(f) and |Rf ′ | < |Rf |, which is again a contradiction.

Thus, γ
I
(H) = 3, and so γ(H) 6= 3, which implies that γ(H) = 2. Let {v1, v2} be

a γ(H)-set. Let u′ ∈ N(u) and v′ ∈ V (H) such that f(u′, v′) = max{f(u′, y) : y ∈
V (H)}. Consider the function f ′ defined as f ′(u, v1) = f ′(u, v2) = 1, f ′(u, y) = 0 for
every y ∈ V (H) \ {v1, v2}, f ′(u′, v′) = min{2, f(u′, v′) + 1}, f ′(u′, y) = 0 for every
y ∈ V (H) \ {v′}, and f ′(x, y) = f(x, y) for every x ∈ V (G) \ {u, u′} and y ∈ V (H).
Notice that f ′ is an IDF on G ◦ H with ω(f ′) ≤ ω(f) and |Rf ′ | < |Rf |, which is a
contradiction.

Therefore, Rf = ∅, and the result follows.

From Italian domination in lexicographic product graphs to ... 14
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Theorem 2.2. The following statements hold for any graph G with no isolated vertex and
any nontrivial graph H with γ

I
(H) 6= 3 or γ(H) 6= 3.

(i) If γ(H) = 1, then γ
I
(G ◦H) = γ(2,1,0)(G).

(ii) If γ2(H) = γ(H) = 2, then γ
I
(G ◦H) = γ(2,2,0)(G).

(iii) If γ2(H) > γ(H) = 2, then γ
I
(G ◦H) = γ(2,2,1)(G).

(iv) If γ(H) ≥ 3, then γ
I
(G ◦H) = γ(2,2,2)(G).

Proof. Let f(V0, V1, V2) be a γI(G◦H)-function which satisfies Lemma 2.1. Let f ′(X0, X1, X2)
be the function defined on G by X1 = {x ∈ V (G) : f(V (Hx)) = 1} and X2 = {x ∈
V (G) : f(V (Hx)) = 2}. Notice that γ

I
(G ◦H) = ω(f) = ω(f ′). We claim that f ′ is a

γ(w0,w1,w2)(G)-function. In order to prove this and find the values of w0, w1 and w2, we
differentiate the following three cases.

Case 1. γ(H) = 1. Assume that x ∈ X0. Since f(V (Hx)) = 0, for any y ∈ V (H) we
have that f(N(x, y) \ V (Hx)) ≥ 2. Thus, f ′(N(x)) ≥ 2. Now, assume that x ∈ X1,
and let (x, y) ∈ V1 be the only vertex in V (Hx) such that f(x, y) > 0. Since γ(H) = 1,
for any z ∈ V (H) \ {y}, we have that f(N(x, z) \ V (Hx)) ≥ 1, which implies that
f ′(N(x)) ≥ 1. Therefore, f ′ is a (2, 1, 0)-dominating function onG and, as a consequence,
γ

I
(G ◦H) = ω(f) = ω(f ′) ≥ γ(2,1,0)(G).

Now, for any γ(2,1,0)(G)-function g(W0,W1,W2) and any universal vertex v of H , the
function g′(W ′0,W

′
1,W

′
2), defined by W ′2 = W2 × {v} and W ′1 = W1 × {v}, is an IDF on

G ◦H . Therefore, γ
I
(G ◦H) ≤ ω(g′) = ω(g) = γ(2,1,0)(G).

Case 2. γ(H) = 2. As in Case 1 we conclude that f ′(N(x)) ≥ 2 for every x ∈ X0. Now,
assume that x ∈ X1, and let (x, y) ∈ V1 be the only vertex in V (Hx) such that f(x, y) >
0. Since γ(H) = 2, there exists a vertex z ∈ V (H) such that (x, z) ∈ V0 \ N(x, y).
Hence, f(N(x, z) \ V (Hx)) ≥ 2, which implies that f ′(N(x)) ≥ 2. Therefore, f ′ is a
(2, 2, 0)-dominating function on G and, as a consequence, γ

I
(G ◦H) = ω(f) = ω(f ′) ≥

γ(2,2,0)(G).
Now, if γ2(H) > γ(H) = 2, then for every x ∈ X2, there exists y ∈ V (H) such that

(x, y) ∈ V0 and f(N(x, y)∩V (Hx)) ≤ 1, which implies that f(N(x, y)\V (Hx)) ≥ 1, and
so f ′(N(x)) ≥ 1. Hence, f ′ is a (2, 2, 1)-dominating function onG and, as a consequence,
γ

I
(G ◦H) = ω(f) = ω(f ′) ≥ γ(2,2,1)(G).

On the other side, if γ2(H) = 2, then for any γ(2,2,0)(G)-function g(W0,W1,W2)
and any γ2(H)-set S = {v1, v2}, the function g′(W ′0,W

′
1,W

′
2), defined by W ′1 = (W1 ×

{v1}) ∪ (W2 × S) and W ′2 = ∅, is an IDF on G ◦H . Therefore, γ
I
(G ◦H) ≤ ω(g′) =

ω(g) = γ(2,2,0)(G).
Finally, if γ2(H) > γ(H) = 2 then we take a γ(2,2,1)(G)-function h(Y0, Y1, Y2) and

a γ(H)-set S′ = {v′1, v′2}, and construct a function h′(Y ′0 , Y
′
1 , Y

′
2) on G ◦ H by making

Y ′1 = (Y1 × {v′1}) ∪ (Y2 × S′) and Y ′2 = ∅. Obviously, h′ is an IDF on G ◦H , and so we
can conclude that γ

I
(G ◦H) ≤ ω(h′) = ω(h) = γ(2,2,1)(G).

Case 3. γ(H) ≥ 3. In this case, for every x ∈ V (G), there exists y ∈ V (H) such
that f(N [(x, y)] ∩ V (Hx)) = 0. Hence, f(N(x, y) \ V (Hx)) ≥ 2, which implies that
f ′(N(x)) ≥ 2 for every x ∈ V (G). Therefore, f ′ is a (2, 2, 2)-dominating function on G
and, as a consequence, γ

I
(G ◦H) = ω(f) = ω(f ′) ≥ γ(2,2,2)(G).

From Italian domination in lexicographic product graphs to ... 15
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On the other side, for any γ(2,2,2)(G)-function g(W0,W1,W2) and any v ∈ V (H), the
function g′(W ′0,W

′
1,W

′
2), defined by W ′2 = W2 × {v} and W ′1 = W1 × {v}, is an IDF on

G ◦H . Hence, γ
I
(G ◦H) ≤ ω(g′) = ω(g) = γ(2,2,2)(G).

According to the three cases above, the result follows.

The following result considers the case γ
I
(H) = γ(H) = 3.

Theorem 2.3. If H is a graph with γ
I
(H) = γ(H) = 3, then for any graph G,

γ
I
(G ◦H) = γ(2,2,2,0)(G).

Proof. Let f(V0, V1, V2) be a γI(G ◦ H)-function, and f ′(X0, X1, X2, X3) the function
defined on G by X1 = {x ∈ V (G) : f(V (Hx)) = 1}, X2 = {x ∈ V (G) : f(V (Hx)) =
2} and X3 = {x ∈ V (G) : f(V (Hx)) ≥ 3}. We claim that f ′ is a (2, 2, 2, 0)-dominating
function on G.

Let x ∈ X0 ∪X1 ∪X2. Since f(V (Hx)) ≤ 2 and γ(H) = 3, there exists y ∈ V (H)
such that f(N [(x, y)] ∩ V (Hx)) = 0. Thus, f ′(N(x)) ≥ 2 for every x ∈ X0 ∪X1 ∪X2,
which implies that f ′ is a (2, 2, 2, 0)-dominating function on G. Therefore, γ

I
(G ◦H) =

ω(f) ≥ ω(f ′) ≥ γ(2,2,2,0)(G).
On the other side, let h(Y0, Y1, Y2, Y3) be a γ(2,2,2,0)(G)-function, h1 a γ

I
(H)-function

and v ∈ V (H). We define a function g onG◦H by g(x, v) = h(x) for every x ∈ V (G)\Y3,
g(x, y) = 0 for every x ∈ V (G) \ Y3 and y ∈ V (H) \ {v}, and g(x, y) = h1(y) for every
(x, y) ∈ Y3 × V (H). A simple case analysis shows that g is an IDF on G ◦H . Therefore,
γ

I
(G ◦H) ≤ ω(g) = ω(h) = γ(2,2,2,0)(G).

2 1 1 2 2 2 2

Figure 2: This figure shows two γ(2,2,0)(G)-functions on the same graph. The function on
the left is also a γ(2,2,1)(G)-function.

The graph shown in Figure 2 satisfies 6 = γ(2,2,0)(G) = γ(2,2,1)(G) < 7 = γ(2,2,2,0)(G) <
γ(2,2,2)(G) = 8.

3 Preliminary results on w-domination
In this section, we fix the notation Z+ = {1, 2, 3, . . . } and N = Z+ ∪ {0} for the sets of
positive and nonnegative integers, respectively.

Throughout this section, we will repeatedly apply, without explicit mention, the follo-
wing necessary and sufficient condition for the existence of a w-dominating function.

Remark 3.1. LetG be a graph of minimum degree δ and letw = (w0, . . . , wl) ∈ Z+×Nl.
If w0 ≥ · · · ≥ wl, then there exists a w-dominating function on G if and only if wl ≤ lδ.

From Italian domination in lexicographic product graphs to ... 16
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Proof. Let w = (w0, . . . , wl) ∈ Z+ × Nl such that w0 ≥ · · · ≥ wl. If wl ≤ lδ, then the
function f , defined by f(v) = l for every v ∈ V (G), is a w-dominating function on G, as
Vl = V (G) and for any x ∈ Vl, f(N(x)) ≥ lδ ≥ wl.

Now, suppose that wl > lδ. If g is a w-dominating function on G, then for any vertex
v of degree δ we have g(N(v)) ≤ δl < wl ≤ wl−1 ≤ · · · ≤ w0, which is a contradiction.
Therefore, the result follows.

We will show that in general the w-domination numbers satisfy a certain monotonicity.
Given two integer vectors w = (w0, . . . , wl) and w′ = (w′0, . . . , w

′
l), we say that w ≺ w′ if

wi ≤ w′i for every i ∈ {0, . . . , l}. With this notation in mind, we can state the next remark
which is direct consequence of the definition of w-domination number.

Remark 3.2. Let G be a graph of minimum degree δ and let w = (w0, . . . , wl), w
′ =

(w′0, . . . , w
′
l) ∈ Z+ ×Nl such that wi ≥ wi+1 and w′i ≥ w′i+1 for every i ∈ {0, . . . , l− 1}

. If w ≺ w′ and w′l ≤ lδ, then every w′-dominating function is a w-dominating function
and, as a consequence,

γw(G) ≤ γw′(G).

We would emphasize the following remark on the specific cases of domination param-
eters considered in Section 2. Obviously, when we write γ(2,2,2)(G) or γ(2,2,1)(G), we are
assuming that G has minimum degree δ ≥ 1.

Remark 3.3. The following statements hold.

(i) γ
I
(G) = γ(2,0,0)(G) ≤ γ(2,1,0)(G) ≤ γ(2,2,0)(G) ≤ γ(2,2,1)(G) ≤ γ(2,2,2)(G).

(ii) If w2 ∈ {1, 2}, then γ(1,0,w2)(G) = γ(1,0,0)(G) = γ(G) and γ(1,1,w2)(G) =
γ(1,1,0)(G) = γt(G).

(iii) For any integer k ≥ 3, there exists an infinite familyHk of graphs such that for every
graph G ∈ Hk, γ

I
(G) = γ(2,0,0)(G) = γ(2,1,0)(G) = γ(2,2,0)(G) = γ(2,2,1)(G) =

γ(2,2,2)(G) = k.

(iv) There exists an infinite family of graphs such that γ
I
(G) < γ(2,1,0)(G) < γ(2,2,0)(G) <

γ(2,2,1)(G) < γ(2,2,2)(G).

In order to see that the remark above holds, we just have to construct families of graphs
satisfying (iii) and (iv), as (i) is a particular case of Remark 3.2 and (ii) is derived from
the definition of (w0, w1, w2)-domination number. In the case of (iii), we construct a fam-
ily Hk = {Gk,r : r ∈ Z+} as follows. Let k ≥ 3 be an integer, and let Nr be the
empty graph of order r. For any positive integer r we construct a graph Gk,r ∈ Hk
from a complete graph Kk and

(
k
2

)
copies of Nr, in such way that for each pair of dif-

ferent vertices {x, y} of Kk we choose one copy of Nr and connect every vertex of Nr
with x and y, making x and y vertices of degree (k − 1)(r + 1) in Gk,r. For instance,
the graph G3,1 is isomorphic to the graph G2 shown in Figure 1. It is readily seen that
γ

I
(Gk,r) = γ(2,2,2)(Gk,r) = k. On the other hand, in the case of (iv), we consider the

family of cycles of order n ≥ 10 with n ≡ 1 (mod 3). For these graphs we have that
γI(Cn) < γ(2,1,0)(Cn) < γ(2,2,0)(Cn) < γ(2,2,1)(Cn) < γ(2,2,2)(Cn). The specific values
of γ(w0,w1,w2)(Cn) will be given in Subsections 3.1, . . . ,3.4.

Next we show a class of graphs where γ(w0,...,wl)(G) = w0γ(G) whenever l ≥ w0 ≥
· · · ≥ wl. To this end, we need to introduce some additional notation and terminology.

From Italian domination in lexicographic product graphs to ... 17
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Given two graphs G1 and G2, the corona product graph G1 � G2 is the graph obtained
from G1 and G2, by taking one copy of G1 and |V (G1)| copies of G2 and joining by an
edge every vertex from the ith-copy ofG2 with the ith-vertex ofG1. For every x ∈ V (G1),
the copy of G2 in G1 �G2 associated to x will be denoted by G2,x. It is well known that
γ(G1 � G2) = |V (G1)| and, if G1 does not have isolated vertices, then γt(G1 � G2) =
γ(G1 �G2) = |V (G1)|.

Theorem 3.4. Let G ∼= G1 � G2 be a corona graph where G1 does not have isolated
vertices, and let w = (w0, . . . , wl) ∈ Z+ × Nl. If l ≥ w0 ≥ · · · ≥ wl and |V (G2)| ≥ w0,
then

γw(G) = w0γ(G).

Proof. Since G1 does not have isolated vertices, the upper bound γw(G) ≤ w0|V (G1)| =
w0γ(G) is straightforward, as the function f , defined by f(x) = w0 for every vertex
x ∈ V (G1) and f(x) = 0 for every x ∈ V (G) \ V (G1), is a w-dominating function on G.

On the other hand, let f be a γw(G)-function and suppose that there exists x ∈ V (G1)
such that f(V (G2,x)) + f(x) ≤ w0 − 1. In such a case, f(N [y]) ≤ w0 − 1 for every
y ∈ V (G2,x), which is a contradiction, as |V (G2)| ≥ w0. Therefore, γw(G) = ω(f) ≥
w0|V (G1)| = w0γ(G).

Proposition 3.5. Let G be a graph of order n. Let w = (w0, . . . , wl) ∈ Z+×Nl such that
w0 ≥ · · · ≥ wl. If G′ is a spanning subgraph of G with minimum degree δ′ ≥ wl

l , then

γw(G) ≤ γw(G′).

Proof. Let E− = {e1, . . . , ek} be the set of all edges of G not belonging to the edge set of
G′. Let G′0 = G and, for every i ∈ {1, . . . , k}, let Xi = {e1, . . . , ei} and G′i = G −Xi,
the edge-deletion subgraph of G induced by E(G) \Xi. Since any w-dominating function
on G′i is a w-dominating function on G′i−1, we can conclude that γw(G′i−1) ≤ γw(G′i).
Hence, γw(G) = γw(G′0) ≤ γw(G′1) ≤ · · · ≤ γw(G′k) = γw(G′).

From Proposition 3.5 we obtain the following result.

Corollary 3.6. Let G be a graph of order n and w = (w0, . . . , wl) ∈ Z+ × Nl such that
w0 ≥ · · · ≥ wl.

• If G is a Hamiltonian graph and wl ≤ 2l, then γw(G) ≤ γw(Cn).

• If G has a Hamiltonian path and wl ≤ l, then γw(G) ≤ γw(Pn).

In order to derive lower bounds on the w-domination number, we need to state the
following useful lemma.

Lemma 3.7. Let G be a graph with no isolated vertex, maximum degree ∆ and order n.
For any w-dominating function f(V0, . . . , Vl) on G such that w0 ≥ · · · ≥ wl,

∆ω(f) ≥ w0n+

l∑

i=1

(wi − w0)|Vi|.

From Italian domination in lexicographic product graphs to ... 18
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Proof. The result follows from the simple fact that the contribution of any vertex x ∈ V (G)

to the sum
∑

x∈V (G)

f(N(x)) equals deg(x)f(x), where deg(x) denotes the degree of x.

Hence,

∆ω(f) = ∆
∑

x∈V (G)

f(x)

≥
∑

x∈V (G)

deg(x)f(x)

=
∑

x∈V (G)

f(N(x))

≥ w0|V0|+
l∑

i=1

wi|Vi|

= w0n+
l∑

i=1

(wi − w0)|Vi|.

Therefore, the result follows.

Corollary 3.8. The following statements hold for k, l ∈ Z+ and a graph G with minimum
degree δ ≥ 1, maximum degree ∆ and order n.

(i) If k ≤ lδ + 1 and w = (k + l − 1, k + l − 2, . . . , k − 1︸ ︷︷ ︸
l+1

), then γw(G) ≥
⌈

(k+l−1)n
∆+1

⌉

(ii) If k ≤ lδ and w = (k, . . . , k︸ ︷︷ ︸
l+1

), then γw(G) ≥
⌈
kn
∆

⌉

(iii) If k ≤ lδ + 1 and w = (k, k − 1, . . . , k − 1︸ ︷︷ ︸
l+1

), then γw(G) ≥
⌈
kn

∆+1

⌉

(iv) Let w = (w0, . . . , wl) with w0 ≥ · · · ≥ wl. If lδ ≥ wl, then γw(G) ≥
⌈
w0n

∆+w0

⌉
.

In the next subsections we shall show that lower bounds above are tight. Corollary 3.8
implies the following known bounds.

γ(G) ≥
⌈

n

∆ + 1

⌉
, γt(G) ≥

⌈ n
∆

⌉
, γ

I
(G) ≥

⌈
2n

∆ + 2

⌉
, γtI(G) ≥

⌈
2n

∆ + 1

⌉
,

γk(G) ≥
⌈

kn

∆ + k

⌉
, γ×k(G) ≥

⌈
kn

∆ + 1

⌉
, γ{k} ≥

⌈
kn

∆ + 1

⌉
and γ×k,t(G) ≥

⌈
kn

∆

⌉
.

It is readily seen that γ(w0,...,wl)(G) = 1 if and only if w0 = 1, w1 = 0 and γ(G) = 1.
Next we characterize the graphs with γ(w0,...,wl)(G) = 2.

Theorem 3.9. Let w = (w0, . . . , wl) ∈ Z+ × Nl such that w0 ≥ · · · ≥ wl. For a graph
G of order at least three, γ(w0,...,wl)(G) = 2 if and only if one of the following conditions
holds.

From Italian domination in lexicographic product graphs to ... 19
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(i) w2 = 0, γ(G) = 1 and either w0 = 2 or w0 = w1 = 1.

(ii) w0 = 1, w1 = 0 and γ(G) = 2.

(iii) w0 = 1, w1 = 1 and γt(G) = 2.

(iv) w0 = 2, w1 = 0 and γ2(G) = 2.

(v) w0 = 2, w1 = 1 and γ×2(G) = 2.

Proof. Assume first that γ(w0,...,wl)(G) = 2 and let f(V0, . . . , Vl) be a γ(w0,...,wl)(G)-
function. Notice that w0 ∈ {1, 2} and |V2| ∈ {0, 1}. If |V2| = 1, then w2 = 0 and Vi = ∅
for every i 6= 0, 2. Hence, γ(G) = 1 and either w0 = 2 or w0 = w1 = 1. Therefore, (i)
follows.

Now we consider the case V2 = ∅. Notice that V1 is a dominating set of cardinality
two, w1 ∈ {0, 1} and Vi = ∅ for every i 6= 0, 1.

Assume first that w0 = 1 and w1 = 0. If γ(G) = 1, then γ(w0,...,wl)(G) = 1, which
is a contradiction. Hence, γ(G) = 2 and so (ii) follows. For w0 + w1 ≥ 2 we have the
following possibilities.

If w0 = w1 = 1, then V1 is a total dominating set of cardinality two, and so γt(G) = 2.
Therefore, (iii) follows.

If w0 = 2 and w1 = 0, then V1 is a 2-dominating set of cardinality two, which implies
that γ2(G) = 2. Therefore, (iv) follows.

If w0 = 2 and w1 = 1, then V1 is a double dominating set of cardinality two, and this
implies that γ×2(G) = 2. Therefore, (v) follows.

Conversely, if one of the five conditions holds, then it is easy to check that γ(w0,...,wl)(G) =
2, which completes the proof.

In order to establish the following result, we need to define the following parameter.

ν(w0,...,wl)(G) = max{|V0| : f(V0, . . . , Vl) is a γ(w0,...,wl)(G)-function.}

In particular, for l = 1 and a graph G of order n, we have that ν(w0,w1)(G) = n −
γ(w0,w1)(G).

Theorem 3.10. Let G be a graph of minimum degree δ and order n. The following state-
ments hold for any (w0, . . . , wl) ∈ Z+ × Nl with w0 ≥ · · · ≥ wl.

(i) If there exists i ∈ {1, . . . , l − 1} such that iδ ≥ wi, then

γ(w0,...,wl)(G) ≤ γ(w0,...,wi)(G).

(ii) If l ≥ i+ 1 ≥ w0, then

γ(w0,...,wi,0,...,0)(G) ≤ (i+ 1)γ(G).

(iii) Let k, i ∈ Z+ such that l ≥ ki, and let (w′0, w
′
1, . . . , w

′
i) ∈ Z+ × Nl. If iδ ≥ w′i and

wkj = kw′j for every j ∈ {0, 1, . . . , i}, then

γ(w0,...,wl)(G) ≤ kγ(w′0,...,w
′
i)

(G).
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(iv) Let k ∈ Z+ and β1, . . . , βk ∈ Z+. If lδ ≥ k + wl > k and w0 + k ≥ β1 ≥ · · · ≥
βk ≥ w1 + k, then

γ(w0+k,β1,...,βk,w1+k,...,wl+k)(G) ≤ γ(w0,...,wl)(G) + k(n− ν(w0,...,wl)(G)).

(v) If lδ ≥ wl ≥ l ≥ 2, then

γ(w0,...,wl)(G) ≤ lγ(w0−l+1,wl−l+1)(G).

(vi) If δ ≥ 1, w0 ≤ l − 1 and wl−1 ≥ 1, then

γ(w0,...,wl−2,1)(G) ≤ γ(w0,...,wl−1,0)(G).

Proof. If there exists i ∈ {1, . . . , l − 1} such that iδ ≥ wi, then for any γ(w0,...,wi)(G)-
function f(V0, . . . , Vi) we define a (w0, . . . , wl)-dominating function g(W0, . . . ,Wl) by
Wj = Vj for every j ∈ {0, . . . , i} and Wj = ∅ for every j ∈ {i + 1, . . . , l}. Hence,
γ(w0,...,wl)(G) ≤ ω(g) = ω(f) = γ(w0,...,wi)(G). Therefore, (i) follows.

Now, assume l ≥ i + 1 ≥ w0. Let S be a γ(G)-set. Let f be the function defined
by f(v) = i + 1 for every v ∈ S and f(v) = 0 for the remaining vertices. Since f
is a (w0, . . . , wi, 0 . . . , 0)-dominating function, we conclude that γ(w0,...,wi,0...,0)(G) ≤
ω(f) = (i+ 1)|S| = (i+ 1)γ(G), which implies that (ii) follows.

In order to prove (iii), assume that l ≥ ki, iδ ≥ w′i and wkj = kw′j for every
j ∈ {0, . . . , i}. Let f ′(V ′0 , . . . , V

′
i ) be a γ(w′0,...,w

′
i)

(G)-function. We construct a func-
tion f(V0, . . . , Vl) as f(v) = kf ′(v) for every v ∈ V (G). Hence, Vkj = V ′j for every
j ∈ {0, . . . , i}, while Vj = ∅ for the remaining cases. Thus, for every v ∈ Vkj with
j ∈ {0, . . . , i} we have that f(N(v)) = kf ′(N(v)) ≥ kw′j = wkj , which implies that
f is a (w0, . . . , wl)-dominating function, and so γ(w0,...,wl)(G) ≤ ω(f) = kω(f ′) =
kγ(w′0,...,w

′
i)

(G). Therefore, (iii) follows.
Now, assume that lδ ≥ k + wl > k and w0 + k ≥ β1 ≥ · · · ≥ βk ≥ w1 + k. Let

g(W0, . . . ,Wl) be a γ(w0,...,wl)(G)-function. We construct a function f(V0, . . . , Vl+k) as
f(v) = g(v) + k for every v ∈ V (G) \ W0 and f(v) = 0 for every v ∈ W0. Hence,
Vj+k = Wj for every j ∈ {1, . . . , l}, V0 = W0 and Vj = ∅ for the remaining cases. Thus,
if v ∈ Vj+k and j ∈ {1, . . . , l}, then f(N(v)) ≥ g(N(v)) + k ≥ wj + k, and if v ∈ V0,
then f(N(v)) ≥ g(N(v))+k ≥ w0 +k. This implies that f is a (w0 +k, β1, . . . , βk, w1 +
k, . . . , wl + k)-dominating function, and so γ(w0+k,β1,...,βk,w1+k,...,wl+k)(G) ≤ ω(f) =

ω(g)+k
∑l
j=1 |Wj | = γ(w0,...,wl)(G)+k(n−|W0|) ≤ γ(w0,...,wl)(G)+k(n−ν(w0,...,wl)(G)).

Therefore, (iv) follows.
Furthermore, if lδ ≥ wl ≥ l ≥ 2, then by applying (iv) for k = l − 1, we deduce that

γ(w0,...,wl)(G) ≤ γ(w0−l+1,wl−l+1)(G)+(l−1)(n−ν(w0−l+1,wl−l+1)(G)) = lγ(w0−l+1,wl−l+1)(G).

Therefore, (v) follows.
From now on, let δ ≥ 1, w0 ≤ l − 1 and wl−1 ≥ 1. Let f(V0, . . . , Vl) be a

γ(w0,...,wl−1,0)(G)-function. Assume first Vl = ∅. Since wl−1 ≥ 1, we have that f is a
(w0, . . . , wl−2, 1)-dominating function onG, which implies that (vi) follows. Assume now
that there exists v ∈ Vl. If f(N(v)) ≥ l− 1, then the function f ′, defined by f ′(v) = l− 1
and f ′(x) = f(x) for every x ∈ V (G) \ {v}, is a (w0, . . . , wl−1, 0)-dominating function
with ω(f ′) < ω(f), which is a contradiction. Hence, f(N(v)) ≤ l − 2 for every v ∈ Vl.
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Since δ ≥ 1, for each vertex x ∈ Vl, we fix one vertex x′ ∈ N(x) and we form a set S
from them such that |S| ≤ |Vl|. Let g be the function defined by g(x) = f(x) + 1 for
any x ∈ S, g(y) = l − 1 for any y ∈ Vl, and g(z) = f(z) for the remaining vertices of
G. Since g(N(x)) ≥ l − 1 ≥ wi for every x ∈ S and i ∈ {0, . . . , l − 2}, g(N(y)) ≥ 1
for every y ∈ Vl−1 ∪ Vl, and g(N(z)) ≥ wi for every z ∈ Vi \ (S ∪ Vl−1 ∪ Vl) and
i ∈ {0, . . . , l − 2}, we conclude that g is a (w0, . . . , wl−2, 1)-dominating function on G.
Therefore, γ(w0,...,wl−2,1)(G) ≤ ω(g) ≤ ω(f) = γ(w0,...,wl−1,0)(G), which completes the
proof of (vi).

In the next subsections we consider several applications of Theorem 3.10 where we
show that the bounds are tight. For instance, the following particular cases will be of
interest.

Corollary 3.11. LetG be a graph of minimum degree δ, and let k, l, w2, . . . , wl ∈ Z+ with
k ≥ w2 ≥ · · · ≥ wl.

(i) If δ ≥ k and w = (k + 1, k, w2, . . . , wl), then γw(G) ≤ γ×k(G).

(ii) If δ ≥ k and w = (k, k, w2, . . . , wl), then γw(G) ≤ γ×k,t(G).

(iii) If lδ ≥ k ≥ l ≥ 2 and w = (k + 1, k, . . . , k︸ ︷︷ ︸
l+1

), then γw(G) ≤ lγ×(k−l+2)(G).

(iv) If lδ ≥ k ≥ l ≥ 2 and w = (k, k, . . . , k︸ ︷︷ ︸
l+1

), then γw(G) ≤ lγ×(k−l+1),t(G).

(v) If l ≥ k, δ ≥ 1 and w = (k, . . . , k︸ ︷︷ ︸
l+1

), then γw(G) ≤ kγt(G).

Proof. If δ ≥ k, then by Theorem 3.10 (i) we conclude that (i) and (ii) follows.
If lδ ≥ k ≥ l ≥ 2, then by Theorem 3.10 (v) we deduce that

γ(k + 1, k, . . . , k︸ ︷︷ ︸
l+1

)(G) ≤ lγ(k−l+2,k−l+1)(G) = lγ×(k−l+2)(G).

Hence, (iii) follows. By analogy we derive (iv), as γ(k−l+1,k−l+1)(G) = lγ×(k−l+1),t(G).
Finally, if l ≥ k and δ ≥ 1, then by Theorem 3.10 (iii) we deduce that

γ(k, . . . , k︸ ︷︷ ︸
l+1

)(G) ≤ kγ(1,1)(G) = kγt(G).

Therefore, (v) follows.

3.1 Preliminary results on (2, 2, 2)-domination

Theorem 3.12. For any graph G with no isolated vertex, order n and maximum degree ∆,
⌈

2n

∆

⌉
≤ γ(2,2,2)(G) ≤ 2γt(G).

Furthermore, if G has minimum degree δ ≥ 2, then

γ(2,2,2)(G) ≤ γ×2,t(G).
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Proof. From Corollary 3.8 we deduce the lower bound. The upper bound γ(2,2,2)(G) ≤
2γt(G) follows by Corollary 3.11 (v), while, if δ ≥ 2, then we apply Corollary 3.11 (ii) to
deduce that γ(2,2,2)(G) ≤ γ×2,t(G). Therefore, the result follows.

The bounds above are tight. For instance, for the graphs G2 and G3 shown in Figure 1
we have that

⌈
2n
∆

⌉
= γ(2,2,2)(G2) = γ×2,t(G2) = 3 and γ(2,2,2)(G3) = 2γt(G3) = 8.

Notice that every graph Gk,r belonging to the infinite familyHk constructed after Remark
3.3 satisfies the equality γ(2,2,2)(Gk,r) = γ×2,t(Gk,r) = k. Furthermore, from Theorem
3.4 we have that for any corona graph G ∼= G1 � G2, where G1 does not have isolated
vertices, γ(2,2,2)(G) = 2γ(G) = 2γt(G).

Notice that by theorem 3.12 we have that γ(2,2,2)(G) ≥
⌈

2n
∆

⌉
≥ 3 for every graph G

with no isolated vertex. Next we characterize all graphs with γ(2,2,2)(G) = 3. To this end,
we need to establish the following lemma.

Lemma 3.13. For a graph G, the following statements are equivalent.

(i) γ(2,2,2)(G) = γ×2,t(G).

(ii) There exists a γ(2,2,2)(G)-function f(V0, V1, V2) such that V2 = ∅.

Proof. If γ(2,2,2)(G) = γ×2,t(G), then for any γ×2,t(G)-setD, the function g(W0,W1,W2),
defined byW1 = D andW0 = V (G)\D, is a γ(2,2,2)(G)-function. Therefore, (ii) follows.

Conversely, if there exists a γ(2,2,2)(G)-function f(V0, V1, V2) such that V2 = ∅, then
V1 is a double total dominating set of G, and so γ×2,t(G) ≤ |V1| = ω(f) = γ(2,2,2)(G).
Therefore, Theorem 3.12 leads to γ(2,2,2)(G) = γ×2,t(G).

Theorem 3.14. For a graph G, the following statements are equivalent.

(i) γ(2,2,2)(G) = 3.

(ii) γ×2,t(G) = 3.

Proof. Assume first that γ(2,2,2)(G) = 3, and let f(V0, V1, V2) be a γ(2,2,2)(G)-function.
Suppose that there exists u ∈ V2. Since f(N(u)) ≥ 2, we deduce that γ(2,2,2)(G) ≥ 4,
which is a contradiction. Hence, V2 = ∅ and by Lemma 3.13 we conclude that γ×2,t(G) =
3.

Conversely, if γ×2,t(G) = 3, then G has minimum degree δ ≥ 2 and so Theorem 3.12
leads to 3 ≤

⌈
2n
∆

⌉
≤ γ(2,2,2)(G) ≤ γ×2,t(G) = 3. Therefore, γ(2,2,2)(G) = 3.

Next we consider the case of graphs with γ(2,2,2)(G) = 4.

Theorem 3.15. For a graph G, γ(2,2,2)(G) = 4 if and only if at least one of the following
conditions holds.

(i) γ×2,t(G) = 4.

(ii) γt(G) = 2 and G has minimum degree δ = 1.

(iii) γt(G) = 2 and γ×2,t(G) ≥ 4.

Proof. Assume γ(2,2,2)(G) = 4. Notice that G does not have isolated vertices. Let
f(V0, V1, V2) be a γ(2,2,2)(G)-function. If V2 = ∅, then by Lemma 3.13 we obtain that
γ×2,t(G) = γ(2,2,2)(G) = 4, and so (i) follows.
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From now on, assume that |V2| ∈ {1, 2}. If |V2| = 2, then V1 = ∅ and, as a result, V2

is a total dominating set ofG, which implies that γt(G) = 2. On the other side, if |V2| = 1,
then |V1| = 2 and both vertices belonging to V1 are adjacent to the vertex of weight two,
and every v ∈ V0 satisfies N(v)∩V2 6= ∅ or V1 ⊆ N(v). This implies that the union of V2

with a singleton subset of V1 forms a total dominating set ofG, and again γt(G) = 2. Now,
if δ ≥ 2, then Theorem 3.12 leads to 4 = γ(2,2,2)(G) ≤ γ×2,t(G). Hence, by Theorem
3.14 we conclude that either δ = 1 or γ×2,t(G) ≥ 4. Therefore, either (ii) or (iii) holds.

Conversely, if γ×2,t(G) = 4, then G has minimum degree δ ≥ 2 and by Theorem 3.12
we have that 3 ≤ γ(2,2,2)(G) ≤ 4. Hence, by Theorem 3.14 we deduce that γ(2,2,2)(G) =
4. Finally, if γt(G) = 2, then Theorem 3.12 leads to 3 ≤ γ(2,2,2)(G) ≤ 4. Therefore, if
δ = 1 or γ×2,t(G) ≥ 4, then Theorem 3.14 leads to γ(2,2,2)(G) = 4.

Theorem 3.12 implies the next result.

Corollary 3.16. For any integer n ≥ 3,

γ(2,2,2)(Cn) = n.

In order to give the value of γ(2,2,2)(Pn), we recall the following well-known result.

Proposition 3.17. [14] For any integer n ≥ 3,

γt(Pn) =





n
2 if n ≡ 0 (mod 4),

n+1
2 if n ≡ 1, 3 (mod 4),

n
2 + 1 if n ≡ 2 (mod 4).

Lemma 3.18. IfPn = u1u2 . . . un is a path of order n ≥ 6, then there exists a γ(2,2,2)(Pn)-
function f such that f(un) = f(un−3) = 0 and f(un−1) = f(un−2) = 2.

Proof. Let f(V0, V1, V2) be a γ(2,2,2)(Pn)-function such that |V2| is maximum. Since un
is a leaf, f(un−1) = 2 . Notice that f(un) + f(un−2) ≥ 2. Hence, we can assume that
f(un−2) = 2 and f(un) = 0. Now, if f(un−3) > 0, then we can define a (2, 2, 2)-
dominating function f ′ by f ′(un−3) = 0, f ′(un−5) = min{2, f(un−5) + f(un−3)} and
f ′(ui) = f(ui) for the remaining cases. Since ω(f ′) ≤ ω(f) = γ(2,2,2)(Pn), either f ′

is a γ(2,2,2)(Pn)-function with f ′(un−3) = 0 or f(un−3) = 0. In both cases the result
follows.

Proposition 3.19. For any integer n ≥ 3,

γ(2,2,2)(Pn) = 2γt(Pn) =





n if n ≡ 0 (mod 4),

n+ 1 if n ≡ 1, 3 (mod 4),

n+ 2 if n ≡ 2 (mod 4).

Proof. Since Theorem 3.12 leads to γ(2,2,2)(Pn) ≤ 2γt(Pn), we only need to prove
that γ(2,2,2)(Pn) ≥ 2γt(Pn). We proceed by induction on n. It is easy to check that
γ(2,2,2)(Pn) = 2γt(Pn) for n = 3, 4, 5, 6. This establishes the base case. Now, we assume
that n ≥ 7 and γ(2,2,2)(Pk) ≥ 2γt(Pk) for k < n. Let f(V0, V1, V2) be a γ(2,2,2)(Pn)-
function which satisfies Lemma 3.18, and let f ′ be the restriction of f to V (Pn−4), where
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Pn = u1u2 . . . un and Pn−4 = u1u2 . . . un−4. Hence, by applying the induction hypothe-
sis,

γ(2,2,2)(Pn) = ω(f) = ω(f ′) + 4 ≥ γ(2,2,2)(Pn−4) + 4 ≥ 2γt(Pn−4) + 4 ≥ 2γt(Pn).

To conclude the proof we apply Proposition 3.17.

3.2 Preliminary results on (2, 2, 1)-domination

Theorem 3.20. For any graph G with no isolated vertex, order n and maximum degree ∆,
⌈

2n+ γt(G)

∆ + 1

⌉
≤ γ(2,2,1)(G) ≤ min{3γ(G), 2γt(G)}.

Furthermore, if G has minimum degree δ ≥ 2, then

γ(2,2,1)(G) ≤ γ×2,t(G).

Proof. In order to prove the upper bound γ(2,2,1)(G) ≤ 2γt(G), we apply Remark 3.2 and
Theorem 3.12, i.e., γ(2,2,1)(G) ≤ γ(2,2,2) ≤ 2γt(G).

Now, let S be a γ(G)-set. Since G does not have isolated vertex, for each vertex
x ∈ S such that N(x) ∩ S = ∅, we fix one vertex x′ ∈ N(x) and we form a set S′

from them. Hence, S ∪ S′ is a total dominating set and |S ∪ S′| = |S| + |S′| ≤ 2γ(G).
Notice that the function g(X0, X1, X2) defined by X2 = S and X1 = S′, is a (2, 2, 1)-
dominating function on G. Thus, γ(2,2,1)(G) ≤ ω(g) = 2|S| + |S′| ≤ 3γ(G), and so
γ(2,2,1)(G) ≤ min{2γt(G), 3γ(G)}.

On the other side, if G has minimum degree δ ≥ 2, then by Corollary 3.11 (ii) we have
that γ(2,2,1)(G) ≤ γ×2,t(G).

In order to prove the lower bound, let f(V0, V1, V2) be a γ(2,2,1)(G)-function. Since
V1 ∪ V2 is a total dominating set, γt(G) ≤ |V1|+ |V2|. Furthermore, from Lemma 3.7 we
have, 2n − |V2| ≤ ∆γ(2,2,1)(G), which implies that 2n + γt(G) ≤ 2n + |V1| + |V2| ≤
∆γ(2,2,1)(G)+|V1|+2|V2| = (∆+1)γ(2,2,1)(G). Therefore, the lower bound follows.

The bounds above are tight. For instance, the graph shown in Figure 3 satisfies γ(2,2,1)(G) =
3γ(G) = 9. Next we show that the remaining two bounds are also achieved.

2 2 21 1 1

3 3 3

Figure 3: This figure shows a γ(2,2,1)(G)-function and a γ(2,2,2,0)(G)-function on the
same graph.
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Corollary 3.21. Let G be a graph with no isolated vertex, order n and maximum degree
∆. If γt(G) < n+∆+1

∆+1/2 , then

γ(2,2,1)(G) = 2γt(G) or γ(2,2,1)(G) =

⌈
2n+ γt(G)

∆ + 1

⌉
.

Proof. If γ(2,2,1)(G) 6=
⌈

2n+γt(G)
∆+1

⌉
and γ(2,2,1)(G) 6= 2γt(G), then by Theorem 3.20 we

deduce that
⌈

2n+γt(G)
∆+1

⌉
+ 1 ≤ γ(2,2,1)(G) ≤ 2γt(G) − 1, which implies that γt(G) ≥

n+∆+1
∆+1/2 . Therefore, the result follows.

For the graphs G2 and G3 illustrated in Figure 1 we have that γt(G2) = 2 < 22
9 =

n+∆+1
∆+1/2 and γt(G3) = 4 < 32

7 = n+∆+1
∆+1/2 . Notice that, γ(2,2,1)(G2) = 3 =

⌈
2n+γt(G2)

∆+1

⌉

and γ(2,2,1)(G3) = 8 = 2γt(G3).
Below we characterize the graphs with γ(2,2,1)(G) = 3.

Theorem 3.22. For a graph G with no isolated vertex, the following statements are equiv-
alent.

(i) γ(2,2,1)(G) = 3.

(ii) γ(G) = 1 or γ×2,t(G) = 3.

Proof. Assume first that γ(2,2,1)(G) = 3, and let f(V0, V1, V2) be a γ(2,2,1)(G)-function.
If V2 6= ∅, then V2 is a dominating set of cardinality one. Hence, γ(G) = 1. Now, if
V2 = ∅, then V1 is a double total dominating set of cardinality three. Thus, γ×2,t(G) = 3.

On the other side, by Theorem 3.20 we have that 3 ≤
⌈

2n+γt(G)
∆+1

⌉
≤ γ(2,2,1)(G) ≤

3γ(G). Hence, if γ(G) = 1, then γ(2,2,1)(G) = 3. Now, if γ×2,t(G) = 3, then G has
minimum degree δ ≥ 2 and by Theorem 3.20 we have that γ(2,2,1)(G) ≤ γ×2,t(G) = 3.
Therefore, γ(2,2,1)(G) = 3.

Next we consider the case of graphs with γ(2,2,1)(G) = 4.

Theorem 3.23. For a graph G, the following statements are equivalent.

(i) γ(2,2,1)(G) = 4.

(ii) γt(G) = γ(G) = 2 or γ×2,t(G) = 4.

Proof. Assume γ(2,2,1)(G) = 4. Notice that G does not have isolated vertices and, by
Theorem 3.20, we have that γ(G) ≥ 2. Let f(V0, V1, V2) be a γ(2,2,1)(G)-function. If V2 =
∅, then V1 is a double total dominating set of cardinality four. Hence, 3 ≤ γ×2,t(G) ≤
|V1| = 4, and Theorem 3.22 implies that γ×2,t(G) = 4.

From now on, assume that |V2| ∈ {1, 2}. If |V2| = 2, then V1 = ∅ and, as a result, V2 is
a total dominating set of G, which implies that γt(G) = γ(G) = 2. Now, if |V2| = 1, then
|V1| = 2 and both vertices belonging to V1 are adjacent to the vertex of weight two, and
every v ∈ V0 satisfiesN(v)∩V2 6= ∅ or V1 ⊆ N(v). This implies that the union of V2 with
a singleton subset of V1 forms a total dominating set of G, and again γt(G) = γ(G) = 2.

Conversely, if γ×2,t(G) = 4, then G has minimum degree δ ≥ 2 and by Theorem 3.20
we have that 3 ≤ γ(2,2,1)(G) ≤ γ×2,t(G) = 4. Hence, by Theorem 3.22 we deduce that
γ(2,2,1)(G) = 4. Finally, if γt(G) = 2, then Theorem 3.20 leads to 3 ≤ γ(2,2,1)(G) ≤ 4.
Therefore, if γ(G) = 2 then by Theorem 3.22 we conclude that γ(2,2,1)(G) = 4.
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Lemma 3.24. For any integer n ≥ 3,

γ(2,2,1)(Pn) ≤
{

n−
⌊
n
7

⌋
+ 1 if n ≡ 1, 2 (mod 7),

n−
⌊
n
7

⌋
otherwise.

Proof. First we show how to construct a (2, 2, 1)-dominating function f on Pn for n ∈
{2, . . . , 8}.

• n = 2: f(u1) = 2 and f(u2) = 1.

• n = 3: f(u1) = 0, f(u2) = 2 and f(u3) = 1.

• n = 4: f(u1) = f(u4) = 0 and f(u2) = f(u3) = 2.

• n = 5: f(u1) = f(u5) = 0, f(u2) = f(u4) = 2 and f(u3) = 1.

• n = 6: f(u1) = f(u6) = 0, f(u2) = f(u5) = 2 and f(u3) = f(u4) = 1.

• n = 7: f(u1) = f(u4) = f(u7) = 0, f(u2) = f(u6) = 2 and f(u3) = f(u5) = 1.

• n = 8: f(u1) = f(u4) = f(u8) = 0, f(u2) = f(u6) = f(u7) = 2, f(u3) =
f(u5) = 1.

We now proceed to describe the construction of f for any n = 7q + r, where q ≥ 1 and
0 ≤ r ≤ 6. We partition V (Pn) = {u1, . . . , un} into q sets of cardinality 7 and for r ≥ 1
one additional set of cardinality r, in such a way that the subgraph induced by all these sets
are paths.

For any r 6= 1, the restriction of f to each of these q paths of length 7 corresponds to
the weights associated above with P7, while for the path of length r (if any) we take the
weights associated above with Pr. The case r = 1 and q ≥ 2 is slightly different, as for the
first q − 1 paths of length 7 we take the weights associated above with P7 and for the last
8 vertices of Pn we take the weights associated above with P8.

Notice that, for n ≡ 1, 2 (mod 7), we have that γ(2,2,1)(Pn) ≤ ω(f) = 6q + r + 1 =

n−
⌊
n
7

⌋
+1, while for n 6≡ 1, 2 (mod 7) we have γ(2,2,1)(Pn) ≤ ω(f) = 6q+r = n−

⌊
n
7

⌋
.

Therefore, the result follows.

Lemma 3.25. Let P7 = x1 . . . x7 be a subgraph of Cn and X = {x1, . . . , x7}. If f is a
(2, 2, 1)-dominating function on Cn, then

f(X) ≥ 6.

Proof. Notice that f({x1, x2, x3}) ≥ 2 and f({x4, x5, x6, x7}) ≥ 3 as f is a (2, 2, 1)-
dominating function. If f({x1, x2, x3}) ≥ 3, then we are done. Hence, we assume that
f({x1, x2, x3}) = 2. In this case, it is not difficult to deduce that f({x4, x5, x6, x7}) ≥ 4,
which implies that f(X) ≥ 6, as desired. Therefore, the proof is complete.

Lemma 3.26. For any integer n ≥ 3,

γ(2,2,1)(Cn) ≥
{

n− bn7 c+ 1 if n ≡ 1, 2 (mod 7),

n− bn7 c otherwise.
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Proof. It is easy to check that γ(2,2,1)(Cn) = n for every n ∈ {3, 4, 5, 6}. Now, let
n = 7q + r, with 0 ≤ r ≤ 6 and q ≥ 1. Let f(V0, V1, V2) be a γ(2,2,1)(Cn)-function.

If r = 0, then by Lemma 3.25 we have that ω(f) ≥ 6q = n − bn7 c. From now on we
assume that r ≥ 1. By Proposition 3.5 and Lemma 3.24 we deduce that γ(2,2,1)(Cn) ≤
γ(2,2,1)(Pn) < n, which implies that V2 6= ∅, otherwise there exists u ∈ V (Cn) = V0∪V1

such that N(u) ∩ V0 6= ∅ and so |N(u) ∩ V1| ≤ 1, which is a contradiction. Let x ∈ V2

and, without loss of generality, we can label the vertices of Cn in such a way that x = u1,
and u2 ∈ V1 ∪ V2 whenever r ≥ 2. We partition V (Cn) into X = {u1, . . . , ur} and
Y = {ur+1, . . . , un}. Notice that Lemma 3.25 leads to f(Y ) ≥ 6q.

Now, if r ∈ {1, 2}, then f(X) ≥ r + 1, which implies that ω(f) ≥ r + 1 + 6q =
n− bn7 c+ 1. Analogously, if r = 3, then f(X) ≥ r and so ω(f) ≥ r + 6q = n− bn7 c.

Finally, if r ∈ {4, 5, 6}, then as f is a (2, 2, 1)-dominating function we deduce that
f(X) ≥ r, which implies that ω(f) ≥ r + 6q = n− bn7 c.

The following result is a direct consequence of Proposition 3.5 and Lemmas 3.24 and
3.26.

Proposition 3.27. For any integer n ≥ 3,

γ(2,2,1)(Cn) = γ(2,2,1)(Pn) =

{
n− bn7 c+ 1 if n ≡ 1, 2 (mod 7),

n− bn7 c otherwise.

3.3 Preliminary results on (2, 2, 0)-domination

Theorem 3.28. For any graph G with no isolated vertex, order n and maximum degree ∆,
⌈

2n

∆ + 1

⌉
≤ γ(2,2,0)(G) ≤ 2γ(G).

Furthermore, if G has minimum degree δ ≥ 2, then

γ(2,2,0)(G) ≤ γ×2,t(G).

Proof. The upper bound γ(2,2,0)(G) ≤ ω(g) = 2γ(G) is derived by we applying Theo-
rem 3.10 (ii) for i = 1 and l = 2. Furthermore, if G has minimum degree δ ≥ 2, then by
Corollary 3.11 (ii) we have that γ(2,2,0)(G) ≤ γ×2,t(G).

Now, let f(V0, V1, V2) be a γ(2,2,0)(G)-function. From Lemma 3.7 we deduce that
2(n − |V2|)) ≤ ∆γ(2,2,0)(G), which implies that 2n ≤ 2n + |V1| ≤ (∆ + 1)γ(2,2,0)(G).
Therefore, the result follows.

Theorem 3.28 implies that, if γ(G) = n
∆+1 , then γ(2,2,0)(G) = 2n

∆+1 . It is easy to
see that a graph satisfies γ(G) = n

∆+1 if and only if there exists a γ(G)-set S which is a
2-packing1 and every vertex in S has degree ∆. The upper bound γ(2,2,0)(G) ≤ 2γ(G)
is achieved for the graph G shown in Figure 2, which satisfies γ(2,2,0)(G) = 2γ(G) = 6.
Furthermore, by Theorem 3.4 we have that for any corona graph G ∼= G1 �G2, where G1

does not have isolated vertices, γ(2,2,0)(G) = 2γ(G).
As shown in Theorem 3.9, for a graph G, γ(2,2,0)(G) = 2 if and only if γ(G) = 1.

Now we consider the case γ(2,2,0)(G) = 3.

1A set S ⊆ V (G) is a 2-packing if N [u] ∩N [v] = ∅ for every pair of different vertices u, v ∈ S.
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Theorem 3.29. For a graph G, γ(2,2,0)(G) = 3 if and only if γ×2,t(G) = γ(G) + 1 = 3.

Proof. Assume γ(2,2,0)(G) = 3. By Theorem 3.9 we have that γ(G) ≥ 2. Let f(V0, V1, V2)
be a γ(2,2,0)(G)-function. If |V2| = 1 then |V1| = 1, and as f is a (2, 2, 0)-dominating
function we deduce that N [V2] = V (G), i.e., γ(G) = 1, which is a contradiction. Thus,
V2 = ∅ and |V1| = 3. Notice that V1 is a double total dominating set and since γ(G) ≥ 2,
it follows that 3 ≤ γ(G) + 1 ≤ γ×2,t(G) ≤ |V1| = 3. Hence, γ×2,t(G) = γ(G) + 1 = 3,
as required.

Conversely, assume γ×2,t(G) = γ(G) + 1 = 3. Since G has minimum degree at least
two, Theorem 3.28 leads to 2 ≤ γ(2,2,0)(G) ≤ γ×2,t(G) = 3, and so Theorem 3.9 implies
that γ(2,2,0)(G) = 3, which completes the proof.

Theorem 3.30. For a graph G, γ(2,2,0)(G) = 4 if and only if one of the following condi-
tions holds.

(i) G ∼= K1 ∪G1, where G1 is a graph with γ(G1) = 1.

(ii) γ×2,t(G) = 4.

(iii) γ(G) = 2 and G has minimum degree one.

(iv) γ(G) = 2 and γ×2,t(G) ≥ 4.

Proof. If K1 is a component of G, then by Theorem 3.9 we conclude that γ(2,2,0)(G) = 4
if and only if G ∼= K1 ∪G1, where G1 is a graph with γ(G1) = 1.

From now on, we consider the case whereG is a graph with no isolated vertex. Assume
γ(2,2,0)(G) = 4 and let f(V0, V1, V2) be a γ(2,2,0)(G)-function. If V2 = ∅, then V1 is a
double total dominating set of G. In this case, G has minimum degree δ ≥ 2 and by
Theorem 3.28 we have that γ×2,t(G) ≤ |V1| = 4 = γ(2,2,0)(G) ≤ γ×2,t(G). Hence (ii)
follows.

Now, assume that |V2| ∈ {1, 2}. If |V2| = 2, then V1 = ∅, and so γ(G) ≤ 2. Now, if
|V2| = 1, then |V1| = 2 and both vertices belonging V1 are adjacent to the vertex of weight
two, and every v ∈ V0 satisfies N(v) ∩ V2 6= ∅ or V1 ⊆ N(v). This implies that the union
of V2 with a singleton subset of V1 forms a dominating set ofG, and again γ(G) ≤ 2. Thus,
from Theorem 3.9 we deduce that γ(G) = 2. Furthermore, if δ ≥ 2, then by Theorem 3.28
we have that γ×2,t(G) ≥ γ(2,2,0) = 4. Therefore, either (iii) or (iv) holds.

Conversely, if γ×2,t(G) = 4, then Theorem 3.28 leads to 2 ≤ γ(2,2,0) ≤ γ×2,t(G) = 4.
Hence, by Theorems 3.9 and 3.29 we deduce that γ(2,2,0)(G) = 4. Analogously, if γ(G) =
2 and δ ≥ 1, then Theorem 3.28 leads to 2 ≤ γ(2,2,0) ≤ 2γ(G) = 4. Thus, by Theorem 3.9
we have that 3 ≤ γ(2,2,0) ≤ 4. In particular, if δ = 1 or γ×2,t(G) ≥ 4, then Theorem 3.29
leads to γ(2,2,0)(G) = 4, which completes the proof.

Lemma 3.31. For a graph G, the following statements are equivalent.

(i) γ(2,2,0)(G) = 2γ(G).

(ii) There exists a γ(2,2,0)(G)-function f(V0, V1, V2) such that V1 = ∅.

Proof. First, we assume that γ(2,2,0)(G) = 2γ(G) and let D be a γ(G)-set. Hence, the
function f(V0, V1, V2), defined by V2 = D and V0 = V (G) \D, is a γ(2,2,0)(G)-function
which satisfies (ii), as desired.

Finally, we assume that there exists a γ(2,2,0)(G)-function f(V0, V1, V2) such that V1 =
∅. This implies that V2 is a dominating set of G. Hence, γ(2,2,0)(G) ≤ 2γ(G) ≤ 2|V2| =
γ(2,2,0)(G), and the desired equality holds, which completes the proof.

From Italian domination in lexicographic product graphs to ... 29



Acc
ep

te
d m

an
usc

rip
t

20 Ars Math. Contemp.

The following result provides the (2, 2, 0)-domination number of paths and cycles.

Proposition 3.32. For any integer n ≥ 3,

γ(2,2,0)(Pn) = γ(2,2,0)(Cn) = 2
⌈n

3

⌉
.

Proof. We first prove that γ(2,2,0)(Cn) ≥ 2
⌈
n
3

⌉
. Let f(V0, V1, V2) be a γ(2,2,0)(Cn)-

function. If V1 = ∅, then by Lemma 3.31 it follows that γ(2,2,0)(Cn) = 2γ(Cn) = 2
⌈
n
3

⌉
.

If V1 6= ∅, then 1 + 2|V2| ≤ |V1|+ 2|V2| = γ(2,2,0)(Cn) ≤ 2γ(Cn) = 2
⌈
n
3

⌉
, which leads

to |V2| ≤
⌈
n
3

⌉
− 1. By Lemma 3.7 we have that γ(2,2,0)(Cn) ≥ n− |V2| ≥ n−

⌈
n
3

⌉
+ 1 ≥

2
⌈
n
3

⌉
, as desired.

Therefore, by the inequality above, Proposition 3.5 and Theorem 3.28 we deduce that
2dn3 e ≤ γ(2,2,0)(Cn) ≤ γ(2,2,0)(Pn) ≤ 2γ(Pn) = 2dn3 e. Thus, we have equalities in the
inequality chain above, which implies that the result follows.

3.4 Preliminary results on (2, 1, 0)-domination

Given a graph G, we use the notation L(G) and S(G) for the sets of leaves and support
vertices, respectively.

Theorem 3.33. For any graph G with no isolated vertex, order n and maximum degree ∆,

⌈
2n

∆ + 1

⌉
≤ γ(2,1,0)(G) ≤ min{γ×2(G)− |L(G)|+ |S(G)|, 2γ(G)}.

Proof. If f(V0, V1, V2) is a γ(2,1,0)(G)-function, then from Lemma 3.7 we conclude that
2n−|V1|−2|V2| ≤ ∆γ(2,1,0)(G).Hence, 2n ≤ ∆γ(2,1,0)(G)+ω(f) = (∆+1)γ(2,1,0)(G).
Therefore, the lower bound follows.

Let D be a γ×2(G)-set. Notice that S(G) ∪ L(G) ⊆ D. Since |N [v] ∩ D| ≥ 2 for
every v ∈ V (G), the function g(V0, V1, V2) defined by V1 = D \ (L(G) ∪ S(G)) and
V2 = S(G), is a (2, 1, 0)-dominating function. Hence, γ(2,1,0)(G) ≤ ω(g) = γ×2(G) −
|L(G)|+ |S(G)|.

By Remark 3.2, γ(2,1,0)(G) ≤ γ(2,2,0)(G), hence the upper bound γ(2,1,0)(G) ≤
2γ(G) is derived from Theorem 3.28. Therefore, γ(2,1,0)(G) ≤ min{γ×2(G)− |L(G)|+
|S(G)|, 2γ(G)}.

The bounds above are tight. For instance, for the graph G1 shown in Figure 1 we have
that γ(2,1,0)(G1) =

⌈
2n

∆+1

⌉
= γ×2(G1) = 2γ(G1) = 4. As an example of graph of

minimum degree one where γ(2,1,0)(G) = γ×2(G) − |L(G)| + |S(G)| we take the graph
G obtained from a star graph K1,r, r ≥ 3, by subdividing one edge just once. In such a
case, γ(2,1,0)(G) = 4 = γ×2(G)− |L(G)|+ |S(G)|. Another example is the graph shown
in Figure 2 which satisfies γ(2,1,0)(G) = γ×2(G)− |L(G)|+ |S(G)| = 6.

Notice that γ(2,1,0)(G) ≥
⌈

2n
∆+1

⌉
≥ 2. As shown in Theorem 3.9, γ(2,1,0)(G) = 2 if

and only if γ(G) = 1. Next we characterize the graph satisfying γ(2,1,0)(G) = 3.

Theorem 3.34. For a graph G, γ(2,1,0)(G) = 3 if and only if γ×2(G) = γ(G) + 1 = 3.
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Proof. Assume γ(2,1,0)(G) = 3. By Theorem 3.9 we have that γ(G) ≥ 2. Let f(V0, V1, V2)
be a γ(2,1,0)(G)-function. If |V2| = 1 then N [V2] = V (G), i.e., γ(G) = 1, which is a con-
tradiction. Thus, V2 = ∅ and |V1| = 3, which implies that V1 is a double dominating set.
Hence, 3 ≤ γ(G) + 1 ≤ γ×2(G) ≤ |V1| = 3. Therefore, γ×2(G) = γ(G) + 1 = 3.

Conversely, assume γ×2(G) = γ(G) + 1 = 3. Notice that G has minimum degree
δ ≥ 1 and so by Theorems 3.9 and 3.33 we have that 3 ≤ γ(2,1,0)(G) ≤ γ×2(G) = 3,
which implies that γ(2,1,0)(G) = 3.

Next we consider the case of graphs with γ(2,1,0)(G) = 4.

Theorem 3.35. For a graph G, γ(2,1,0)(G) = 4 if and only if one of the following condi-
tions is satisfied.

(i) G ∼= K1 ∪G1, where G1 is a graph with γ(G1) = 1.

(ii) γ×2(G) = 4.

(iii) γ(G) = 2 and γ×2(G) ≥ 4.

Proof. If K1 is a component of G, then by Theorem 3.9 we conclude that γ(2,1,0)(G) = 4
if and only if G ∼= K1 ∪G1, where G1 is a graph with γ(G1) = 1.

From now on, we consider the case whereG is a graph with no isolated vertex. Assume
γ(2,1,0)(G) = 4. By Theorem 3.33 we deduce that γ×2(G) ≥ 4 and γ(G) ≥ 2. Let
f(V0, V1, V2) be a γ(2,1,0)(G)-function. If V2 = ∅, then V1 is a double dominating set of
G, which implies that γ×2(G) ≤ |V1| = 4. Hence, (ii) follows. From now on, assume
|V2| ∈ {1, 2}. If |V2| = 2, then V1 = ∅ and so, V2 is a dominating set of G, which implies
that γ(G) = 2. If |V2| = 1, then for every v ∈ V1 we have that V2 ∪ {v} is a dominating
set of G. Hence, γ(G) = 2. Therefore, (iii) follows.

Conversely, if (ii) or (iii) holds, then by Theorems 3.33 we have that 2 ≤ γ(2,1,0)(G) ≤
4. Therefore, by Theorems 3.9 and 3.34 we deduce that γ(2,1,0)(G) = 4, which completes
the proof.

The formulas on the {k}-dominating number of cycles and paths were obtained in [17].
We present here the particular case of k = 2, as γ{2}(G) = γ(2,1,0)(G).

Proposition 3.36. [17] For any integer n ≥ 3,

γ{2}(Cn) =

⌈
2n

3

⌉
and γ{2}(Pn) = 2

⌈n
3

⌉
.

3.5 Preliminary results on (2, 2, 2, 0)-domination

The following result is a direct consequence of Theorem 3.10 (i), (ii) and (vi).

Corollary 3.37. For any graph G with no isolated vertex,

γ(2,2,1)(G) ≤ γ(2,2,2,0)(G) ≤ min{3γ(G), γ(2,2,2)(G)}.

The bounds above are tight. For instance, every graph Gk,r belonging to the in-
finite family Hk constructed after Remark 3.3 satisfies the equalities γ(2,2,1)(Gk,r) =
γ(2,2,2)(Gk,r) = γ(2,2,2,0)(Gk,r) = k. In contrast, the graph shown in Figure 2 satis-
fies γ(2,2,1)(G) = 6 < 7 = γ(2,2,2,0)(G) < 8 = γ(2,2,2)(G). Moreover, Figure 3 illustrates
a graph G with γ(2,2,1)(G) = γ(2,2,2,0)(G) = 3γ(G) = 9.
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In order to characterize the graphs with γ(2,2,2,0)(G) ∈ {3, 4}, we need to establish the
following lemma.

Lemma 3.38. For a graph G, the following statements are equivalent.

(i) γ(2,2,2,0)(G) = γ(2,2,2)(G).

(ii) There exists a γ(2,2,2,0)(G)-function f(V0, V1, V2, V3) such that V3 = ∅.

Proof. If γ(2,2,2,0)(G) = γ(2,2,2)(G), then for any γ(2,2,2)(G)-function f(V0, V1, V2), there
exists a γ(2,2,2,0)(G)-function g(W0,W1,W2,W3) defined by W0 = V0, W1 = V1, W2 =
V2 and W3 = ∅. Therefore, (i) implies (ii).

Conversely, if there exists a γ(2,2,2,0)(G)-function f(V0, V1, V2, V3) such that V3 = ∅,
then the function g(W0,W1,W2), defined by W0 = V0, W1 = V1 and W2 = V2, is a
(2, 2, 2)-dominating function on G, and so γ(2,2,2)(G) ≤ ω(g) = ω(f) = γ(2,2,2,0)(G).
Therefore, Corollary 3.37 leads to γ(2,2,2,0)(G) = γ(2,2,2)(G), which completes the proof.

Theorem 3.39. For a graph G, the following statements are equivalent.

(i) γ(2,2,2,0)(G) = 3.

(ii) γ(G) = 1 or γ×2,t(G) = 3.

Proof. Assume first that γ(2,2,2,0)(G) = 3, and let f(V0, V1, V2, V3) be a γ(2,2,2,0)(G)-
function. Notice that |V3| ∈ {0, 1}. If |V3| = 1, then V1 ∪ V2 = ∅, which implies that V3

is a dominating set of cardinality one. Hence, γ(G) = 1.
If V3 = ∅, then by Lemma 3.38 we have that γ(2,2,2)(G) = γ(2,2,2,0)(G) = 3, and by

Theorem 3.14 we deduce that γ×2,t(G) = 3.
Conversely, if γ(G) = 1, then Corollary 3.37 leads to 3 ≤ γ(2,2,2,0)(G) ≤ 3γ(G) = 3.

Moreover, if γ×2,t(G) = 3, then G has minimum degree δ ≥ 2 and so Theorem 3.10 (i)
leads to 3 ≤ γ(2,2,2,0)(G) ≤ γ(2,2,2)(G) ≤ γ×2,t(G) = 3. Therefore, γ(2,2,2,0)(G) =
3.

Theorem 3.40. For a graphG, γ(2,2,2,0)(G) = 4 if and only if at least one of the following
conditions holds.

(i) γ×2,t(G) = 4.

(ii) γ(G) = γt(G) = 2 and G has minimum degree δ = 1.

(iii) γ(G) = γt(G) = 2 and γ×2,t(G) ≥ 4.

Proof. Assume γ(2,2,2,0)(G) = 4. Let f(V0, V1, V2, V3) be a γ(2,2,2,0)(G)-function. Hence,
|V3| ∈ {0, 1}. If |V3| = 1, then V3 is a dominating set of cardinality one. Hence, γ(G) = 1,
which is a contradiction with Theorem 3.39. Hence, V3 = ∅, and so, Lemma 3.38 leads to
γ(2,2,2)(G) = γ(2,2,2,0)(G) = 4. Thus, by Theorems 3.15 and 3.39 we deduce (i)-(iii).

Conversely, if conditions (i)-(iii) hold, then by Theorem 3.14 we have that γ(2,2,2)(G) =
4. Corollary 3.37 leads to 3 ≤ γ(2,2,2,0)(G) ≤ γ(2,2,2)(G) = 4. Notice that if δ ≥ 2, then
γ(G) ≥ 2 and γ×2,t(G) ≥ 4. Hence, Theorem 3.39 leads to γ(2,2,2,0)(G) = 4.

Proposition 3.41. For any integer n ≥ 3,

γ(2,2,2,0)(Cn) = n.
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Proof. By Corollaries 3.16 and 3.37 we have that γ(2,2,2,0)(Cn) ≤ γ(2,2,2)(Cn) = n.
We only need to prove that γ(2,2,2,0)(Cn) ≥ n. Let f(V0, V1, V2, V3) be a γ(2,2,2,0)(G)-
function such that |V3| is minimum. If V3 = ∅, then by Lemma 3.38 and Corollary 3.16
we conclude that γ(2,2,2,0)(Cn) = n. Assume V3 6= ∅. If v ∈ V3, then N(v) ⊆ V0 as
otherwise, by choosing one vertex u ∈ N(v) \ V0, the function f ′ defined by f ′(v) = 2,
f ′(u) = min{2, f(u) + 1} and f ′(x) = f(x) for the remaining vertices, is a (2, 2, 2, 0)-
dominating function with ω(f ′) ≤ ω(f) and |V ′3 | < |V3|, which is a contradiction. Hence,∑
x∈V3

f(N [x]) = 3|V3|. Now, we observe that

2
∑

x∈V (Cn)\N [V3]

f(x) ≥
∑

x∈V (Cn)\N [V3]


 ∑

u∈N(x)

f(u)


 ≥ 2(n− 3|V3|).

Therefore,

γ(2,2,2,0)(Cn) = ω(f) =
∑

x∈V3

f(N [x]) +
∑

x∈V (Cn)\N [V3]

f(x) ≥ 3|V3|+ (n− 3|V3|) = n,

and the result follows.

Proposition 3.42. For any integer n ≥ 3,

γ(2,2,2,0)(Pn) =

{
6 if n = 5,

n otherwise.

Proof. It is easy to check that γ(2,2,2,0)(Pn) = n for n = 3, 4, 6, 7, 8, and also γ(2,2,2,0)(P5) =
6. From now on, assume n ≥ 9. By Propositions 3.5 and 3.41 we have that n =
γ(2,2,2,0)(Cn) ≤ γ(2,2,2,0)(Pn). Hence, we only need to prove that γ(2,2,2,0)(Pn) ≤ n.
To this end, we proceed to construct a (2, 2, 2, 0)-dominating function f(V0, V1, V2, V3) on
Pn = v1v2 . . . vn such that ω(f) = n.

• If n ≡ 0 (mod 3), then we set V3 =

n/3⋃

i=1

{v3i−1} and V0 = V (G) \ V3.

• If n ≡ 1 (mod 3), then we set V3 =

(n−4)/3⋃

i=1

{v3i−1}, V2 = {vn−2, vn−1} and

V0 = V (G) \ (V2 ∪ V3).

• If n ≡ 2 (mod 3), then we set V3 =

(n−8)/3⋃

i=1

{v3i−1}, V2 = {vn−6, vn−5, vn−2, vn−1}

and V1 = ∅.

Notice that in the three cases above, f is a (2, 2, 2, 0)-dominating function of weight
ω(f) = n, as required. Therefore, the proof is complete.
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[3] B. Brešar, M. A. Henning and S. Klavžar, On integer domination in graphs and vizing-like
problems, Taiwanese J. Math. 10 (5) (2006), 1317–1328.

[4] S. Cabrera Garcı́a, A. Cabrera Martı́nez, F. A. Hernández Mira and I. G. Yero, Total Roman
{2}-domination in graphs, Quaest. Math. In press (2019), https://doi.org/10.2989/
16073606.2019.1695230.

[5] A. Cabrera Martı́nez, S. Cabrera Garcı́a and J. A. Rodrı́guez-Velázquez, Double domination in
lexicographic product graphs, Discrete Appl. Math. 284 (2020), 290–300.

[6] M. Chellali, T. W. Haynes, S. T. Hedetniemi and A. A. McRae, Roman {2}-domination, Dis-
crete Appl. Math. 204 (2016), 22–28.

[7] G. S. Domke, S. T. Hedetniemi, R. C. Laskar and G. H. Fricke, Relationships between inte-
ger and fractional parameters of graphs, in: Y. Alavi, G. Chartrand, O. R. Oellermann and
A. J. Schwenk (eds.), Graph theory, combinatorics, and applications: proceedings of the Sixth
Quadrennial International Conference on the Theory and Applications of Graphs, Western
Michigan University, John Wiley & Sons Inc., volume 2, 1991 pp. 371–387.

[8] J. F. Fink and M. S. Jacobson, n-domination in graphs, in: Graph theory with applications to
algorithms and computer science, Wiley, New York, Wiley-Intersci. Publ., pp. 283–300, 1985.

[9] F. Harary and T. W. Haynes, Double domination in graphs, Ars Combin. 55 (2000), 201–213.

[10] T. Haynes, S. Hedetniemi and P. Slater, Domination in Graphs: Volume 2: Advanced Topics,
Chapman & Hall/CRC Pure and Applied Mathematics, Taylor & Francis, 1998.

[11] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Chap-
man and Hall/CRC Pure and Applied Mathematics Series, Marcel Dekker, Inc. New York,
1998.

[12] M. A. Henning and A. P. Kazemi, k-tuple total domination in graphs, Discrete Appl. Math. 158
(2010), 1006–1011, doi:http://dx.doi.org/10.1016/j.dam.2010.01.009.

[13] M. A. Henning and W. F. Klostermeyer, Italian domination in trees, Discrete Appl. Math. 217
(2017), 557 – 564,

[14] M. A. Henning and A. Yeo, Total Domination in Graphs, Springer Monographs in Mathemat-
ics, Springer New York, 2013.

[15] X. Hou and Y. Lu, On the {k}-domination number of cartesian products of graphs, Discrete
Math. 309 (10) (2009), 3413–3419.

[16] W. F. Klostermeyer and G. MacGillivray, Roman, Italian, and 2-domination, J. Combin. Math.
Combin. Comput. 108 (2019), 125–146.

[17] C.-M. Lee and M.-S. Chang, Variations of Y-dominating functions on graphs, Discrete Math.
308 (2008), 4185–4204.

From Italian domination in lexicographic product graphs to ... 34



Total domination in rooted
product graphs

This chapter includes a complete copy of the following paper.

A. Cabrera Martı́nez, J.A. Rodrı́guez-Velázquez. Total domination in rooted
product graphs, Symmetry (2020) 12(11), 1929.
URL: https://doi.org/10.3390/sym12111929

Quality indicators:
2020 JCR Impact factor: 2.713, Q2 (33/73), Multidisciplinary, Sciences.

35

https://doi.org/10.3390/sym12111929




symmetryS S

Article

Total Domination in Rooted Product Graphs

Abel Cabrera Martínez and Juan A. Rodríguez-Velázquez *

Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Av. Països Catalans 26,
43007 Tarragona, Spain; abel.cabrera@urv.cat
* Correspondence: juanalberto.rodriguez@urv.cat

Received: 2 October 2020; Accepted: 20 November 2020; Published: 23 November 2020
����������
�������

Abstract: During the last few decades, domination theory has been one of the most active areas of
research within graph theory. Currently, there are more than 4400 published papers on domination
and related parameters. In the case of total domination, there are over 580 published papers, and 50
of them concern the case of product graphs. However, none of these papers discusses the case of
rooted product graphs. Precisely, the present paper covers this gap in the theory. Our goal is to
provide closed formulas for the total domination number of rooted product graphs. In particular,
we show that there are four possible expressions for the total domination number of a rooted product
graph, and we characterize the graphs reaching these expressions.

Keywords: total domination; domination; rooted product graph

Let G be a graph. The open neighborhood of a vertex v ∈ V(G) is defined to be N(v) = {u ∈
V(G) : u is adjacent to v}. A set S ⊆ V(G) is a dominating set of G if N(v) ∩ S 6= ∅ for every vertex
v ∈ V(G) \ S. Let D(G) be the set of dominating sets of G. The domination number of G is defined
to be,

γ(G) = min{|S| : S ∈ D(G)}.

A set S ⊆ V(G) is a total dominating set, TDS, of a graph G without isolated vertices if every
vertex v ∈ V(G) is adjacent to at least one vertex in S. Let Dt(G) be the set of total dominating sets
of G.

The total domination number of G is defined to be,

γt(G) = min{|S| : S ∈ Dt(G)}.

By definition, Dt(G) ⊆ D(G), so that γ(G) ≤ γt(G).
We define a γt(G)-set as a set S ∈ Dt(G) with |S| = γt(G). The same agreement will be assumed

for optimal parameters associated with other characteristic sets defined in the paper. For instance,
a γ(G)-set will be a set S ∈ D(G) with |S| = γ(G).

The theory of domination in graphs has been extensively studied. For instance, there are more
than 4400 papers already published on domination and related parameters. In particular, we cite the
following books [1,2]. In the case of total domination, there are over 580 published papers and one
book [3]. Among these papers on total domination in graphs, there are over 50 which concern the case
of product graphs. Surprisingly, none of these papers discusses the case of rooted product graphs. The
present paper covers that gap in the theory.

In order to present our results, we need to introduce some additional notation and terminology.
The closed neighborhood of v ∈ V(G) is defined to be N[v] = N(v) ∪ {v}. A vertex v ∈ V(G) is
universal if N[v] = V(G), while it is a leaf if |N(v)| = 1. The set of leaves of G will be denoted by
L(G). A support vertex is a vertex v with N(v) ∩ L(G) 6= ∅. The set of support vertices of G will
be denoted by S(G). If v is a vertex of a graph G, then the vertex-deletion subgraph G− {v} is the
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subgraph of G induced by V(G) \ {v}. By analogy, we define the subgraph G − S for an arbitrary
subset S ⊆ V(G).

The concept of rooted product graph was introduced in 1978 by Godsil and McKay [4]. Given a
graph G of order n(G) and a graph H with root vertex v, the rooted product graph G ◦v H is defined
as the graph obtained from G and H by taking one copy of G and n(G) copies of H and identifying the
ith vertex of G with the root vertex v in the ith copy of H for every i ∈ {1, 2, . . . , n(G)}. If H or G is a
trivial graph, then G ◦v H is equal to G or H, respectively. In this sense, hereafter we will only consider
graphs G and H with no isolated vertex.

G

v

H
G ◦v H

Figure 1. The set of black-coloured vertices forms a γt(G ◦v H)-set.

Figure 1 shows an example of a rooted product graph. In this case, the set of black-coloured
vertices forms a TDS of G ◦v H and γt(G ◦v H) = 14 = γ(G) + n(G)(γt(H)− 1).

For every x ∈ V(G), Hx ∼= H will denote the copy of H in G ◦v H containing x. The restriction
of any set S ⊆ V(G ◦v H) to V(Hx) will be denoted by Sx, and the restriction to V(Hx − {x}) will
be denoted by S−x ; i.e., Sx = S ∩ V(Hx) and S−x = Sx \ {x}. In some cases, we will need to define
S ⊆ V(G ◦v H) from the sets Sx ⊆ V(Hx) as S = ∪x∈V(G)Sx.

Since V(G ◦v H) = ∪x∈V(G)V(Hx), we have that for every set S ⊆ V(G ◦v H),

|S| = ∑
x∈V(G)

|Sx| = ∑
x∈V(G)

|S−x |+ |S ∩V(G)|. (1)

A basic problem in the study of product graphs consists of finding closed formulas or sharp
bounds for specific invariants of the product of two graphs and expressing these in terms of parameters
of the graphs involved in the product. In this sense, for recent results on rooted product graphs, we cite
the following works [5–19]. As we can expect, the products of graphs are not alien to applications in
other fields. In particular, in [5] the authors show that several important classes of chemical graphs can
be expressed as rooted product graphs, and as described in [20], there exist a number of molecular
graphs of high-tech interest that can be generated using the rooted product of graphs.

1. Closed Formulas for the Total Domination Number

The following three lemmas will be the main tools to deduce our results.

Lemma 1. Given a graph H with no isolated vertex and any v ∈ V(H) \ S(H), the following statements hold.

(i) γt(H − {v}) ≥ γt(H)− 1.
(ii) If γt(H − {v}) = γt(H)− 1, then the following statements hold.

(a) N(v) ∩ S = ∅ for every γt(H − {v})-set S.
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(b) There exists a γt(H)-set S such that v /∈ S.
(iii) If γt(H − {v}) > γt(H), then v ∈ S for every γt(H)-set S.

Proof. Let v ∈ V(H) \ S(H) and S a γt(H − {v})-set. For every u ∈ N(v) we have that S ∪ {u} is
a TDS of H, which implies that γt(H) ≤ |S ∪ {u}| ≤ γt(H − {v}) + 1. Therefore, (i) follows.

Now, in order to prove (ii), we assume that |S| = γt(H)− 1. If there exists a vertex y ∈ N(v) ∩ S,
then S is also a TDS of H, which is a contradiction. Therefore, N(v) ∩ S = ∅ and so (a) follows.
In addition, for any y ∈ N(v), the set S∪ {y} is a γt(H)-set not containing v. Therefore, (b) also follows.

Finally, we proceed to prove (iii). If there exists a γt(H)-set D such that v /∈ D, then D is also a TDS
of H − {v}, and so γt(H − {v}) ≤ |D| = γt(H). Therefore, we conclude that if γt(H − {v}) > γt(H),
then v ∈ D for every γt(H)-set D, which completes the proof.

Lemma 2. Let H be a graph and v ∈ V(H). If v is not a universal vertex and H − N[v] does not have isolated
vertices, then

γt(H − N[v]) ≥ γt(H)− 2.

Furthermore, if γt(H − {v}) = γt(H)− 1, then

γt(H)− 2 ≤ γt(H − N[v]) ≤ γt(H)− 1.

Proof. Assume that v is not a universal vertex and H − N[v] does not have isolated vertices. Let S be
a γt(H − N[v])-set and u ∈ N(v). Since S ∪ {u, v} is a TDS of H, we have that γt(H) ≤ |S ∪ {u, v}| =
γt(H − N[v]) + 2, as required.

Now, assume γt(H− {v}) = γt(H)− 1. In this case, by Lemma 1 (ii) we have that N(v)∩D = ∅
for every γt(H− {v})-set D, which implies that D is a TDS of H− N[v], and so γt(H− N[v]) ≤ |D| =
γt(H − {v}) = γt(H)− 1. Therefore, the result follows.

Lemma 3. Given a γt(G ◦v H)-set S and a vertex x ∈ V(G), the following statements hold.

(i) |Sx| ≥ γt(H)− 1.
(ii) If |Sx| = γt(H)− 1, then N(x) ∩ Sx = ∅.

Proof. Let x ∈ V(G). Notice that every vertex in V(Hx) \ {x} is adjacent to some vertex in Sx. For any
y ∈ N(x) ∩ V(Hx), the set Sx ∪ {y} is a TDS of Hx, and so γt(H) = γt(Hx) ≤ |Sx ∪ {y}| = |Sx|+ 1.
Therefore, (i) follows.

Finally, assume that |Sx| = γt(H)− 1. If there exists a vertex y ∈ N(x) ∩ Sx, then Sx is a TDS of
Hx, which is a contradiction. Therefore, N(x) ∩ Sx = ∅, and so (ii) follows.

Given a γt(G ◦v H)-set S, we define the following subsets of V(G) associated with S.

AS = {x ∈ V(G) : |Sx| ≥ γt(H)} and BS = {x ∈ V(G) : |Sx| = γt(H)− 1}.

These sets will play an important role in the inference results. By Lemma 3, V(G) = AS ∪ BS.
In particular, if AS = ∅, then γt(G ◦v H) = n(G)(γt(H)− 1), and as we will show in the proof of
Theorem 2, if BS = ∅, then γt(G ◦v H) = n(G)γt(H). As we can expect, these are the extreme values
of γt(G ◦v H).

Theorem 1. For any graphs G and H with no isolated vertex and any v ∈ V(H),

n(G)(γt(H)− 1) ≤ γt(G ◦v H) ≤ n(G)γt(H).

Furthermore, if γt(H − {v}) = γt(H)− 1, then

γt(G ◦v H) ≤ γt(G) + n(G)(γt(H)− 1).
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Proof. The lower bound follows from Lemma 3, as for any γt(G ◦v H)-set S,

γt(G ◦v H) = |S| = ∑
x∈V(G)

|Sx| ≥ n(G)(γt(H)− 1).

Now, we proceed to prove the upper bound. Let D ⊆ V(G ◦v H) such that Dx is a γt(Hx)-set for
every x ∈ V(G). It is readily seen that D is a TDS of G ◦v H. Hence,

γt(G ◦v H) ≤ |D| = ∑
x∈V(G)

|Dx| = ∑
x∈V(G)

γt(Hx) = n(G)γt(H).

From now on, assume γt(H − {v}) = γt(H)− 1. Notice that, by assumption, H − {v} does not
have isolated vertices.

Let W ⊆ V(G ◦v H) such that W−x = Wx \ {x} is a γt(Hx − {x})-set for every x ∈ V(G) and
W ∩V(G) is a γt(G)-set. Clearly, W is a TDS of G ◦v H, which implies that

γt(G ◦v H) ≤ |W ∩V(G)|+ ∑
x∈V(G)

|W−x | = γt(G) + ∑
x∈V(G)

γt(Hx−{x}) = γt(G) + n(G)(γt(H)− 1).

Therefore, the result follows.

The following lemma is another important tool for determining all possible values of γt(G ◦v H).

Lemma 4. Given a γt(G ◦v H)-set S with BS 6= ∅, the following statements hold.

(i) If BS ∩ S 6= ∅, then γt(G ◦v H) = n(G)(γt(H)− 1).
(ii) If BS ∩ S = ∅, then γt(H − {v}) = γt(H)− 1, and as a consequence,

γ(G) + n(G)(γt(H)− 1) ≤ γt(G ◦v H) ≤ γt(G) + n(G)(γt(H)− 1).

Proof. First, we proceed to prove (i). Given a fixed x′ ∈ BS ∩ S, let D ⊆ V(G ◦v H) such that for
every x ∈ V(G) the set Dx is induced by Sx′ . Obviously, D is a TDS of G ◦v H. Hence, γt(G ◦v H) ≤
|D| = ∑x∈V(G) |Dx| = n(G)|Sx′ | = n(G)(γt(H)− 1). Therefore, Theorem 1 leads to γt(G ◦v H) =

n(G)(γt(H)− 1).
In order to prove (ii), assume that BS ∩ S = ∅, and let x ∈ BS. By Lemma 3 we have that

N[x] ∩ Sx = ∅. So, x /∈ S(Hx) and Sx is a TDS of Hx − {x}. Hence, γt(H − {v}) = γt(Hx − {x}) ≤
|Sx| = γt(H)− 1, and so Lemma 1 leads to γt(H − {v}) = γt(H)− 1. Therefore, by Theorem 1 we
have that γt(G ◦v H) ≤ γt(G) + n(G)(γt(H)− 1).

Moreover, since N[x]∩ Sx = ∅ for every x ∈ BS, we have thatAS is a dominating set of G. Hence,

γt(G ◦v H) = ∑
x∈AS

|Sx|+ ∑
x∈BS

|Sx|

≥ |AS|γt(H) + |BS|(γt(H)− 1)

≥ |AS|+ n(G)(γt(H)− 1)

≥ γ(G) + n(G)(γt(H)− 1).

Therefore, the result follows.

Next we give one of the main results of this section, which states the four possible values of
γt(G ◦v H).

Theorem 2. Let G and H be two graphs with no isolated vertex. For any v ∈ V(H),

γt(G ◦v H) ∈ {n(G)(γt(H)− 1), γ(G) + n(G)(γt(H)− 1), γt(G) + n(G)(γt(H)− 1), n(G)γt(H)}.
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Proof. Let S be a γt(G ◦v H)-set and consider the subsets AS,BS ⊆ V(G) associated with S.
We distinguish the following cases.

Case 1. BS = ∅. In this case, for any x ∈ V(G) we have that |Sx| ≥ γt(H), and as a consequence,
γt(G ◦v H) = ∑x∈V(G) |Sx| ≥ n(G)γt(H). Thus, Theorem 1 leads to the equality γt(G ◦v H) =

n(G)γt(H).

Case 2. BS 6= ∅. If BS ∩ S 6= ∅, then from Lemma 4 (i) we have that γt(G ◦v H) = n(G)(γt(H)− 1).
From now on we assume that BS ∩ S = ∅. Hence, Lemma 4 (ii) leads to

γ(G) + n(G)(γt(H)− 1) ≤ γt(G ◦v H) ≤ γt(G) + n(G)(γt(H)− 1).

We only need to prove that γt(G ◦v H) only can take the extreme values. To this end, we shall
need to introduce the following notation. Let A′S = {x ∈ AS : |Sx| = γt(H)} and A′′S = AS \ A′S.

Subcase 2.1. There exists x′ ∈ A′S such that Sx′ is a γt(Hx′)-set containing x′. From a fixed vertex y ∈ BS
and any γ(G)-set D, we can construct a set W ⊆ V(G ◦v H) as follows. If x ∈ D, then Wx is induced by
Sx′ , while if x ∈ V(G) \ D, then Wx is induced by Sy. Notice that W is a TDS of G ◦v H, which implies
that γt(G ◦v H) ≤ |W| = γ(G) + n(G)(γt(H)− 1). Therefore, γt(G ◦v H) = γ(G) + n(G)(γt(H)− 1).

Subcase 2.2. A′S = ∅ or for any x ∈ A′S, either Sx is not a γt(Hx)-set or x 6∈ Sx. If A′S 6= ∅, then every
vertex x ∈ A′S satisfies one of the following conditions.

(a) Sx is a γt(Hx)-set such that x /∈ Sx.
(b) Sx is not a TDS of Hx and x ∈ Sx.

Notice that we do not consider the case where Sx is not a TDS of Hx and x 6∈ Sx, as in this case we
can replace S with the γt(G ◦v H)-set (S \ Sx) ∪ S′x for some γt(Hx)-set S′x. In such a case, if x ∈ S′x,
then we proceed as in Subcase 2.1, while if x 6∈ S′x, then x satisfies (a).

Let us construct a TDS X of G as follows.

- AS ⊆ X.
- For any x ∈ A′S which satisfies condition (a) and N(x) ∩ S ∩V(G) = ∅, we choose one vertex

y ∈ N(x) ∩V(G) and set y ∈ X.
- For any x ∈ A′′S with N(x) ∩ S ∩ V(G) = ∅, we choose one vertex y ∈ N(x) ∩ V(G) and set

y ∈ X.

We proceed to show that X is a TDS of G. If x ∈ V(G) \ X, then either x ∈ BS or x ∈ A′S \ S.
If x ∈ BS, then N(x) ∩ S ∩ AS 6= ∅, which implies that N(x) ∩ X 6= ∅. Obviously, if x ∈ A′S \ S,
then N(x) ∩ X 6= ∅, by definition of X. Now, let x ∈ X. If x ∈ A′′S ∪ (A′S \ S), then N(x) ∩ X 6= ∅ by
definition. If x ∈ A′S ∩ S, then x satisfies condition (b). This implies that N(x) ∩ Sx = ∅. Hence, there
exists a vertex y ∈ N(x) ∩V(G) ∩ S ⊆ X, as desired.

Therefore, X is a TDS of G, which implies that γt(G) ≤ |X| ≤ 2|A′′S |+ |A′S|. Thus,

γt(G ◦v H) ≥ ∑
x∈A′′S

|Sx|+ ∑
x∈A′S

|Sx|+ ∑
x∈BS

|Sx|

≥ |A′′S |(γt(H) + 1) + |A′S|γt(H) + |BS|(γt(H)− 1)

≥ (2|A′′S |+ |A′S|) + n(G)(γt(H)− 1)

≥ γt(G) + n(G)(γt(H)− 1),

which completes the proof.

Later on, we will characterize the graphs that reach each of the previous expressions. However,
we have to admit that when applying some of these characterizations we will need to calculate the
total domination number of H − {v} or H − N[v] which may not be easy. Before giving the above
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mentioned characterizations, we shall show a simple example in which we can observe that these
expressions of γt(G ◦v H) are realizable.

Example 1. Let G be a graph with no isolated vertex. If H is one of the graphs shown in Figure 2, then the
resulting values of γt(G ◦v H) for some specific roots are described below.

• γt(G ◦v′ H2) = 3 n(G) = n(G)(γt(H2)− 1).
• γt(G ◦v H2) = γ(G) + 3 n(G) = γ(G) + n(G)(γt(H2)− 1).
• γt(G ◦v H1) = γt(G) + 2 n(G) = γt(G) + n(G)(γt(H1)− 1).
• γt(G ◦v′ H1) = γt(G ◦v′′ H1) = 3 n(G) = n(G)γt(H1).

For these cases, it is not difficult to construct a γt(G ◦v H)-set. For instance, a γt(G ◦v H2)-set S can be
formed as follows. Given a fixed γ(G)-set X, we take S in such a way that the set Sx is induced by {a, b, v′, v}
for every x ∈ X, and induced by {a, b, c} for every x ∈ V(G) \ X.

v′ v′′ v

H1

a v′ v

b c

H2

Figure 2. The set of black-coloured vertices forms a γt(Hi)-set for i ∈ {1, 2}. The set {v′, v′′} forms a
γt(H1 − {v})-set, while {a, b, c} forms a γt(H2 − {v})-set.

As we have observed in Lemma 2, if v ∈ V(H) is not a universal vertex and H − N[v] does
not have isolated vertices, then γt(H − N[v]) ≥ γt(H) − 2. Next we show that the extreme case
γt(H − N[v]) = γt(H)− 2 characterizes the graphs with γt(G ◦v H) = n(G)(γt(H)− 1).

Theorem 3. Given two graphs G and H with no isolated vertex and v ∈ V(H), the following statements
are equivalent.

(i) γt(G ◦v H) = n(G)(γt(H)− 1).
(ii) v is a universal vertex of H or γt(H − N[v]) = γt(H)− 2.

Proof. First, assume that (i) holds. Let S be a γt(G ◦v H)-set. If v is a universal vertex of H, then
we are done. Assume that v ∈ V(H) is not a universal vertex. In this case, Lemma 3 leads to
BS = V(G) and N(x) ∩ Sx = ∅ for every x ∈ BS. Thus, BS ∩ S is a dominating set of G and for any
x ∈ BS ∩ S we have that Hx − N[x] does not have isolated vertices and Sx \ {x} is a TDS of Hx − N[x],
which implies that γt(H − N[v]) = γt(Hx − N[x]) ≤ |Sx \ {x}| = γt(H)− 2. Hence, Lemma 2 leads
to γt(H − N[v]) = γt(H)− 2. Therefore, (ii) follows.

Conversely, assume that (ii) holds. If v is a universal vertex of H, then V(G) is a TDS of G ◦v H,
which implies that γt(G ◦v H) ≤ |V(G)| = n(G) = n(G)(γt(H)− 1). Thus, by Theorem 1 we conclude
that γt(G ◦v H) = n(G)(γt(H)− 1).

From now on, we assume that v is not a universal vertex. For any x ∈ V(G), let D′x be a
γt(Hx−N[x])-set and Dx = D′x ∪ {x}. Observe that D = ∪x∈V(G)Dx is a TDS of G ◦v H, which implies
that γt(G ◦v H) ≤ |D| = n(G)(γt(H − N[v]) + 1) = n(G)(γt(H)− 1). By Theorem 1 we conclude
that γt(G ◦v H) = n(G)(γt(H)− 1), which completes the proof.

Lemma 5. Let G and H be two graphs with no isolated vertex and v ∈ V(H) \ S(H). If γt(H − {v}) ≥
γt(H), then

γt(G ◦v H) ∈ {n(G)γt(H), n(G)(γt(H)− 1)}.
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Proof. By Theorem 1 we have that γt(G ◦v H) ≤ n(G)γt(H). Let S be a γt(G ◦v H)-set. If |S| =
n(G)γt(H), then we are done. Suppose that |S| < n(G)γt(H). Hence, there exists x ∈ V(G) such that
|Sx| < γt(H), which implies that x ∈ BS by Lemma 3. Since γt(H − {v}) ≥ γt(H), Lemma 4 (ii) leads
to x ∈ S, and by Lemma 4 (i) we deduce that γt(G ◦v H) = n(G)(γt(H)− 1).

Lemma 6. Let G and H be two graphs with no isolated vertex and v ∈ V(H). If v belongs to every
γt(H)-set, then

γt(G ◦v H) ∈ {n(G)γt(H), n(G)(γt(H)− 1)}.

Proof. We first consider the case where v ∈ V(H) \ S(H). By Lemma 1 we deduce that γt(H−{v}) ≥
γt(H), and so Lemma 5 leads to the result. Now, assume that v ∈ S(H) and let S be a γt(G ◦ H)-set.
If γt(G ◦v H) = n(G)γt(H), then we are done. Thus, we assume that γt(G ◦v H) < n(G)γt(H). In such
a case, there exists x ∈ BS, and since x ∈ S(Hx), it follows that x ∈ S(G ◦ H). Therefore, x ∈ S, and by
Lemma 4 (i) we deduce that γt(G ◦v H) = n(G)(γt(H)− 1), which completes the proof.

We are now ready to characterize the graphs with γt(G ◦v H) = γ(G) + n(G)(γt(H)− 1).

Theorem 4. Let G and H be two graphs with no isolated vertex and v ∈ V(H). The following statements
are equivalent.

(i) γt(G ◦v H) = γ(G) + n(G)(γt(H)− 1).
(ii) γt(H − N[v]) = γt(H − {v}) = γt(H) − 1, and in addition, γt(G) = γ(G) or there exists a

γt(H)-set D such that v ∈ D.

Proof. First, assume that (i) holds. Since 1 ≤ γ(G) < n(G), by Lemma 6, v 6∈ S(H), so that from
Lemma 5 we deduce that γt(H − {v}) ≤ γt(H)− 1 and Lemma 1 leads to γt(H − {v}) = γt(H)− 1.
Hence, by Lemma 2 it follows that γt(H − N[v]) ∈ {γt(H)− 2, γt(H)− 1} and by Theorem 3 we
obtain that γt(H − N[v]) = γt(H)− 1.

Now, let S be a γt(G ◦v H)-set. Since 1 ≤ γ(G) < n(G), Lemma 3 leads to AS 6= ∅ and
BS 6= ∅. Additionally, by Lemma 4 we deduce that BS ∩ S = ∅, and by Lemma 3 we have that
N(x) ∩ Sx = ∅ for every x ∈ BS. Hence, AS is a dominating set of G and AS ∩ S 6= ∅. Thus,
γt(G ◦v H) ≥ |AS| + n(G)(γt(H) − 1) ≥ γ(G) + n(G)(γt(H) − 1) = γt(G ◦v H), which implies
that AS is a γ(G)-set and for every x ∈ AS ∩ S we have that |Sx| = γt(H). Therefore, there exists
x ∈ AS ∩ S such that Sx is a γt(Hx)-set or AS is a γt(G)-set, which implies that (ii) holds.

Conversely, assume that (ii) holds. As above, let S be a γt(G ◦v H)-set. Since γt(H − {v}) =

γt(H)− 1, by Theorem 1, γt(G ◦v H) ≤ γt(G) + n(G)(γt(H)− 1).
Suppose that BS = ∅. In such a case, γt(G ◦v H) = n(G)γt(H), which implies that γ(G) <

γt(G) = n(G), and so G ∼= ∪K2. Let A ∪ B = V(G) be the bipartition of the vertex set of G, i.e., every
edge has one endpoint in A and the other one in B. Thus, for every x ∈ V(G) we define a subset
Yx ⊆ V(Hx) as follows. If x ∈ A, then Yx is a γt(Hx)-set which contains x, while if x ∈ B, then
Yx is a γt(Hx − {x})-set. Hence, Y = ∪x∈V(G)Yx is a TDS of G ◦v H and so γt(G ◦v H) ≤ |Y| =
n(G)γt(H)− n(G)

2 < n(G)γt(H), which is a contradiction. From now on we assume that BS 6= ∅.
If there exists a vertex x ∈ BS ∩ S, then by Lemma 3 we have that N(x) ∩ Sx = ∅, which implies

that Sx \ {x} is a TDS of Hx − N[x]. Hence, γt(H − N[v]) = γt(Hx − N[x]) ≤ |Sx \ {x}| = γt(H)− 2,
which is a contradiction with the assumption γt(H − N[v]) = γt(H) − 1. Therefore, BS ∩ S = ∅,
and by Lemma 4 we deduce that γt(G ◦v H) ≥ γ(G) + n(G)(γt(H)− 1).

It is still necessary to prove that γt(G ◦v H) ≤ γ(G) + n(G)(γt(H)− 1). If γ(G) = γt(G), then
we are done. Assume γ(G) < γt(G). Now we take a γ(G)-set X and for every x ∈ V(G) we
define a set Zx ⊆ V(Hx) as follows. If x ∈ X, then Zx is a γt(Hx)-set such that x ∈ Zx, while if
x ∈ V(G) \ X, then Zx is a γt(Hx − {x})-set. Notice that Z = ∪x∈V(G)Zx is a TDS of G ◦v H. Therefore,
γt(G ◦v H) ≤ |Z| = γ(G) + n(G)(γt(H)− 1), as required.
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Next we proceed to characterize the graphs with γt(G ◦v H) = γt(G) + n(G)(γt(H) − 1).
Notice that it is excluded the case G ∼= ∪K2. In such a case, γt(G) = n(G), and so γt(G) +

n(G)(γt(H)− 1) = n(G)γt(H), which implies that the characterization of this particular case can be
derived by elimination from Theorems 3 and 4. Analogously, the case γ(G) = γt(G) is excluded, as it
was discusses in Theorem 4.

Theorem 5. Let G 6∼= ∪K2 and H be two graphs with no isolated vertex such that γ(G) < γt(G), and let
v ∈ V(H). The following statements are equivalent.

(i) γt(G ◦v H) = γt(G) + n(G)(γt(H)− 1).
(ii) γt(H − {v}) = γt(H)− 1 and v /∈ D for every γt(H)-set D.

Proof. First, assume that (i) holds. Since, G 6∼= ∪K2, we have that γt(G) < n(G). Thus, by Lemma 6,
v 6∈ S(H) and then by Lemma 5 we deduce that γt(H − {v}) ≤ γt(H)− 1 and Lemma 1 leads to
γt(H − {v}) = γt(H)− 1.

Suppose that there exists a γt(H)-set containing v. Let X be a γ(G)-set. For every x ∈ V(G)

we define a set Zx ⊆ V(Hx) as follows. If x ∈ X, then Zx is a γt(Hx)-set such that x ∈ Zx, while if
x ∈ V(G) \ X, then Zx is a γt(Hx − {x})-set. Notice that Z = ∪x∈V(G)Zx is a TDS of G ◦v H. Therefore,
γt(G ◦v H) ≤ |Z| = γ(G) + n(G)(γt(H)− 1), which is a contradiction, as γt(G) > γ(G). Therefore,
v 6∈ D for every γt(H)-set D, which implies that (ii) follows.

Conversely, assume that (ii) holds. Since γt(H − {v}) = γt(H)− 1, by Theorem 1 we have that
γt(G ◦v H) ≤ γt(G) + n(G)(γt(H) − 1). Let S be a γt(G ◦v H)-set. If BS = ∅, then γt(G ◦v H) =

n(G)γt(H), and so γt(G) = n(G), which is a contradiction, as G 6∼= ∪K2. Hence, from now on we
assume that BS 6= ∅.

If there exists a vertex x ∈ BS ∩ S, then for any vertex y ∈ N(v) ∩ V(Hx), the set Sx ∪ {y} is a
γt(Hx)-set, which is a contradiction. Thus, BS ∩ S = ∅, and so by Lemma 3, AS is a dominating set of
G. Moreover, by Lemma 4 and Theorem 2 we deduce that either γt(G ◦v H) = γ(G)+ n(G)(γt(H)− 1)
or γt(G ◦v H) = γt(G) + n(G)(γt(H)− 1). Now, let AS = A− ∪ A+ where x ∈ A− if x ∈ AS and
N(x) ∩AS = ∅. Let B ⊆ BS such that |B| ≤ |A−| and N(x) ∩ B 6= ∅ for every x ∈ A−. Obviously,
B ∪ A+ is a total dominating set of G, and so γt(G) + n(G)(γt(H)− 1) ≤ |B ∪ A+|+ n(G)(γt(H)−
1) ≤ |AS|+ n(G)(γt(H)− 1) ≤ γt(G ◦v H). Therefore, the result follows.

From Theorem 2 we learned that there are four possible expressions for γt(G ◦v H). In the case
of the first three expressions, the graphs (and the root) reaching the equality were characterized
in Theorems 3–5. In the case of the expression γt(G ◦v H) = n(G)γt(H), the corresponding
characterization can be derived by elimination from the previous results, although it must be
recognized that the formulation of such a characterization is somewhat cumbersome. To conclude this
section, we will just give a couple of examples where this expression is obtained.

The following result shows an example where γt(G ◦v H) = n(G)γt(H), which covers the cases
in which v is a neighbor of a support vertex, excluding the case where v is the only leaf adjacent to
its support.

Proposition 1. Let G and H be two graphs with no isolated vertex and v ∈ V(H). If there exists u ∈ N(v)
such that N(u) ∩ (L(H) \ {v}) 6= ∅, then

γt(G ◦v H) = n(G)γt(H).

Proof. Assume first that v 6∈ S(H). Let D be a γt(H − {v})-set. Since u ∈ S(H − {v}), we have
that u ∈ D. Hence, D is a TDS of H, and so γt(H − {v}) = |D| ≥ γt(H). Therefore, Lemma 5
leads to γt(G ◦v H) = n(G)γt(H) or γt(G ◦v H) = n(G)(γt(H) − 1). Now, suppose that γt(G ◦v

H) = n(G)(γt(H) − 1). Let S be a γt(G ◦v H)-set. By Lemma 3, BS = V(G) and N(x) ∩ Sx = ∅
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for every x ∈ BS, which is a contradiction, as N(x) ∩ S(Hx) 6= ∅ and S(Hx) ⊆ Sx. Therefore,
γt(G ◦v H) = n(G)γt(H).

Now, if v ∈ S(H), then u, v ∈ S(G ◦v H). Hence, for every γt(G ◦v H)-set S and every vertex
x ∈ V(G), we have that Sx is a TDS of Hx. Thus, BS = ∅, which implies that γt(G ◦v H) = n(G)γt(H),
as required.

We next consider another example where γt(G ◦v H) = n(G)γt(H).

Proposition 2. Let G and H be two graphs with no isolated vertex and v ∈ V(H) \ S(H). If γt(H− {v}) ≥
γt(H) and v does not belong to any γt(H)-set, then

γt(G ◦v H) = n(G)γt(H).

Proof. If γt(H − {v}) ≥ γt(H), then by Lemma 5 we have that γt(G ◦v H) = n(G)γt(H) or γt(G ◦v

H) = n(G)(γt(H) − 1). Now, assume that v does not belong to any γt(H)-set. If γt(G ◦v H) =

n(G)(γt(H) − 1), then BS = V(G). Hence, by Lemma 4 (ii) there exists x ∈ BS ∩ S, which is a
contradiction as from any x′ ∈ N(x) ∩V(Hx) the set Sx ∪ {x′} is a γt(Hx)-set containing x. Therefore,
γt(G ◦v H) = n(G)γt(H).

2. An Observation on the Domination Number

It was shown in [15] that there are two possibilities for the domination number of a rooted product
graph. Since the graphs reaching these expressions have not been characterized, we consider that
it is appropriate to derive a result in this direction. Specifically, we will provide a characterization
in Theorem 7.

Theorem 6. [15] For any nontrivial graphs G and H and any v ∈ V(H),

γ(G ◦v H) ∈ {n(G)γ(H), γ(G) + n(G)(γ(H)− 1)}.

In order to derive our result, we need to introduce the following two lemmas.

Lemma 7. [21] Let H be a graph. For any vertex v ∈ V(H),

γ(H − {v}) ≥ γ(H)− 1.

Lemma 8. For any γ(G ◦v H)-set D and any vertex x ∈ V(G),

|Dx| ≥ γ(H)− 1.

Furthermore, if |Dx| = γ(H)− 1, then N[x] ∩ Dx = ∅.

Proof. Let x ∈ V(G). Notice that every vertex in V(Hx) \ {x} is adjacent to some vertex in Dx.
Since Dx ∪ {x} is a dominating set of Hx, we have that γ(H) = γ(Hx) ≤ |Dx ∪ {x}| ≤ |Dx| + 1,
as required.

Now, assume that |Dx| = γ(H)− 1. If N[x]∩Dx 6= ∅, then Dx is a dominating set of Hx, which is
a contradiction as |Dx| = γ(Hx)− 1. Therefore, the result follows.

Theorem 7. For any pair of nontrivial graphs G and H, and any v ∈ V(H),

γ(G ◦v H) =





γ(G) + n(G)(γ(H)− 1) if γ(H − {v}) = γ(H)− 1,

n(G)γ(H) otherwise.
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Proof. By Theorem 6 we only need to prove that γ(G ◦v H) = γ(G) + n(G)(γ(H)− 1) if and only if
γ(H − {v}) = γ(H)− 1.

We first assume γ(H − {v}) = γ(H) − 1. Let D ⊆ V(G ◦v H) such that D−x = Dx \ {x} is
a γ(Hx − {x})-set for every x ∈ V(G), and D ∩ V(G) is a γ(G)-set. It is readily seen that D is a
dominating set of G ◦v H, which implies that γ(G ◦v H) ≤ |D| = γ(G) + ∑x∈V(G) |D−x | = γ(G) +

n(G)(γ(H)− 1), and by Theorem 6 we conclude that the equality holds.
Conversely, assume γ(G ◦v H) = γ(G) + n(G)(γ(H) − 1). Let S be a γ(G ◦v H)-set. Since

|S| < n(G)γ(H), there exists x ∈ V(G) such that |Sx| < γ(H). Hence, by Lemma 8, |Sx| = γ(H)− 1
and N[x]∩ Sx = ∅. This implies that Sx is a dominating set of Hx −{x}, and so γ(H−{v}) = γ(Hx −
{x}) ≤ |Sx| = γ(H)− 1. By Lemma 7 we conclude that γ(H − {v}) = γ(H)− 1, which completes
the proof.
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Abstract

Given a graph G = (V,E), a function f : V → {0, 1, 2} is a total Roman {2}-dominating
function if

• every vertex v ∈ V for which f(v) = 0 satisfies that
∑

u∈N(v) f(u) ≥ 2, where N(v)
represents the open neighborhood of v, and

• every vertex x ∈ V for which f(x) ≥ 1 is adjacent to at least one vertex y ∈ V such
that f(y) ≥ 1.

∗This is an original manuscript of an article published by Taylor & Francis in Quaestiones Mathematicae,
available online: http://www.tandfonline.com/10.2989/16073606.2019.1695230.
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The weight of the function f is defined as ω(f) =
∑

v∈V f(v). The total Roman {2}-
domination number, denoted by γt{R2}(G), is the minimum weight among all total Roman
{2}-dominating functions on G. In this article we introduce the concepts above and begin
the study of its combinatorial and computational properties. For instance, we give several
closed relationships between this parameter and other domination related parameters in
graphs. In addition, we prove that the complexity of computing the value γt{R2}(G) is
NP-hard, even when restricted to bipartite or chordal graphs.

Mathematics Subject Classification (2010): 05C69, 05C75.

Key words: Total Roman {2}-domination, Roman {2}-domination, total Roman domination,
total domination.

1 Introduction

Throughout this article we only consider simple graphs G with vertex set V (G) and edge set
E(G). That is, graphs that are finite, undirected, and without loops or multiple edges. Given a
vertex v ofG, NG(v) denotes the open neighborhood of v inG: NG(v) = {u ∈ V (G) : uv ∈ E(G)}.
The closed neighborhood, denoted by NG[v], equals NG(v) ∪ {v}. Whenever possible, we shall
skip the subindex G in the notations above.

A function f : V (G) → {0, 1, 2, . . .} on G is said to be a dominating function if for every
vertex v such that f(v) = 0, there exists a vertex u ∈ N(v), such that f(u) > 0; furthermore, f is
said to be a total dominating function (TDF) if for every vertex v, there exists a vertex u ∈ N(v),
such that f(u) > 0. The weight of a function f on a set S ⊆ V (G) is f(S) =

∑
v∈S f(v). If

particularly S = V (G), then f(V (G)) will be represented as ω(f).
Recently, (total) dominating functions in domination theory have received much attention.

A purely theoretic motivation is given by the fact that the (total) dominating function problem
can be seen, in some sense, as a proper generalization of the classical (total) domination problem.
That is, a set S ⊆ V (G) is a (total) dominating set if there exists a (total) dominating function
f such that f(x) > 0 if and only if x ∈ S. The (total) domination number of G, denoted by
(γt(G)) γ(G), is the minimum cardinality among all (total) dominating sets of G, or equivalently,
the minimum weight among all (total) dominating functions on G. Domination in graphs is a
classical topic, and nowadays, one of the most active areas of research in graph theory. For more
information on domination and total domination see the books [13, 14, 17] and the survey [15].

From now on, we restrict ourselves to the case of functions f : V (G) → {0, 1, 2}. Let
Vi = {v ∈ V (G) : f(v) = i} for every i ∈ {0, 1, 2}. We will identify f with the three subsets
of V (G) induced by f and write f(V0, V1, V2). Notice that the weight of f satisfies ω(f) =∑2

i=0 i|Vi| = 2|V2|+ |V1|. We shall also write V0,2 = {v ∈ V0 : N(v)∩V2 6= ∅} and V0,1 = V0 \V0,2.
We now define some types of (total) dominating functions, which are obtained by imposing

certain restrictions, and introduce a new one, in order to begin with the exposition of our results.
A Roman {2}-dominating function (R2DF) is a dominating function f(V0, V1, V2) satisfying

the condition that for every vertex v ∈ V0, f(N(v)) ≥ 2. The Roman {2}-domination number
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of G, denoted by γ{R2}(G), is the minimum weight among all R2DFs on G. A R2DF of weight
γ{R2}(G) is called a γ{R2}(G)-function. This concept was introduced by Chellali et al. in [8]. It
was also further studied in [16], where it was called Italian domination number.

A total Roman dominating function (TRDF) on a graph G is a TDF f(V0, V1, V2) on G
satisfying that for every vertex v ∈ V0 there exists a vertex u ∈ N(v) ∩ V2. The total Roman
domination number, denoted by γtR(G), is the minimum weight among all TRDFs on G. A
TRDF of weight γtR(G) is called a γtR(G)-function. This concept was introduced by Liu and
Chang [18]. For recent results on the total Roman domination in graphs we cite [1, 2, 6].

A set S ⊆ V (G) is a double dominating set of G if for every vertex v ∈ V (G), |N [v]∩S| ≥ 2.
The double domination number of G, denoted by γ×2(G), is the minimum cardinality among
all double dominating sets of G. This graph parameter was introduced in [12] by Harary and
Haynes, and it was also studied, for example, in [3, 7, 11].

In this article we introduce the study of total Roman {2}-domination in graphs. We define
a total Roman {2}-dominating function (TR2DF) to be a R2DF on G which is a TDF as well.
The total Roman {2}-domination number, denoted by γt{R2}(G), is the minimum weight among
all TR2DFs on G.

In particular, we can define a double dominating function (DDF) to be a TR2DF f(V0, V1, V2)
in which V2 = ∅. Obviously f(V0, V1, ∅) is a DDF if and only if V1 is a double dominating set of
G.

To illustrate the definitions above, we consider the graph shown in Figure 1.
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1

1
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1

1

1

1

1 1

(f)

1 1

Figure 1: Graph G with different labelings (vertices with no drawn label have label zero) to show
the values of several parameters: γ(G) = 3 (a), γt(G) = 4 (b), γ{R2}(G) = 5 (c), γt{R2}(G) = 6
(d), γtR(G) = 7 (e) and γ×2(G) = 8 (f).

The article is organized as follows. Section 2 introduces general combinatorial results which
show the close relationship that exists between the total Roman {2}-domination number and
other domination parameters. Also, we obtain general bounds and discuss the extreme cases.
Finally, in Section 3 we show that the problem of deciding if a graph has a TR2DF of a given
weight is NP-complete, even when restricted to bipartite graphs or chordal graphs.
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1.1 Terminology and Notation

Given a graph G, we denote by δG(v) = |NG(v)| the degree of a vertex v of G. Also, δ(G) =
minv∈V (G){δG(v)} and ∆(G) = maxv∈V (G){δG(v)}. We say that a vertex v ∈ V (G) is universal
if NG[v] = V (G). For a set S ⊆ V (G), its open neighborhood is the set NG(S) = ∪v∈SNG(v),
and its closed neighborhood is the set NG[S] = NG(S) ∪ S.

The private neighborhood pnG(v, S) of v ∈ S ⊆ V (G) is defined by pnG(v, S) = {u ∈ V (G) :
NG(u) ∩ S = {v}}. Each vertex in pnG(v, S) is called a private neighbor of v with respect to S.
The external private neighborhood epnG(v, S) consists of those private neighbors of v in V (G)\S.
Hence, epnG(v, S) = pnG(v, S) ∩ (V (G) \ S).

For any two vertices u and v, the distance dG(u, v) between u and v is the minimum length
of a u−v path. The diameter of G, denoted by diam(G), is the maximum distance among pairs
of vertices of G. A diametral path in G is a shortest path whose length equals the diameter of the
graph. Thus, a diametral path in G is a shortest path joining two vertices that are at distance
diam(G) from each other (such vertices are called diametral vertices). From now on, we shall
skip the subindex G in all the notations above, whenever the graph G is clear from the context.

Given a set of vertices S ⊆ V (G), by G − S we denote the graph obtained from G by
removing all the vertices of S and all the edges incident with a vertex in S (if S = {v}, for some
vertex v, then we simply write G− v).

A leaf vertex of G is a vertex of degree one. A support vertex of G is a vertex adjacent to a
leaf vertex, a strong support vertex is a support vertex adjacent to at least two leaves, a strong
leaf vertex is a leaf vertex adjacent to a strong support vertex, and a semi-support vertex is a
vertex adjacent to a support vertex that is not a leaf. The set of leaves is denoted by L(G); the
set of support vertices is denoted by S(G); the set of strong support vertices is denoted by Ss(G);
the set of strong leaves is denoted by Ls(G); and the set of semi-support vertices is denoted by
SS(G).

A tree T is an acyclic connected graph. A rooted tree T is a tree with a distinguished special
vertex r, called the root. For each vertex v 6= r of T , the parent of v is the neighbor of v on the
unique r − v path, while a child of v is any other neighbor of v. A descendant of v is a vertex
u 6= v such that the unique r − u path contains v. Thus, every child of v is a descendant of v.
The set of descendants of v is denoted by D(v), and we define D[v] = D(v)∪ {v}. The maximal
subtree at v is the subtree of T induced by D[v], and is denoted by Tv.

We will use the notation Kn, Nn, K1,n−1, Pn and Cn for complete graphs, empty graphs,
star graphs, path graphs and cycle graphs of order n, respectively. Given two graphs G and
H , the corona product G ⊙ H is defined as the graph obtained from G and H by taking one
copy of G and |V (G)| copies of H , and joining by an edge each vertex of the ith-copy of H with
the ith-vertex of G. For the remainder of the article, definitions will be introduced whenever a
concept is needed.
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2 Combinatorial results

We begin this section with two inequality chains relating the domination number, the total
domination number, the total Roman domination number, the Roman {2}-domination number,
the double domination number and the total Roman {2}-domination number. We must remark
that the last inequality in the first item is a well known result (see [1]). We include it in the result
to have a complete vision of the relationship between our parameter and the total domination
number.

Proposition 2.1. The following inequalities hold for any graph G without isolated vertices.

(i) γt(G) ≤ γt{R2}(G) ≤ γtR(G) ≤ 2γt(G), (γtR(G) ≤ 2γt(G) is from [1]).

(ii) γ{R2}(G) ≤ γt{R2}(G) ≤ γ×2(G).

Proof. It was shown in [1] that γtR(G) ≤ 2γt(G). To conclude the proof of (i), we only need to
observe that any TR2DF is a TDF, which implies that γt(G) ≤ γt{R2}(G), and any TRDF is a
TR2DF, which implies that γt{R2}(G) ≤ γtR(G).

Now, to prove (ii), we only need to observe that any DDF is a TR2DF, which implies that
γt{R2}(G) ≤ γ×2(G) and any TR2DF is a R2DF, which implies that γ{R2}(G) ≤ γt{R2}(G).

The following result provides equivalent conditions for the graphs where the left hand side
inequality of Proposition 2.1 (i) is achieved. Note that it has a simple proof, but we however
prefer include it to have a more complete exposition.

Remark 2.2. For any graph G, the following statements are equivalent.

(a) γt{R2}(G) = γt(G).

(b) γ×2(G) = γt(G).

Proof. Suppose that (a) holds and let f(V0, V1, V2) be a γt{R2}(G)-function. Since f is a TDF,
γt(G) ≤ |V1 ∪ V2| = |V1|+ |V2| ≤ |V1|+2|V2| = γt{R2}(G) = γt(G). So V2 = ∅, which implies that
f is a DDF of weight ω(f) = γt(G). Hence, (b) holds. Finally, it is straightforward to observe
that (b) implies (a).

We continue by showing a simple relationship between the total Roman {2}-domination
number, the domination number and the total domination number. Since γ(G) ≤ γt(G) for any
graph G, we notice that the following result improves the last upper bound of Proposition 2.1 (i).

Theorem 2.3. For any graph G without isolated vertices, γt{R2}(G) ≤ γt(G) + γ(G).

Proof. Let D be a γt(G)-set and let S be a γ(G)-set. We define the function f(V0, V1, V2) on
G, where V2 = D ∩ S and V1 = (D ∪ S) \ V2. Notice that f is a TR2DF on G of weight
ω(f) = 2|V2|+ |V1| = |D|+ |S| = γt(G) + γ(G). Therefore, the result follows.
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The following result is an immediate consequence of the remark above and the well-know
inequality γt(G) ≤ 2γ(G) (see [15]).

Corollary 2.4. For any graph G without isolated vertices, γt{R2}(G) ≤ 3γ(G).

We remark that the upper bound of Theorem 2.3 is sharp. For example, for an integer s ≥ 1,
let Hs be the graph obtained from P3 and N1 by taking one copy of N1 and s copies of P3, and
joining by an edge the support vertex of each copy of P3 with the vertex of N1. It is easy to
check that γ(Hs) = s, γt(Hs) = s+1 and γt{R2}(Hs) = 2s+1 = γt(Hs) + γ(Hs). The graph H3,
for example, is illustrated in Figure 2.

Figure 2: The graph H3.

From Proposition 2.1 and Theorem 2.3, we immediately obtain that γt(G) = γ(G) is a
necessary condition for a graph G to satisfy γt{R2}(G) = 2γt(G). However, this condition is not
sufficient, for example, the cycle graph C4 satisfies that γt(C4) = γ(C4) = 2 and γt{R2}(C4) =
3 < 4 = 2γt(C4).

The following result provides an equivalent condition for the graphs G which satisfy the
equality γt{R2}(G) = 2γt(G). Before we shall need the following known result.

Theorem 2.5. [1] If G is a graph with no isolated vertex, then 2γ(G) ≤ γtR(G).

Theorem 2.6. Let G be a graph. Then γt{R2}(G) = 2γt(G) if and only if γt{R2}(G) = γtR(G)
and γt(G) = γ(G).

Proof. Assume that γt{R2}(G) = 2γt(G). Hence, Proposition 2.1 leads to γt{R2}(G) = γtR(G).
Also, by Theorem 2.3 and the known inequality γ(G) ≤ γt(G), we obtain that 2γt(G) =
γt{R2}(G) ≤ γt(G)+γ(G) ≤ 2γt(G). Therefore, we must have equality throughout the inequality
chain above. In particular, γt(G) = γ(G).

On the other hand, we assume that γt{R2}(G) = γtR(G) and γt(G) = γ(G). By the equalities
above, Theorem 2.5 and Proposition 2.1, we obtain that 2γt(G) = 2γ(G) ≤ γtR(G) = γt{R2}(G) ≤
2γt(G). Therefore γt{R2}(G) = 2γt(G).

Notice that the inequality γt{R2}(G) ≤ 3γ(G) can be also deduced from the following result.

Theorem 2.7. For any graph G without isolated vertices, γt{R2}(G) ≤ γ{R2}(G) + γ(G).

Proof. Let f(V0, V1, V2) be a γ{R2}(G)-function and let S be a γ(G)-set. Now, we consider the
function f ′(V ′

0 , V
′
1 , V

′
2) defined as follows.
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(a) For every x ∈ (V1 ∪ V2) ∩ S, choose a vertex u ∈ (V0 ∩N(x)) \ S if it exists, and label it as
f ′(u) = 1.

(b) For every vertex x ∈ V0 ∩ S, f ′(x) = 1.

(c) For any other vertex u not previously labelled, f ′(u) = f(u).

Since f is a R2DF, by definition, f ′ is a R2DF as well. Observe that f ′ is also a TDF on G.
Thus, f ′ is a TR2DF on G, and therefore, γt{R2}(G) ≤ ω(f ′) ≤ γ{R2}(G) + γ(G).

The bound above is tight. For instance, it is achieved for the star graph K1,n−1, where n ≥ 3.

Corollary 2.8. For any graph G without isolated vertices, γt{R2}(G) ≤ 2γ{R2}(G). Furthermore,
if γ{R2}(G) > γ(G), then γt{R2}(G) ≤ 2γ{R2}(G)− 1.

In connection with the sharpness of the latter bound of the corollary above, we observe that
every graph G having exactly one universal vertex satisfies that γt{R2}(G) = 2γ{R2}(G)− 1.

The next result establishes the existence of a γt{R2}(G)-function which satisfies a useful
property.

Proposition 2.9. For any graph G without isolated vertices, there exists a γt{R2}(G)-function
f(V0, V1, V2) such that either V2 = ∅ or every vertex of V2 has at least two private neighbors in
V0 with respect to the set V1 ∪ V2.

Proof. Let f(V0, V1, V2) be a γt{R2}(G)-function satisfying that |V2| is minimum. Clearly, if
|V2| = 0, then we are done. Hence, let v ∈ V2. If epn(v, V1 ∪ V2) = ∅, then the function f ′,
defined by f ′(v) = 1 and f ′(x) = f(x) whenever x ∈ V (G) \ {v}, is a TR2DF on G, which is a
contradiction, and so, epn(v, V1∪V2) 6= ∅. If epn(v, V1∪V2) = {u}, then the function f ′′, defined
by f ′′(v) = f ′′(u) = 1 and f ′′(x) = f(x) whenever x ∈ V (G) \ {v, u}, is a TR2DF on G, which
is a contradiction as well. Thus, |epn(v, V1 ∪ V2)| ≥ 2, which completes the proof.

Corollary 2.10. For every graph G without isolated vertices and maximum degree ∆(G) ≤ 2,

γt{R2}(G) = γ×2(G).

From Corollary 2.10, and the following values of γ×2(Pn) and γ×2(Cn) obtained in [3] and
[12] respectively, we obtain our next result.

γ×2(Pn) =

{
2
⌈
n
3

⌉
+ 1, if n ≡ 0 (mod 3),

2
⌈
n
3

⌉
, otherwise.

and γ×2(Cn) =

⌈
2n

3

⌉
.

Remark 2.11. For any positive integer n ≥ 2,

(i) γt{R2}(Pn) =

{
2
⌈
n
3

⌉
+ 1, if n ≡ 0 (mod 3),

2
⌈
n
3

⌉
, otherwise.
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(ii) γt{R2}(Cn) =
⌈
2n
3

⌉
.

Our next contribution shows another relationship between our parameter and the total
domination number, but we now also use the order of the graph.

Theorem 2.12. For any graph G of order n and δ(G) ≥ 2,

γt{R2}(G) ≤
⌊
γt(G) + n

2

⌋
.

Proof. Let D be a γt(G)-set, let I be the set of isolated vertices in 〈V (G) \ D〉 and let S be
a γ(〈V (G) \ (D ∪ I)〉)-set. In addition, let f(V0, V1, ∅) be a function defined by V1 = D ∪ S
and V0 = V (G) \ V1. Since D is a TDS of G, we have that V1 = D ∪ S is a TDS as well.
Furthermore, every vertex u ∈ V (G) \ (D ∪ S) is dominated by at least two vertices of V1.
Hence, V1 is a double dominating set of G, which implies that f is a TR2DF on G. Thus,
γt{R2}(G) ≤ |V1| = |D ∪ S| = |D|+ |S|. Now, since 〈V (G) \ (D ∪ I)〉 is a graph without isolated

vertices, we have that |S| = γ(〈V (G) \ (D ∪ I)〉) ≤ |V (G)\(D∪I)|
2

≤ |V (G)\D|
2

= n−γt(G)
2

. Therefore,

γt{R2}(G) ≤ ⌊γt(G)+n
2

⌋, which completes the proof.

To see the tightness of the bound above we consider for instance the Cartesian product
graph P2�P3. Also, a consequence of such theorem above is next stated. This is also based on
the fact that for any graph G with δ(G) ≥ 3, γt(G) ≤ |V (G)|

2
.

Proposition 2.13. For any graph G of order n and δ(G) ≥ 3,

γt{R2}(G) ≤ 3n

4
.

Given a graph G and an edge e ∈ E(G), the graph obtained from G by removing the edge e
will be denoted by G− e. Notice that any γt{R2}(G− e)-function is a TR2DF on G. Therefore,
the following basic result follows.

Observation 2.14. If H is a spanning subgraph (without isolated vertices) of a graph G, then
γt{R2}(G) ≤ γt{R2}(H).

From Remark 2.11 and Observation 2.14, we obtain the following result.

Proposition 2.15. Let G be a graph of order n.

- If G is a Hamiltonian graph, then γt{R2}(G) ≤ 2
⌈
n
3

⌉
.

- If G has a Hamiltonian path, then γt{R2}(G) ≤ 2
⌈
n
3

⌉
+ 1.

Clearly, the bounds above are tight, as they are achieved for Cn and Pn with n ≡ 0 (mod
3), respectively.

We now proceed to characterize all graphs achieving the limit cases of the trivial bounds
2 ≤ γt{R2}(G) ≤ n. For this purpose, we shall need the following theorem.
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Theorem 2.16. [12] Let G be a graph without isolated vertices. Then γ×2(G) = 2 if and only if
G has two universal vertices.

Theorem 2.17. Let G be a graph without isolated vertices. Then γt{R2}(G) = 2 if and only if
G has two universal vertices.

Proof. Notice that γt{R2}(G) = 2 directly implies γ×2(G) = 2. Hence, by Theorem 2.16, G has
two universal vertices. The other hand it is straightforward to see.

We next proceed to characterize all graphs G with γt{R2}(G) = 3. For this purpose, we
consider the next family of graphs. Let H be the family of graphs H of order n ≥ 3 such that
the subgraph induced by three vertices of H is P3 or C3 and the remaining n − 3 vertices have
minimum degree two and they induce an empty graph.

Theorem 2.18. Let G be a connected graph of order n. Then γt{R2}(G) = 3 if and only if there
exists H ∈ H ∪ {K1,n−1} which is a spanning subgraph of G and G has as most one universal
vertex.

Proof. We first suppose that γt{R2}(G) = 3. Let f(V0, V1, V2) be a γt{R2}(G)-function. By
Theorem 2.17, G has at most one universal vertex. If |V2| = 1, then |V1| = 1. Let V1 = {v}
and V2 = {w}. Notice that v and w are adjacent vertices. Since f is a TR2DF, any vertex
must be adjacent to w, concluding that K1,n−1 is a spanning subgraph of G. Now, if |V2| = 0,
then |V1| = 3. As V1 is a TDS, the subgraph induced by V1 is P3 or C3. Since f is a TR2DF,
we observe that |N(x) ∩ V1| ≥ 2 for every x ∈ V0. Hence, in this case, G contains a spanning
subgraph belonging to H.

Conversely, let G be a connected graph of order n containing a graph H ∈ H ∪ {K1,n−1} as
a spanning subgraph. Notice that we can construct a TR2DF g satisfying that ω(g) = 3. Hence
γt{R2}(G) ≤ ω(g) = 3. Moreover, since G has at most one universal vertex, by Theorem 2.17 we
have that γt{R2}(G) ≥ 3, which completes the proof.

Theorem 2.19. Let G be a connected graph of order n. Then γt{R2}(G) = n if and only if G is
P3 or H ⊙N1 for some connected graph H.

Proof. If G is P3 or H ⊙N1 for some connected graph H , then it is straightforward to see that
γt{R2}(G) = n. From now on we assume that G is a connected graph such that γt{R2}(G) = n.
If n = 2, then G ∼= P2

∼= N1 ⊙ N1, and if n = 3, then G ∼= P3. Hence, we consider that
n ≥ 4. Suppose there exists a vertex v /∈ L(G) ∪ S(G). Notice that the function f , defined by
f(v) = 0 and f(x) = 1 whenever x ∈ V (G) \ {v}, is a TR2DF of weight ω(f) = n− 1, which is
a contradiction. Thus V (G) = L(G) ∪ S(G).

Now, suppose there exists a vertex u ∈ Ss(G) and let h1, h2 be two leaves adjacent to u.
We consider the function g defined by g(h1) = g(h2) = 0, g(u) = 2 and g(x) = 1 whenever x ∈
V (G) \ {u, h1, h2}. Hence, g is a TR2DF of weight ω(g) = n− 1, which is again a contradiction.
Thus Ss(G) = ∅ and, as a consequence, G ∼= H ⊙N1 for some connected graph H .
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Based on the trivial bound 2 ≤ γt{R2}(G) ≤ n and the characterizations above, it is natural
to think into the existence of graphs achieving all the other possible values in the range given
by such bounds for γt{R2}(G). That is made in our next result, and for it, we need two previous
observations that appear first.

Observation 2.20. For any connected graph G containing two adjacent support vertices v and
w, there exists a γt{R2}(G)-function f satisfying f(v) = f(w) = 2.

Observation 2.21. Let G be a connected graph different from a star graph. If v ∈ Ss(G), then
there exists a γt{R2}(G)-function (γtR(G)-function) f satisfying that f(v) = 2 and f(N(v) ∩
L(G)) = 0.

Proposition 2.22. For any integers r, n with 3 < r < n, there exists a graph Fr,n of order n
such that γt{R2}(Fr,n) = r.

Proof. If r is even, then we consider a graph Fr,n constructed as follows. We begin with a corona
product graph H ⊙ N1 of order |V (H ⊙ N1)| = r and n − r isolated vertices. To obtain Fr,n,
we join (by an edge) one vertex v of H to each one of the n − r isolated vertices. Notice that
Fr,n has order n. By Observation 2.20, the function f , defined by f(x) = 2 if x ∈ V (H) and
f(x) = 0 if x ∈ V (Fr,n) \ V (H), is a γt{R2}(Fr,n)-function and so, γt{R2}(Fr,n) = ω(f) = r.

On the other hand, if r is odd, we construct a graph Fr,n as follows. We begin with a corona
product graph H ⊙N1 of order |V (H ⊙N1)| = r− 3 and a star graph K1,n−r+2. To obtain Fr,n,
we join (by an edge) one vertex v of H to one leaf, namely h, of the star K1,n−r+2. Hence, Fr,n

has order n. Now, we consider the function f , defined by f(h) = 1, f(x) = 2 if x ∈ S(Fr,n) and
f(x) = 0 otherwise. Notice that f is a TR2DF on Fr,n and so, γt{R2}(Fr,n) ≤ ω(f) = r.

Let v be the support vertex of K1,n−r+2. Since |V (K1,n−r+2)| ≥ 4, v ∈ Ss(Fr,n). By
Observation 2.21, there exists a γt{R2}(Fr,n)-function g(V0, V1, V2) such that g(v) = 2 and g(x) = 0
if x ∈ N(v) ∩ L(Fr,n). Hence g(h) ≥ 1 because V1 ∪ V2 is a TDS of Fr,n. Moreover, notice that
the function g restricted to V (H ⊙ N1), say g′, is a TR2DF on H ⊙ N1. So, by statement
above and Theorem 2.19, ω(g′) ≥ γt{R2}(H ⊙ N1) = r − 3. Therefore, γt{R2}(Fr,n) = ω(g) =
g(N [v]) + ω(g′) ≥ 3 + r − 3 = r. Consequently, it follows that γt{R2}(Fr,n) = r and the proof is
complete.

2.1 Trees T with γt{R2}(T ) = γtR(T )

We begin this subsection with a theoretical characterization of the graphs G satisfying the
equality γt{R2}(G) = γtR(G).

Theorem 2.23. Let G be a graph. Then γt{R2}(G) = γtR(G) if and only if there exists a
γt{R2}(G)-function f(V0, V1, V2) such that V0,1 = ∅.

Proof. Suppose that γt{R2}(G) = γtR(G). Let f(V0, V1, V2) be a γtR(G)-function. Since every
TRDF is a TR2DF, f is a γt{R2}(G)-function as well, and satisfies that V0,1 = ∅. Conversely,
suppose there exists a γt{R2}(G)-function f ′(V ′

0 , V
′
1 , V

′
2) such that V ′

0,1 = ∅. So, V ′
0 = V ′

0,2, which

10
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implies that f ′ is a TRDF on G. Thus, γtR(G) ≤ ω(f ′) = γt{R2}(G). Hence, Proposition 2.1
leads to γt{R2}(G) = γtR(G).

The characterization above clearly lacks of usefulness since it precisely depends on finding a
γt{R2}(G)-function which satisfies a specific condition. In that sense, it appears an open problem
to characterize the graphs G which satisfy the equality γt{R2}(G) = γtR(G). In this subsection
we give a partial solution to this problem for the particular case of trees. To this end, we require
the next results and extra definitions.

Observation 2.24. Let G be a connected graph. If v ∈ Ss(G), then there exists a γt{R2}(G)-
function (γtR(G)-function) f satisfying that f(v) = 2 and f(h) = 0 for some vertex h ∈ N(v) ∩
L(G).

Observation 2.25. If T ′ is a subtree of a tree T , then γt{R2}(T ′) ≤ γt{R2}(T ) and γtR(T
′) ≤

γtR(T ).

By an isolated support vertex of G we mean an isolated vertex of the subgraph induced by
the support vertices of G. The set of non isolated support vertices of G is denoted by Sadj(G).

The set of support vertices of G labelled with two by some γtR(G)-function is denoted by
StR,2(G). The set of leaves ofG labelled with one by some γtR(G)-function is denoted by LtR,1(G).
The set of vertices of G labelled with zero by all γt{R2}(G)-functions is denoted by W0(G). The
set of support vertices of G labelled with one by all γt{R2}(G)-functions is denoted by S1(G).

For an integer r ≥ 1, the graph Rr is defined as the graph obtained from P4 and N1 by
taking one copy of N1 and r copies of P4 and joining by an edge one support vertex of each copy
of P4 with the vertex of N1. In Figure 3 we show the example of R3.

Figure 3: The structure of the tree R3.

A near total Roman {2}-dominating function relative to a vertex v, abbreviated near-TR2DF
relative to v, on a graph G, is a function f(V0, V1, V2) satisfying the following.

• For each vertex u ∈ V0, if u = v, then
∑

u∈N(v) f(u) ≥ 1, while if u 6= v, then
∑

u∈N(v) f(u) ≥
2.

• The subgraph induced by V1 ∪ V2 has no isolated vertex.

11
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The weight of a near-TR2DF relative to v on G is the value f(V (G)) =
∑

u∈V (G) f(u).

The minimum weight of a near-TR2DF relative to v on G is called the near total Roman {2}-
domination number relative to v of G, which we denote as γn

t{R2}(G; v). Since every TR2DF is

a near-TR2DF, we note that γn
t{R2}(G; v) ≤ γt{R2}(G) for any vertex v of G. We define a vertex

v ∈ V (G) to be a near stable vertex of G if γn
t{R2}(G; v) = γt{R2}(G). For example, every leaf of

any star K1,n−1 with n ≥ 4, is a near stable vertex. We remark that the terminology of “near”
style parameters is a commonly used technique in domination theory. In order to simply mention
a recently published example where this was used, we can for instance refer to [16].

Now on, in order to provide a constructive characterization for the trees which achieve the
stated equality in Theorem 2.23, we consider the next family of trees. Let F be the family of
trees T that can be obtained from a sequence of trees T0, . . . , Tk, where k ≥ 0, T0

∼= P2 and
T ∼= Tk. Furthermore, if k ≥ 1, then for each i ∈ {1, . . . , k}, the tree Ti can be obtained from the
tree T ′ ∼= Ti−1 by one of the following operations F1, F2, F3, F4, F5, F6 or F7. In such operations,
by a join of two vertices we mean adding an edge between these two vertices.

Operation F1: Add a tree Rr with semi-support vertex u, and join u to an arbitrary vertex v
of T ′.

Operation F2: Add a new vertex u to T ′ and join u to a vertex v ∈ StR,2(T
′).

Operation F3: Add a new vertex u to T ′ and join u to a vertex v ∈ S1(T
′).

Operation F4: Add a path P2 and join a leaf to a vertex v ∈ Sadj(T
′).

Operation F5: Add a path P3 with support vertex u, and identify u with a vertex v ∈ LtR,1(T
′).

Operation F6: Add a path P2, and join a leaf to a near stable vertex v ∈ L(T ′) ∪ SS(T ′).

Operation F7: Add a path P3, and join a leaf to a vertex v ∈ W0(T
′).

We next show that every tree T in the family F satisfies that γt{R2}(T ) = γtR(T ).

Theorem 2.26. If T ∈ F , then γt{R2}(T ) = γtR(T ).

Proof. We proceed by induction on the number r(T ) of operations required to construct the tree
T . If r(T ) = 0, then T ∼= P2 and satisfies that γt{R2}(T ) = 2 = γtR(T ). This establishes the base
case. Hence, we now assume that k ≥ 1 is an integer and that each tree T ′ ∈ F with r(T ′) < k
satisfies that γt{R2}(T ′) = γtR(T

′). Let T ∈ F be a tree with r(T ) = k. Then, T can be obtained
from a tree T ′ ∈ F with r(T ′) = k−1 by one of the seven operations above. We shall prove that
T satisfies that γt{R2}(T ) = γtR(T ). We consider seven cases, depending on which operation is
used to construct the tree T from T ′.

Case 1. T is obtained from T ′ by Operation F1. Assume T is obtained from T ′ by adding a
tree Rr, being u the semi-support vertex, and the edge uv where v is an arbitrary vertex of T ′.

12
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Observe that, from any TRDF on T ′, we can obtain a TRDF on T by assigning the weight two
to each support vertex and zero to another vertices of Rr. Hence, by Proposition 2.1, statement
above and inductive hypothesis, we obtain

γt{R2}(T ) ≤ γtR(T ) ≤ γtR(T
′) + 4r = γt{R2}(T

′) + 4r. (1)

Since S(Rr) = Sadj(Rr), by using Observation 2.20, there exists a γt{R2}(T )-function f
satisfying that f(x) = 2 for every x ∈ S(Rr). As a consequence, f(h) = 0 for every vertex
h ∈ L(Rr).

If f(u) = 0, then f restricted to V (T ′) is a TR2DF on T ′, implying that γt{R2}(T
′) ≤

f(V (T ′)) = ω(f) − f(V (Rr)) = γt{R2}(T ) − 4r, and by the inequality chain (1) it follows that
γt{R2}(T ) = γtR(T ).

Let w ∈ N(v) \ {u} be a vertex such that f(w) = max{f(x) : x ∈ N(v) \ {u}}. If f(u) > 0,
then the function g, defined by g(v) = max{f(v), f(v)f(w) + 1}, (note that in any possibil-
ity, this maximum expression can never take a value larger than two), g(w) = max{1, f(w)}
g(u) = 0 and g(x) = f(x) whenever x ∈ V (T ) \ {v, w, u}, is a TR2DF on T with weight
ω(g) = ω(f) = γt{R2}(T ). So, g is a γt{R2}(T )-function as well. As g(u) = 0, g restricted to
V (T ′) is a TR2DF on T ′ and, by using a similar reasoning as in the previous case (f(u) = 0),
we obtain that γt{R2}(T ) = γtR(T ).

Case 2. T is obtained from T ′ by Operation F2. Assume T is obtained from T ′ by adding
a new vertex u and the edge uv, where v ∈ StR,2(T

′). Hence, there exists a γtR(T
′)-function

f satisfying that f(v) = 2. Notice that f can be extended to a TRDF on T by assigning
the weight 0 to u, which implies that γtR(T ) ≤ γtR(T

′). By using Proposition 2.1, inequality
above, inductive hypothesis and Observation 2.25, we obtain γt{R2}(T ) ≤ γtR(T ) ≤ γtR(T

′) =
γt{R2}(T

′) ≤ γt{R2}(T ). Therefore, we must have equality throughout the inequality chain above.
In particular, γt{R2}(T ) = γtR(T ).

Case 3. T is obtained from T ′ by Operation F3. Assume T is obtained from T ′ by adding a
new vertex u and the edge uv, where v ∈ S1(T

′). Since v is a support of T ′, v is a strong support
of T . So, by Observation 2.24, there exists a γt{R2}(T )-function g satisfying that g(v) = 2 and
g(u) = 0. Hence, g restricted to V (T ′) is a TR2DF on T ′ with weight ω(g) = γt{R2}(T ), but it
is not a γt{R2}(T

′)-function because v ∈ S1(T
′). So, γt{R2}(T

′) ≤ γt{R2}(T )− 1.
Moreover, let f be a γtR(T

′)-function. Since γt{R2}(T
′) = γtR(T

′) and v ∈ S1(T
′), we obtain

that f(v) = 1. Hence, f can be extended to a TRDF on T by assigning the weight 1 to u. Thus,
γtR(T ) ≤ γtR(T

′) + 1. By using Proposition 2.1, inequalities above and inductive hypothesis, we
obtain that γt{R2}(T ) ≤ γtR(T ) ≤ γtR(T

′) + 1 = γt{R2}(T
′) + 1 ≤ γt{R2}(T ).

Therefore, we must have equality throughout the inequality chain above. In particular,
γt{R2}(T ) = γtR(T ).

Case 4. T is obtained from T ′ by Operation F4. Assume T is obtained from T ′ by adding a
path uu1 and the edge uv, where v ∈ Sadj(T

′). Notice that every TRDF on T ′ can be extended
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to a TRDF on T by assigning the weight 1 to u and u1. Hence, by Proposition 2.1, the statement
above and the inductive hypothesis, we obtain

γt{R2}(T ) ≤ γtR(T ) ≤ γtR(T
′) + 2 = γt{R2}(T

′) + 2. (2)

We now show that γt{R2}(T ′) ≤ γt{R2}(T )− 2. Let w ∈ N(v) ∩ S(T ′). By Observation 2.20,
there exists a γt{R2}(T )-function f such that f(v) = f(w) = f(u) = 2 and f(u1) = 0. Hence, f
restricted to V (T ′) is a TR2DF on T ′, which implies that γt{R2}(T

′) ≤ f(V (T ′)) = γt{R2}(T )−2,
as desired. In consequence, we must have equality throughout the inequality chain (2). In par-
ticular, γt{R2}(T ) = γtR(T ).

Case 5. T is obtained from T ′ by Operation F5. Assume T is obtained from T ′ by identifying
the vertex u of path u1uu2 and the vertex v, where v ∈ LtR,1(T

′). Notice that there exists a
γtR(T

′)-function g satisfying that g(v) = 1. So, g can be extended to a TRDF on T be assigning
the weight 2 to u and the weight 0 to u1 and u2. Therefore, by Proposition 2.1, the statement
above and the hypothesis, we obtain γt{R2}(T ) ≤ γtR(T ) ≤ γtR(T

′) + 1 = γt{R2}(T
′) + 1.

Moreover, by Observation 2.21, there exists a γt{R2}(T )-function f satisfying that f(v) = 2
and f(u1) = f(u2) = 0. Notice that the function f ′, defined by f ′(v) = 1 and f ′(x) = f(x)
whenever x ∈ V (T ′) \ {v}, is a TR2DF on T ′. So γt{R2}(T ′) ≤ ω(f ′) = γt{R2}(T ) − 1. As
a consequence, we must have equality throughout the inequality chain above. In particular,
γt{R2}(T ) = γtR(T ).

Case 6. T is obtained from T ′ by Operation F6. Assume T is obtained from T ′ by adding a
path uu1 and the edge uv, where v is a near stable vertex belonging to L(T ′) ∪ SS(T ′). Let s
be a support vertex adjacent to v in T ′. Again, notice that every TRDF on T ′ can be extended
to a TRDF on T by assigning the weight 1 to u and u1. Hence, by the statement above, Propo-
sition 2.1 and the inductive hypothesis, we obtain the inequality chain (2). We now show that
γt{R2}(T

′) ≤ γt{R2}(T )− 2. For this, we consider the next two cases.

Case 6.1. v ∈ L(T ′). Since u ∈ S(T ) and δT (v) = δT (u) = 2, there exists a γt{R2}(T )-function f
satisfying that f(u) = f(u1) = 1, f(v) = 0 and f(s) > 0. If f restricted to V (T ′) is a TR2DF on
T ′, then γt{R2}(T ′) ≤ f(V (T ′)) = γt{R2}(T )−2. Conversely, suppose that f restricted to V (T ′) is
not a TR2DF on T ′. So, f restricted to V (T ′) is a near-TR2DF relative to v on T ′. Thus, as v is a
near stable vertex of T ′, and so, γt{R2}(T

′) = γn
t{R2}(T

′; v) ≤ f(V (T ′)) = γt{R2}(T )−2, as desired.

Case 6.2. v ∈ SS(T ′). Let f be a γt{R2}(T )-function such that f(u1) is minimum. Hence
f(u) + f(u1) = 2 and f(s) > 0 since s is a support of T . If f restricted to V (T ′) is a TR2DF
on T ′, then γt{R2}(T ′) ≤ f(V (T ′)) = γt{R2}(T ) − 2. Conversely, suppose that f restricted
to V (T ′) is not a TR2DF on T ′. Hence f(v) = 0, implying that f restricted to V (T ′) is
a near-TR2DF relative to v on T ′. Also, as v is a near stable vertex of T ′, it follows that
γt{R2}(T

′) = γn
t{R2}(T

′; v) ≤ f(V (T ′)) = γt{R2}(T )− 2, as desired.

In consequence, we must have equality throughout the inequality chain (2). In particular,
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γt{R2}(T ) = γtR(T ).

Case 7. T is obtained from T ′ by Operation F7. Assume T is obtained from T ′ by adding a
path uu1u2 and the edge uv, where v ∈ W0(T

′). Let g be a γtR(T
′)-function. Hence, g can be

extended to a TRDF on T be assigning the weight 1 to u, u1 and u2. Therefore, by Proposition
2.1, the statement above and the hypothesis, we obtain

γt{R2}(T ) ≤ γtR(T ) ≤ γtR(T
′) + 3 = γt{R2}(T

′) + 3. (3)

We now show that γt{R2}(T
′) ≤ γt{R2}(T ) − 3. Let f(V0, V1, V2) be a γt{R2}(T )-function

such that |V2| is minimum. Hence f(u1) + f(u2) = 2. If f(u) = 0, then f(v) > 0 and also, f
restricted to V (T ′) is a TR2DF on T ′. As v ∈ W0(T

′), f is not a γt{R2}(T
′)-function. Hence,

γt{R2}(T
′) ≤ f(V (T ′))− 1 ≤ γt{R2}(T )− 3, as desired.

Now, we suppose that f(u) > 0. In this case, we observe that f(u) = 1 since |V2| is
minimum. If f(v) = 0, then the function f ′, defined by f ′(v) = f(u) and f ′(x) = f(x) whenever
x ∈ V (T ′) \ {v}, is a TR2DF on T ′ such that ω(f ′) ≤ γt{R2}(T ) − 2. On the other hand, if
f(v) > 0, then observe that f(N(v) \ {u}) = 0. Otherwise, if there exists z ∈ N(v) \ {u} such
that f(z) > 0, then f(u) = 0, which is a contradiction. Now, notice that the function f ′′, defined
by f ′′(w) = f(u) = 1 for some w ∈ N(v) \ {u} and f ′′(x) = f(x) whenever x ∈ V (T ′) \ {w},
is a TR2DF on T ′ such that ω(f ′) ≤ γt{R2}(T ) − 2. Again, as v ∈ W0(T

′), f ′ and f ′′ are not
γt{R2}(T

′)-functions. Hence, γt{R2}(T
′) ≤ γt{R2}(T )− 3, as desired.

In consequence, we must have equality throughout the inequality chain (3). In particular,
γt{R2}(T ) = γtR(T ).

We now turn our attention to the opposite direction concerning the theorem above. That
is, we show that if a tree T satisfies γt{R2}(T ) = γtR(T ), then it belongs to the family F .

Theorem 2.27. Let T be a tree. If γt{R2}(T ) = γtR(T ), then T ∈ F .

Proof. First, we say that a tree T belongs to the family T if γt{R2}(T ) = γtR(T ). We proceed by
induction on the order n ≥ 2 of the trees T ∈ T . If T is a star, then γt{R2}(T ) = γtR(T ). Thus, T
can be obtained from P2 by first applying Operation F3, thereby producing a path P3 and then
doing repeated applications of Operation F2. Therefore, T ∈ F . This establishes the base case.
We assume now that k ≥ 3 is an integer and that each tree T ′ ∈ T with |V (T ′)| < k satisfies
that T ′ ∈ F . Let T ∈ T be a tree with |V (T )| = k and we may assume that diam(T ) ≥ 3.

First, suppose that diam(T ) = 3. Therefore, T is a double star Sx,y for some integers
x ≥ y ≥ 1. If T ∼= P4, then T can be obtained from a path P2 by applying Operation F4. If
T ∼= Sx,y with x ≥ y ≥ 1 (T 6∼= P4), then T can be obtained from a path P2 by first applying
Operation F4, thereby producing a path P4 and then doing repeated applications of Operation
F2 in both support vertices of P4. Therefore, T ∈ F .

We may now assume that diam(T ) ≥ 4, and we root the tree T at a vertex r located at
the end of a longest path in T . Let h be a vertex at maximum distance from r. Notice that,
necessarily, r and h are leaves (and diametral vertices). Let s be the parent of h; let v be the
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parent of s; let w be the parent of v; and let z be the parent of w. Notice that all these vertices
exist since diam(T ) ≥ 4, and it could happen z = r. Since h is a vertex at maximum distance
from the root r, every child of s is a leaf. We proceed further with the following claims.

Claim I. If δT (s) ≥ 4, then T ∈ F .

Proof. Suppose that δT (s) ≥ 4 and let T ′ = T − h. Hence, δT ′(s) ≥ 3 and consequently,
s ∈ Ss(T

′), since every child of s is a leaf vertex. Therefore, by Observation 2.24, there exists
a γt{R2}(T

′)-function, that assigns the weight 2 to s. The function above can be extended to
a TR2DF on T by assigning the weight 0 to h, implying that γt{R2}(T ) ≤ γt{R2}(T ′). Thus,
by Proposition 2.1, Observation 2.25, hypothesis and inequality above, we obtain γt{R2}(T

′) ≤
γtR(T

′) ≤ γtR(T ) = γt{R2}(T ) ≤ γt{R2}(T
′). Thus, we must have equality throughout this in-

equality chain. In particular γt{R2}(T ′) = γtR(T
′). Applying the inductive hypothesis to T ′, it

follows that T ′ ∈ F . Since s ∈ Ss(T
′), by using Observation 2.24, we deduce that s ∈ StR,2(T

′).
Therefore, T can be obtained from T ′ by applying Operation F2, and consequently, T ∈ F . (�)

By Claim I, we may henceforth assume that |N(x) ∩ L(T )| = 2 for every strong support
vertex x of T .

Claim II. If δT (s) = 3 and δT (v) ≥ 3, then T ∈ F .

Proof. Suppose that δT (s) = 3 and δT (v) ≥ 3. Thus, s is a strong support vertex and has two
leaf neighbors, say h, h1. Moreover, observe that v has at least one child, say s′, different from s,
and also, s′ is either a leaf vertex or a support vertex of T . By using Theorem 2.23, there exists a
γt{R2}(T )-function f(V0, V1, V2) with V0,1 = ∅, and without loss of generality, we assume that |V2|
is maximum. Notice that f is a γtR(T )-function as well. Now, we differentiate the following cases.

Case 1. s′ ∈ L(T ). In such situation, v ∈ S(T ), and so, f(v) = f(s) = 2 and f(s′) = f(h) =
f(h1) = 0. Let T ′ = T − h. Since v, s ∈ Sadj(T

′), by Observation 2.20, there exists a γt{R2}(T
′)-

function g satisfying that g(v) = g(s) = 2. So, g can be extended to a TR2DF on T by assigning
the weight 0 to h. Hence γt{R2}(T ) ≤ γt{R2}(T ′). Consequently, by inequality above, Proposition
2.1, Observation 2.25 and hypothesis, we obtain γt{R2}(T ) ≤ γt{R2}(T

′) ≤ γtR(T
′) ≤ γtR(T ) =

γt{R2}(T ). Therefore, we must have equality throughout this inequality chain. In particular,
γt{R2}(T ′) = γtR(T

′). Applying the inductive hypothesis to T ′, it follows that T ′ ∈ F .
As another consequence of the equality chain above, we obtain that γtR(T

′) = γtR(T ). This
implies that f restricted to V (T ′) is a γtR(T

′)-function, which means s ∈ StR,2(T
′). Therefore,

T can be obtained from T ′ by applying Operation F2, and consequently, T ∈ F . (�)

Case 2. s′ ∈ Ss(T ). Observe that f(s′) = f(s) = 2, f(h) = 0 and f(v) > 0. Let T ′ = T−h. Since
s′ ∈ Ss(T

′), by Observation 2.24, there exists a γt{R2}(T
′)-function g satisfying that g(s′) = 2.

So, without loss of generality, we can assume that g(v) > 0, implying that g(s) = 2 and
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g(h1) = 0. Thus, g can be extended to a TR2DF on T by assigning the weight 0 to h. Hence
γt{R2}(T ) ≤ γt{R2}(T ′). Consequently, by the inequality above, Proposition 2.1, Observation 2.25
and the hypothesis, we obtain γt{R2}(T ) ≤ γt{R2}(T

′) ≤ γtR(T
′) ≤ γtR(T ) = γt{R2}(T ). Therefore,

we must have equality throughout this inequality chain. In particular, γt{R2}(T
′) = γtR(T

′).
Applying the inductive hypothesis to T ′, it follows that T ′ ∈ F .

As another consequence of equality chain above, we obtain that γtR(T
′) = γtR(T ). This

implies that f restricted to V (T ′) is a γtR(T
′)-function, and so, s ∈ StR,2(T

′). Therefore, T can
be obtained from T ′ by applying Operation F2, which leads to T ∈ F . (�)

Case 3. s′ ∈ S(T ) \ Ss(T ). Notice that Ts′
∼= P2 and let T ′ = T − Ts′. Since v ∈ SS(T ′) ∩

N(Ss(T
′)), f restricted to V (T ′) is a TRDF on T ′ and also f(V (Ts′)) = 2. Hence γtR(T

′) ≤
γtR(T ) − 2. Moreover, any TR2DF on T ′ we can extended to a TR2DF on T by assigning
the weight 1 to s′ and its leaf-neighbor. Thus γt{R2}(T ) ≤ γt{R2}(T ′) + 2. So, by these previous
inequalities, Proposition 2.1 and the hypothesis, we deduce γt{R2}(T ) ≤ γt{R2}(T

′)+2 ≤ γtR(T
′)+

2 ≤ γtR(T ) = γt{R2}(T ). Therefore, we must have equality throughout this inequality chain. In
particular, γt{R2}(T

′) = γtR(T
′). Applying the inductive hypothesis to T ′, it follows that T ′ ∈ F .

Moreover, as v is adjacent to the support vertex s, every near-TR2DF relative to v on T ′

can be extended to a TR2DF on T by assigning the weight 1 to s′ and to its leaf-neighbor.
So, γt{R2}(T ) ≤ γn

t{R2}(T
′; v) + 2. In addition, if v is not a near stable vertex of T ′, then

γn
t{R2}(T

′; v) < γt{R2}(T
′), implying that γt{R2}(T ) ≤ γn

t{R2}(T
′; v) + 2 < γt{R2}(T

′) + 2, which is
a contradiction with the related equality noticed above. Therefore, the semi-support vertex v is
a near stable vertex of T ′, and therefore, T can be obtained from T ′ by applying Operation F6,
which means T ∈ F . (�)

Claim III. If δT (s) = 3 and δT (v) = 2, then T ∈ F .

Proof. Suppose that δT (s) = 3 and δT (v) = 2. Thus, s is a strong support vertex and has
two leaf neighbors, say h, h1. By Observation 2.21, there exists a γtR(T )-function f such that
f(s) = 2 and f(h) = f(h1) = 0, which implies that f(v) > 0. Let T ′ = T − {h, h1}. Notice
that the function f ′, defined by f ′(s) = 1 and f ′(x) = f(x) whenever x ∈ V (T ′) \ {s}, is a
TRDF on T ′. Hence γtR(T

′) ≤ ω(f ′) = γtR(T ) − 1. Moreover, as v ∈ S(T ′) and δT ′(v) = 2,
there exists a γt{R2}(T

′)-function g satisfying that g(s) = g(v) = 1. So, g can be extended to
a TR2DF on T by assigning the weight 2 to s and the weight 0 to h and h1, implying that
γt{R2}(T ) ≤ γt{R2}(T ′) + 1. Thus, by Proposition 2.1, the hypothesis and the inequalities above,
we obtain that γt{R2}(T

′) ≤ γtR(T
′) ≤ γtR(T ) − 1 = γt{R2}(T ) − 1 ≤ γt{R2}(T

′). Therefore,
we must have equality throughout this inequality chain. In particular, γt{R2}(T

′) = γtR(T
′).

Applying the inductive hypothesis to T ′, it follows that T ′ ∈ F .
Moreover, by the equality noted before, we deduce that f ′ is a γtR(T

′)-function. Thus
s ∈ LtR,1(T

′). Therefore, T can be obtained from T ′ by applying Operation F5, and conse-
quently, T ∈ F . (�)
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Claim IV. If δT (s) = 2 and δT (v) = 2, then T ∈ F .

Proof. Suppose that δT (s) = 2 and δT (v) = 2. By Theorem 2.23, there exists a γt{R2}(T )-
function f with V0,1 = ∅ and, without loss of generality, we assume that |V2| is minimum. Notice
that f is a γtR(T )-function as well, and also f(s) + f(h) = 2.

First, we suppose that f(w) > 0. Let T ′ = T − Ts = T − {s, h}. Notice that f restricted
to V (T ′) is a TRDF on T ′. Hence γtR(T

′) ≤ f(V (T ′)) = γtR(T ) − 2. Moreover, any TR2DF
on T ′ can be extended to a TR2DF on T by assigning the weight 1 to s and h, implying that
γt{R2}(T ) ≤ γt{R2}(T

′)+ 2. So, by the inequalities above, Proposition 2.1 and the hypothesis, we
obtain that γt{R2}(T ) ≤ γt{R2}(T ′) + 2 ≤ γtR(T

′) + 2 ≤ γtR(T ) = γt{R2}(T ). Therefore, we must
have equality throughout this inequality chain. In particular, γt{R2}(T

′) = γtR(T
′). Applying

the inductive hypothesis to T ′, it follows that T ′ ∈ F .
Moreover, a minimum weight near-TR2DF relative to v on T ′ can be extended to a TR2DF

on T by assigning to s and h the weight 1. Hence γt{R2}(T ) ≤ γn
t{R2}(T

′; v)+2. If v is not a near

stable vertex of T ′, then γn
t{R2}(T

′; v) < γt{R2}(T
′), implying that γt{R2}(T ) ≤ γn

t{R2}(T
′; v) + 2 <

γt{R2}(T ′) + 2, which is a contradiction with the related equality noted before. Therefore, v is
both a near stable vertex and a leaf of T ′. Thus, T can be obtained from the tree T ′ by applying
Operation F6, and consequently, T ∈ F .

From now on, we suppose that f(w) = 0. Hence f(v) = f(s) = f(h) = 1. We consider the
tree T ′′ = T − Tv = T − {v, s, h}. Notice that any TR2DF on T ′′ can be extended to a TR2DF
on T by assigning the weight 1 to v, s and h, implying that γt{R2}(T ) ≤ γt{R2}(T ′′) + 3.

On the other hand, notice that f restricted to V (T ′′) is a TRDF on T ′′. Hence γtR(T
′′) ≤

f(V (T ′′)) = γtR(T ) − 3. Consequently, by the previous inequalities, Proposition 2.1 and the
hypothesis, we obtain that γt{R2}(T ) ≤ γt{R2}(T ′′) + 3 ≤ γtR(T

′′) + 3 ≤ γtR(T ) = γt{R2}(T ).
Therefore, we must have equality throughout this inequality chain. In particular, γt{R2}(T

′′) =
γtR(T

′′). Also, note that γt{R2}(T ) = γt{R2}(T
′′) + 3. Applying the inductive hypothesis to T ′′,

it follows that T ′′ ∈ F .
Moreover, we suppose there exists a γt{R2}(T

′′)-function g satisfying that g(w) > 0. Observe
that g can be extended to a TR2DF on T by assigning the weight 0 to v and the weight 1 to s
and h. Hence γt{R2}(T ) ≤ ω(g) + 2 = γt{R2}(T

′′) + 2, which is a contradiction with the related
equality noticed above. Therefore w ∈ W0(T

′′) and so, T can be obtained from the tree T ′′ by
applying Operation F7. Consequently, T ∈ F . (�)

Claim V. If δT (s) = 2 and δT (v) ≥ 3, then T ∈ F .

Proof. Suppose that δT (s) = 2 and δT (v) ≥ 3. Clearly, v has at least one child, say s′, different
from s, implying that s′ is either a support vertex or a leaf vertex of T . Now, we differentiate
the following cases.

Case 1. s′ ∈ S(T ). By Theorem 2.23, there exists a γt{R2}(T )-function f with V0,1 = ∅ and,
without loss of generality, we assume that |V2| is maximum. Notice that f is a γtR(T )-function

18

Total Roman {2}-domination in graphs 68



as well, and also, f(s) + f(h) = 2. As s′ ∈ S(T ), f restricted to T ′ = T − {s, h} is a TRDF
on T ′. Hence γtR(T

′) ≤ γtR(T )− 2. Moreover, any TR2DF on T ′ can be extended to a TR2DF
on T by assigning the weight 1 to s and h. Hence γt{R2}(T ) ≤ γt{R2}(T

′) + 2. Therefore, by the
inequalities above, Proposition 2.1 and the hypothesis, we obtain γt{R2}(T ) ≤ γt{R2}(T

′) + 2 ≤
γtR(T

′) + 2 ≤ γtR(T ) = γt{R2}(T ). Thus, we must have equality throughout this inequality
chain. In particular, γt{R2}(T

′) = γtR(T
′). Applying the inductive hypothesis to T ′, it follows

that T ′ ∈ F .
If v ∈ S(T ′), then v ∈ Sadj(T

′). So T can be obtained from T ′ by applying Operation F4,
and consequently, T ∈ F .

If v /∈ S(T ′), then v ∈ SS(T ′). Now, we prove that v is a near stable vertex of T ′. Notice
that a minimum weight near-TR2DF relative to v on T ′ can be extended to a TR2DF on T by
assigning to s and h the weight 1. So γt{R2}(T ) ≤ γn

t{R2}(T
′; v)+2. If v is not a near stable vertex

of T ′, then γn
t{R2}(T

′; v) < γt{R2}(T ′), implying that γt{R2}(T ) ≤ γn
t{R2}(T

′; v)+2 < γt{R2}(T ′)+2,
which is a contradiction with the related equality noted before. Therefore, v is a near stable
vertex of T ′, as desired. Thus, T can be obtained from T ′ by applying Operation F6, and con-
sequently, T ∈ F . (�)

By the case above, we may henceforth assume that every child of v is a leaf of T .

Case 2. s′ ∈ L(T ) and v ∈ Ss(T ). We consider the tree T ′ = T − s′. Notice that v ∈ Sadj(T
′).

Hence, by Observation 2.20, there exists a γt{R2}(T ′)-function f such that f(v) = f(s) = 2. So, f
can be extended to a TR2DF on T by assigning the weight 0 to s′. Thus γt{R2}(T ) ≤ γt{R2}(T

′)
and by using Proposition 2.1, Observation 2.25 and the hypothesis, we obtain γt{R2}(T ) ≤
γt{R2}(T ′) ≤ γtR(T

′) ≤ γtR(T ) = γt{R2}(T ). Therefore, we must have equality throughout this
inequality chain. In particular, γt{R2}(T

′) = γtR(T
′). Applying the inductive hypothesis to T ′, it

follows that T ′ ∈ F . As another consequence of equality chain above, we obtain γtR(T
′) = γtR(T ).

By Observation 2.21, there exists a γtR(T )-function g such that g(v) = 2 and g(s′) = 0. Since
γtR(T

′) = γtR(T ), g restricted to V (T ′) is a γtR(T
′)-function. Hence v ∈ StR,2(T

′). Therefore, T
can be obtained from T ′ by applying Operation F2, and consequently, T ∈ F . (�)

Case 3. s′ ∈ L(T ) and v ∈ S(T ) \ Ss(T ). First, we suppose that w ∈ S(T ). Let T ′ = T − Ts =
T − {s, h}. By using a similar procedure as in Case 1 of Claim V (v ∈ S(T ′)), we obtain
γt{R2}(T

′) = γtR(T
′) and v ∈ Sadj(T

′). Hence, by applying the inductive hypothesis to T ′, it
follows that T ′ ∈ F . Therefore, T can be obtained from T ′ by Operation F4, and consequently,
T ∈ F .

From now on, we assume that w /∈ S(T ). Let f(V0, V1, V2) be a γtR(T )-function such that
f(w) is minimum among all γtR(T )-functions which satisfy that |S(T )∩V2| and |Ls(T )∩V0| are
maximum. Hence f(v) = f(s) = 2. Next, we analyse the two possible scenarios.

Subcase 3.1. f(w) > 0. Since N(w) \ {z} ⊂ S(T ) ∪ SS(T ) and f(v) = 2, it is easy to check
that f(w) = 1 and N(w) ∩ Ss(T ) 6= ∅. Let v′ ∈ N(w) ∩ Ss(T ), N(v′) ∩ L(T ) = {h1, h2} and
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T ′′ = T − {h1, h2}.
Notice that the function f ′, defined by f ′(v′) = 1 and f ′(x) = f(x) whenever x ∈ V (T ′′) \

{v′}, is a TRDF on T ′′. Hence γtR(T
′′) ≤ ω(f ′) = γtR(T ) − 1. Moreover, as v ∈ S(T ′′) and

N(w)\{z, v′} ⊂ S(T ′′)∪SS(T ′′), there exists a γt{R2}(T
′′)-function g such that g(w) = g(v′) = 1.

So, g can be extended to a TR2DF on T by re-assigning the weight 2 to v′ and by assigning the
weight 0 to h1 and h2, which implies that γt{R2}(T ) ≤ γt{R2}(T

′′) + 1.
Thus, by Proposition 2.1, the inequalities above and the hypothesis, we obtain γt{R2}(T ′′) ≤

γtR(T
′′) ≤ γtR(T )−1 = γt{R2}(T )−1 ≤ γt{R2}(T

′′). Therefore, we must have equality throughout
this inequality chain. In particular, γt{R2}(T

′′) = γtR(T
′′). Applying the inductive hypothesis to

T ′′, it follows that T ′′ ∈ F . Also, by the equality noted before, we deduce that f ′ is a γtR(T
′′)-

function. Thus v′ ∈ LtR,1(T
′′). Therefore, T can be obtained from T ′′ by applying Operation

F5, and consequently, T ∈ F . (�)

Subcase 3.2. f(w) = 0. Notice that N(w) ∩ Ss(T ) = ∅. Now, we consider that w has a child,
say v′, different from v. First, we suppose that Ss(T ) ∩ V (Tv′) 6= ∅. Let x ∈ Ss(T ) ∩ V (Tv′),
hx ∈ N(x)∩L(T ) and T ′′ = T−hx. Again, by using a similar procedure as in Case 2 of Claim V,
we obtain γt{R2}(T

′′) = γtR(T
′′) and x ∈ StR,2(T

′′). Hence, by applying the inductive hypothesis
to T ′′, it follows that T ′′ ∈ F . Therefore, T can be obtained from T ′′ by applying Operation F2,
and consequently, T ∈ F .

Thus, we may assume that Ss(T )∩V (Tw) = ∅. If Tv′ is isomorphic to P2 or P3, then, by using
a similar reasoning as in Case 1 of Claim V (v ∈ SS(T ′)) or Claim IV (f(w) = 0), respectively,
we obtain that T ′′ = T −Tv′ ∈ F . Therefore, T can be obtained from T ′′ by applying Operation
F6 or Operation F7, respectively. Consequently, T ∈ F .

Hence, we may assume that for every child x of w, the tree Tx is not isomorphic to P2

or P3. Thus, it is easy to check that Tw
∼= Rr. Let T ′′′ = T − Tw. Since f(w) = 0 and

w /∈ S(T ), the function f restricted to V (T ′′′) is a TRDF on T ′′′. So, γtR(T
′′′) ≤ f(V (T ′′′)) =

γtR(T )− 4r. Moreover, any TR2DF on T ′′′ can be extended to a TR2DF on T by assigning the
weight 2 to every support vertex and the weight 0 to another vertices of Tw. Thus, γt{R2}(T ) ≤
γt{R2}(T

′′′) + 4r, and by using the inequalities above, Proposition 2.1 and the hypothesis, we
obtain γt{R2}(T ) ≤ γt{R2}(T

′′′) + 4r ≤ γtR(T
′′′) + 4r ≤ γtR(T ) = γt{R2}(T ). Therefore, we must

have equality throughout this inequality chain. In particular, γt{R2}(T ′′′) = γtR(T
′′′). Applying

the inductive hypothesis to T ′′′, it follows that T ′′′ ∈ F . Therefore, T can be obtained from T ′′′

by applying Operation F1, and consequently, T ∈ F , which completes the proof.

As an immediate consequence of Theorems 2.26 and 2.27, we have the following characteri-
zation.

Theorem 2.28. A tree T of order n ≥ 2 satisfies that γt{R2}(T ) = γtR(T ) if and only if T ∈ F .

To conclude this subsection, we next give a characterization of trees T with γt{R2}(T ) =
2γt(T ). In [10], a family T of trees T with γt(T ) = γ(T ) were characterized. Hence, as a
consequence of the statement above and Theorems 2.6 and 2.28, the next characterization follows.
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Theorem 2.29. A tree T of order n ≥ 2 satisfies that γt{R2}(T ) = 2γt(T ) if and only if T ∈
F ∩ T .

We must remark that our characterization is strongly based on the computability of the sets
StR,2(Ti), W0(Ti), S1(Ti) and LtR,1(Ti), for a given tree Ti, in order to construct a new element
Ti+1 of the family F . It is probably hard to find such sets for the tree Ti regardless which is the
operation made to construct such Ti. In this sense, as a continuation of this work, it would be
desirable a future discussion on how one of these sets can be obtained for a given tree Ti, and
on whether a connection between such set in Ti and the corresponding one in Ti+1 exists.

3 Computational results

In order to present our complexity results we need to introduce the following construction. Given
a graph G of order n and n copies of the star graph K1,4, the graph HG is constructed by adding
edges between the ith-vertex of G and one leaf vertex of the ith-copy of K1,4. See Figure 4 for an
example.

Figure 4: The graph HG where G is a complete graph minus one edge.

It is well-known that the domination Problem is NP-complete, even when restricted to bipar-
tite graphs (see Dewdney [9]) or chordal graphs (see Booth [5] and Booth and Johnson [4]). We
use this result to prove the main result of this section, which is the complexity analysis of the
following decision problem (total Roman {2}-dominating function Problem (TR2DF-Problem
for short)). To this end, we will demonstrate a polynomial time reduction of the domination
Problem to our TR2DF-Problem.

TR2DF-Problem
Instance: A non trivial graph H and a positive integer j ≤ |V (H)|.
Question: Does H have a TR2DF of weight j or less?

Observation 3.1. Let G be a graph different from a star graph. If v ∈ Ss(G) such that |N(v)∩
L(G)| ≥ 3, then f(v) = 2 for every γt{R2}(G)-function f .

Theorem 3.2. TR2DF-Problem is NP-complete, even when restricted to bipartite or chordal
graphs.
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Proof. The problem is clearly in NP since verifying that a given function is indeed a TR2DF
can be done in polynomial time.

We consider a graph G without isolated vertices of order n and construct the graph HG. It
is easy to see that this construction can be accomplished in polynomial time. Also, notice that
if the graph G is a bipartite or chordal graph, then so too is HG.

We next prove that γt{R2}(HG) = γ(G) + 3|V (G)|. For this, we first consider the function
f ′(V ′

0 , V
′
1 , V

′
2) defined by V ′

1 = A∪SS(HG) and V ′
2 = S(HG), where A is a γ(G)-set. Notice that

f ′ is a TR2DF on HG. So γt{R2}(HG) ≤ |A ∪ SS(HG)|+ 2|S(HG)| = γ(G) + 3|V (G)|.
On the other hand, let v ∈ V (G) ⊂ V (HG), and by Kv

1,4 we denote the copy of K1,4 added
to v. Let sv and uv be the support vertex and semi-support vertex of HG respectively, belonging
to the copy Kv

1,4. Let f(V0, V1, V2) be a γt{R2}(G)-function satisfying that |V2| is minimum. Since
HG is different from a star, and every support vertex is adjacent to three leaves, by Observation
3.1, we obtain that f(S(HG)) = 2|S(HG)|. Consequently, f(sv) = 2 and f(V (Kv

1,4)) ≥ 3. Hence,
we can assume that f(uv) > 0. If f(uv) = 2, then the function f ′′(V ′′

0 , V
′′
1 , V

′′
2 ), defined by

f ′′(uv) = 1, f ′′(v) = min{f(v) + 1, 2} and f ′′(x) = f(x) whenever x ∈ V (HG) \ {uv, v}, is a
TR2DF on HG of weight γt{R2}(HG) and |V ′′

2 | < |V2|, which is a contradiction. Hence f(uv) = 1
for every v ∈ V (G).

Notice that each vertex v ∈ V (G) is adjacent to exactly one semi-support vertex of HG. As
SS(HG) ⊆ V1, it follows that V (G) ⊆ V0∪V1 and also, V1∩V (G) is a dominating set of G. Thus,
γt{R2}(HG) = ω(f) = |V1 ∩ V (G)|+ |SS(HG)|+ 2|S(HG)| ≥ γ(G) + 3|V (G)|. As a consequence,
it follows that γt{R2}(HG) = γ(G) + 3|V (G)|, as required.

Now, for j = k + 3|V (G)|, it is readily seen that γt{R2}(HG) ≤ j if and only if γ(G) ≤ k,
which completes the proof.

As a consequence of the result above we conclude that finding the total Roman {2}-
domination number of graphs is NP-hard.
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Abstract

In a graph G, a vertex dominates itself and its neighbours. A subset S ⊆V (G) is said
to be a double dominating set of G if S dominates every vertex of G at least twice. The
minimum cardinality among all double dominating sets of G is the double domination
number. In this article, we obtain tight bounds and closed formulas for the double domi-
nation number of lexicographic product graphs G ◦H in terms of invariants of the factor
graphs G and H .

Keywords: Double domination; total domination; total Roman {2}-domination; lexico-
graphic product

1 Introduction
In a graph G, a vertex dominates itself and its neighbours. A subset S ⊆ V (G) is said to
be a dominating set of G if S dominates every vertex of G, while S is said to be a double
dominating set of G if S dominates every vertex of G at least twice. A subset S ⊆ V (G) is
said to be a total dominating set of G if every vertex v ∈ V (G) is dominated by at least one
vertex in S \{v}. The minimum cardinality among all dominating sets of G is the domination
number, denoted by γ(G). The double domination number and the total domination number of
G are defined by analogy, and are denoted by γ×2(G) and γt(G), respectively. The domination
number and the total domination number have been extensively studied. For instance, we
cite the following books [19, 20, 21]. The double domination number, which has been less
studied, was introduced in [18] by Harary and Haynes, and studied further in a number of
works including [4, 10, 15, 17, 23].

Let f : V (G)→{0,1,2} be a function. For any i ∈ {0,1,2} we define the subsets of ver-
tices Vi = {v ∈V (G) : f (v) = i} and we identify f with the three subsets of V (G) induced by f .
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Thus, in order to emphasize the notation of these sets, we denote the function by f (V0,V1,V2).
Given a set X ⊆ V (G), we define f (X) = ∑v∈X f (v), and the weight of f is defined to be
ω( f ) = f (V (G)) = |V1|+2|V2|.

A function f (V0,V1,V2) is a total Roman dominating function (TRDF) on a graph G if
V1∪V2 is a total dominating set and N(v)∩V2 6= /0 for every vertex v ∈V0, where N(v) denotes
the open neighbourhood of v. This concept was introduced by Liu and Chang [24]. For recent
results on total Roman domination in graphs we cite [1, 2, 7, 9].

A function f (V0,V1,V2) is a total Roman {2}-dominating function (TR2DF) if V1 ∪V2 is
a total dominating set and f (N(v)) ≥ 2 for every vertex v ∈ V0. This concept was recently
introduced in [6]. Notice that S ⊆ V (G) is a double dominating set of G if and only if there
exists a TR2DF f (V0,V1,V2) such that V1 = S and V2 = /0.

The total Roman domination number, denoted by γtR(G), is the minimum weight among
all TRDFs on G. By analogy, we define the total Roman {2}-domination number, which is
denoted by γt{R2}(G).

Notice that, by definition, γ×2(G) ≥ γt{R2}(G). As an example of graph G for which
γ×2(G)> γt{R2}(G) we consider a star graph K1,r for r ≥ 3. In this case, γ×2(K1,r) = r+1 >
3 = γt{R2}(K1,r). We would point out that the problem of characterizing all graphs with
γ×2(G) = γt{R2}(G) remains open. In this paper we show that the values of these two pa-
rameters coincide for any lexicographic product graph G◦H in which graph G has no isolated
vertices and graph H is not trivial. Furthermore, we obtain tight bounds and closed formulas
for γ×2(G◦H) in terms of invariants of the factor graphs G and H.

1.1 Additional concepts, notation and tools
All graphs considered in this paper are finite and undirected, without loops or multiple edges.
As usual, the closed neighbourhood of a vertex v ∈ V (G) is denoted by N[v] = N(v)∪{v}.
We say that a vertex v ∈ V (G) is a universal vertex of G if N[v] = V (G). By analogy with
the notation used for vertices, for a set S ⊆ V (G), its open neighbourhood is the set N(S) =
∪v∈SN(v), and its closed neighbourhood is the set N[S] = N(S)∪S. The subgraph induced by
S ⊆V (G) will be denoted by 〈S〉, while the graph obtained from G by removing all the vertices
in S ⊆V (G) (and all the edges incident with a vertex in S) will be denoted by G−S.

We will use the notation Kn, K1,n−1, Cn, Nn, Pn and Kn,n−r for complete graphs, star graphs,
cycle graphs, empty graphs, path graphs and complete bipartite graphs of order n, respectively.
A double star Sn1,n2 is the graph obtained by joining the center of two stars K1,n1 and K1,n2 with
an edge.

Given two graphs G and H, the lexicographic product of G and H is the graph G ◦H
whose vertex set is V (G ◦H) = V (G)×V (H) and (u,v)(x,y) ∈ E(G ◦H) if and only if ux ∈
E(G) or u = x and vy ∈ E(H). Notice that for any vertex u ∈ V (G) the subgraph of G ◦H
induced by {u}×V (H) is isomorphic to H. For simplicity, we will denote this subgraph by
Hu. For basic properties of lexicographic product graphs we suggest the books [16, 22]. In
particular, we cite the following works on domination theory of lexicographic product graphs:
standard domination [25, 27, 31], Roman domination [28], total Roman domination [9], weak
Roman domination [30], rainbow domination [29], k-rainbow independent domination [5],
super domination [13], twin domination [26], power domination [14] and doubly connected
domination [3].
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For simplicity, for any (u,v) ∈V (G)×V (H) and any TR2DF f on G◦H we write N(u,v)
and f (u,v) instead of N((u,v)) and f ((u,v)), respectively.

For the remainder of the paper, definitions will be introduced whenever a concept is
needed.

Now we present some tools that will be very useful throughout the work.

Proposition 1.1. [6] The following inequalities hold for any graph G with no isolated vertex.

(i) γt(G)≤ γt{R2}(G)≤ γtR(G)≤ 2γt(G).

(ii) γt{R2}(G)≤ γ×2(G).

A double dominating set of cardinality γ×2(G) will be called a γ×2(G)-set. A similar
agreement will be assumed when referring to optimal sets (and functions) associated to other
parameters used in the article.

Theorem 1.2. If γ×2(G) = γt(G), then for any γ×2(G)-set D there exists an integer k ≥ 1 such
that 〈D〉 ∼= ∪k

i=1K2.

Proof. Let D be a γ×2(G)-set and suppose that 〈D〉 has a component G′ which is not isomor-
phic to K2. Let v ∈V (G′) be a vertex of minimum degree in G′. Notice that the set D\{v} is a
total dominating set of G. Hence, γt(G)≤ |D\{v}|< |D|= γ×2(G), which is a contradiction.
Therefore, the result follows.

Theorem 1.3. [6] The following statements are equivalent.

• γt{R2}(G) = 2γt(G).

• γt{R2}(G) = γtR(G) and γt(G) = γ(G).

The following theorem merges two results obtained in [6] and [18].

Theorem 1.4 ([6] and [18]). The following statements are equivalent.

• γt{R2}(G) = 2.

• γ×2(G) = 2.

• G has at least two universal vertices.

It is readily seen that if G′ is a spanning subgraph of G, then any γ×2(G′)-set is a double
dominating set of G. Therefore, the following result is immediate.

Theorem 1.5. If G′ is a spanning subgraph of G with no isolated vertex, then

γ×2(G)≤ γ×2(G′).

In Proposition 4.7 we will show some cases of lexicographic product graphs for which the
equality above holds.

Remark 1.6. For any integer n ≥ 3,

3
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(i) γt{R2}(Pn)
[6]
= γ×2(Pn)

[4]
=

{
2
⌈n

3

⌉
+1, if n ≡ 0 (mod 3),

2
⌈n

3

⌉
, otherwise.

(ii) γt{R2}(Cn)
[6]
= γ×2(Cn)

[18]
=
⌈2n

3

⌉
.

The next theorem merges two results obtained in [28] and [31].

Theorem 1.7 ([28] and [31]). For any graph G with no isolated vertex and any nontrivial
graph H,

γ(G◦H) =

{
γ(G), if γ(H) = 1,

γt(G), if γ(H)≥ 2.

Theorem 1.8. [8] For any graph G with no isolated vertex and any nontrivial graph H,

γt(G◦H) = γt(G).

2 Main results on lexicographic product graphs
Our first result shows that the double domination number and the total Roman {2}-domination
number coincide for lexicographic product graphs.

Theorem 2.1. For any graph G with no isolated vertex and any nontrivial graph H,

γ×2(G◦H) = γt{R2}(G◦H).

Proof. Proposition 1.1 (ii) leads to γ×2(G◦H)≥ γt{R2}(G◦H). Let f (V0,V1,V2) be a γt{R2}(G◦
H)-function such that |V2| is minimum. Suppose that γ×2(G ◦H) > γt{R2}(G ◦H). In such a
case, V2 6= /0 and we can differentiate two cases for a fixed vertex (u,v) ∈V2.

Case 1. N(u,v)∩ (V1 ∪V2) ⊆ V (Hu). In this case, for any (u′,v′) ∈ N(u)×V (H) we define
the function g(V ′

0,V
′
1,V

′
2) where V ′

0 = V0 \ {(u′,v′)}, V ′
1 = V1 ∪{(u,v),(u′,v′)} and V ′

2 = V2 \
{(u,v)}. Observe that V ′

1 ∪V ′
2 is a total dominating set of G◦H and every vertex w ∈V ′

0 ⊆ V0
satisfies that g(N(w))≥ 2. Hence, g is a γt{R2}(G◦H)-function and |V ′

2|= |V2|−1, which is a
contradiction.

Case 2. N(u)×V (H)∩ (V1 ∪V2) 6= /0. If f (u,v′) > 0 for every vertex v′ ∈ V (H), then the
function g, defined by g(u,v) = 1 and g(x,y) = f (x,y) whenever (x,y) ∈ V (G ◦H) \ {(u,v)},
is a TR2DF on G ◦H and ω(g) = ω( f )− 1, which is a contradiction. Hence, there exists a
vertex v′ ∈V (H) such that f (u,v′) = 0. In this case, we define the function g(V ′

0,V
′
1,V

′
2) where

V ′
0 = V0 \ {(u,v′)}, V ′

1 = V1 ∪{(u,v),(u,v′)} and V ′
2 = V2 \ {(u,v)}. Notice that V ′

1 ∪V ′
2 is a

total dominating set of G◦H and every vertex w ∈V ′
0 ⊆V0 satisfies that g(N(w))≥ 2. Hence,

g is a γt{R2}(G◦H)-function and |V ′
2|= |V2|−1, which is a contradiction again.

According to the two cases above, we deduce that V2 = /0. Therefore, V1 is a γ×2(G◦H)-set
and so γ×2(G◦H) = γt{R2}(G◦H).

4
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From now on, the main goal is to obtain tight bounds or closed formulas for γ×2(G ◦H)
and express them in terms of invariants of G and H.

A set X ⊆V (G) is called a 2-packing if N[u]∩N[v] = /0 for every pair of different vertices
u,v ∈ X , [20]. The 2-packing number ρ(G) is the maximum cardinality among all 2-packing
sets of G. As usual, a 2-packing of cardinality ρ(G) is called a ρ(G)-set.

Theorem 2.2. For any graph G with no isolated vertex and any nontrivial graph H,

max{γt(G),2ρ(G)} ≤ γ×2(G◦H)≤ 2γt(G).

Proof. By Proposition 1.1 (i) and Theorem 1.8 we deduce that

γt(G) = γt(G◦H)≤ γ×2(G◦H)≤ 2γt(G◦H) = 2γt(G).

Now, for any ρ(G)-set X and any γ×2(G◦H)-set D we have that

γ×2(G◦H) = |D|= ∑
u∈V (G)

|D∩V (Hu)| ≥ ∑
u∈X

∑
w∈N[u]

|D∩V (Hw)| ≥ 2|X |= 2ρ(G).

Therefore, the proof is complete.

We would point out that the upper bound γ×2(G ◦H) ≤ min{2γt(G),γ(G)γ×2(H)} was
proposed in [12] for the particular case in which G and H are connected. Obviously, the
connectivity is not needed, and the bound γ×2(G◦H)≤ γ(G)γ×2(H) also holds for any graph
G (even if G is empty) and any graph H with no isolated vertices.

In Theorem 2.4 we will show cases in which γ×2(G◦H) = 2γt(G), while in Theorem 2.8
(i) and (ii) we will show cases in which γ×2(G◦H) = 2ρ(G) or γ×2(G◦H) = γt(G).

Corollary 2.3. If γ(G) = 1, then for any nontrivial graph H,

2 ≤ γ×2(G◦H)≤ 4.

In Section 3 we characterize the graphs with γ×2(G◦H)∈ {2,3}. Hence, by Corollary 2.3
the graphs with γ×2(G◦H) = 4 will be automatically characterized whenever γ(G) = 1.

Theorem 2.4. If G is a graph with no isolated vertex and H is a nontrivial graph, then the
following statements are equivalent.

(a) γ×2(G◦H) = 2γt(G).

(b) γ×2(G◦H) = γtR(G◦H) and (γt(G) = γ(G) or γ(H)≥ 2).

Proof. Assume that γ×2(G◦H) = 2γt(G). By Theorems 1.8 and 2.1 we deduce that

γt{R2}(G◦H) = γ×2(G◦H) = 2γt(G) = 2γt(G◦H).

Hence, by Theorem 1.3 we have that γ×2(G ◦H) = γtR(G ◦H) and γ(G ◦H) = γt(G ◦H) =
γt(G). Notice that γt(G◦H) = γt(G) if and only if γt(G) = γ(G) or γ(H)≥ 2, by Theorem 1.7.
Therefore, (b) follows.

5
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Conversely, assume that (b) holds. By Theorem 2.1 we have that

γt{R2}(G◦H) = γ×2(G◦H) = γtR(G◦H). (1)

Now, if γt(G) = γ(G) or γ(H)≥ 2, by Theorems 1.7 and 1.8 we deduce that

γt(G◦H) = γt(G) = γ(G◦H). (2)

Hence, Theorem 1.3 and equations (1) and (2) lead to γ×2(G ◦H) = γt{R2}(G ◦H) = 2γt(G ◦
H) = 2γt(G), as required.

It was shown in [11] that for any connected graph G of order n ≥ 3, γt(G) ≤ 2n
3 . Hence,

Proposition 1.1 (i) and Theorem 2.1 lead to the following result.

Theorem 2.5. For any connected graph G of order n ≥ 3 and any graph H,

γ×2(G◦H)≤ 2
⌊

2n
3

⌋
.

In order to show that the bound above is tight, we consider the case of rooted product
graphs. Given a graph G and a graph H with root v∈V (H), the rooted product G•v H is defined
as the graph obtained from G and H by taking one copy of G and |V (G)| copies of H and
identifying the ith vertex of G with vertex v in the ith copy of H for every i ∈ {1, . . . , |V(G)|}.
For instance, the graph P5 •v P3 where v is a leaf, is shown in Figure 1. Later, when we read
Lemma 4.3, it will be easy to see that for n = |V (G •v P3)| = 3|V (G)| we have that γ×2((G •v
P3)◦H) = 4|V (G)|= 2

⌊2n
3

⌋
whenever γ(H)≥ 3.

Figure 1: The graph P5 •v P3

Lemma 2.6. For any graph G with no isolated vertex and any nontrivial graph H, there exists
a γ×2(G◦H)-set S such that |S∩V (Hu)| ≤ 2, for every u ∈V (G).

Proof. Given a double dominating set S of G ◦H, we define the set S3 = {x ∈ V (G) : |S∩
V (Hx)| ≥ 3}. Let S be a γ×2(G◦H)-set such that |S3| is minimum among all γ×2(G◦H)-sets.
If |S3| = 0, then we are done. Hence, we suppose that there exists u ∈ S3 and let (u,v) ∈ S.
We assume that |S∩V (Hu)| is minimum among all vertices in S3. It is readily seen that if
there exists u′ ∈ N(u) such that |S∩V(Hu′)| ≥ 2, then S′ = S \{(u,v)} is a double dominating
set of G ◦H, which is a contradiction. Hence, if u′ ∈ N(u), then |S∩V (Hu′)| ≤ 1, and in this
case it is not difficult to check that for (u′,v′) /∈ S the set S′′ = (S \ {(u,v)})∪{(u′,v′)} is a
γ×2(G ◦H)-set such that |S′′3| is minimum among all γ×2(G ◦H)-sets. If |S′′3 | < |S3|, then we
obtain a contradiction, otherwise u ∈ S′′3 and |S′′∩V (Hu)| is minimum among all vertices in
S′′3 , so that we can successively repeat this process, until obtaining a contradiction. Therefore,
the result follows.

6
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Theorem 2.7. Let G be a graph with no isolated vertex and let H be a nontrivial graph.

(i) If γ(H) = 1, then γ×2(G◦H)≤ γt{R2}(G).

(ii) If H has at least two universal vertices, then γ×2(G◦H)≤ 2γ(G).

(iii) If H has exactly one universal vertex, then γ×2(G◦H) = γt{R2}(G).

(iv) If γ(H)≥ 2, then γ×2(G◦H)≥ γt{R2}(G).

Proof. Let f be a γt{R2}(G)-function and let v be a universal vertex of H. Let f ′ be the
function defined by f ′(u,v) = f (u) for every u ∈ V (G) and f ′(x,y) = 0 whenever x ∈ V (G)
and y ∈V (H)\{v}. It is readily seen that f ′ is a TR2DF on G◦H. Hence, by Theorem 2.1 we
conclude that γ×2(G◦H) = γt{R2}(G◦H)≤ ω( f ′) = ω( f ) = γt{R2}(G) and (i) follows.

Let D be a γ(G)-set and let y1,y2 be two universal vertices of H. It is not difficult to see
that S =D×{y1,y2} is a double dominating set of G◦H. Therefore, γ×2(G◦H)≤ |S|= 2γ(G)
and (ii) follows.

From now on, let S be a γ×2(G ◦H)-set that satisfies Lemma 2.6 and assume that either
γ(H) ≥ 2 or H has exactly one universal vertex. Let g(V0,V1,V2) be the function defined by
g(u) = |S∩V(Hu)| for every u ∈V (G). We claim that g is a TR2DF on G. It is clear that every
vertex in V1 has to be adjacent to some vertex in V1 ∪V2 and, if γ(H) ≥ 2 or H has exactly
one universal vertex, then by Theorem 1.4 we have that γ×2(H)≥ 3, which implies that every
vertex in V2 has to be adjacent to some vertex in V1 ∪V2. Hence, V1 ∪V2 is a total dominating
set of G. Now, if x ∈ V0, then S∩V (Hx) = /0, and so |N(V (Hx))∩S| ≥ 2. Thus, g(N(x)) ≥ 2,
which implies that g is TR2DF on G and so γt{R2}(G)≤ ω(g) = |S|= γ×2(G◦H). Therefore,
(iii) and (iv) follow.

The following result is a direct consequence of Theorems 2.2 and 2.7. Recall that γ×2(H)=
2 if and only if H has at least two universal vertices (see Theorem 1.4).

Theorem 2.8. Let G be a graph with no isolated vertex and let H be a nontrivial graph.

(i) If γ(G) = ρ(G) and γ×2(H) = 2, then γ×2(G◦H) = 2γ(G).

(ii) If γt{R2}(G) ∈ {γt(G),2ρ(G)} and γ(H) = 1, then γ×2(G◦H) = γt{R2}(G).

(iii) If γt{R2}(G) = 2γt(G) and γ(H)≥ 2, then γ×2(G◦H) = γt{R2}(G).

It is well known that γ(T ) = ρ(T ) for any tree T . Hence, the following corollary is a
direct consequence of Theorem 2.8.

Corollary 2.9. For any tree T and any graph H with γ×2(H) = 2,

γ×2(T ◦H) = 2γ(T ).

A double total dominating set of a graph G is a set S of vertices of G such that every vertex
in V (G) is adjacent to at least two vertices in S [21]. The double total domination number of
G, denoted by γ2,t(G), is the minimum cardinality among all double total dominating sets.

7

Double domination in lexicographic product graphs 83



Theorem 2.10. [30] If G is a graph of minimum degree greater than or equal to two, then for
any graph H,

γ2,t(G◦H)≤ γ2,t(G).

Theorem 2.11. Let G be a graph of minimum degree greater than or equal to two and order
n. The following statements hold.

(i) For any graph H, γ×2(G◦H)≤ γ2,t(G).

(ii) For any graph H, γ×2(G◦H)≤ n.

Proof. Since every double total dominating set is a double dominating set, we deduce that
γ×2(G◦H)≤ γ2,t(G◦H). Hence, from Theorem 2.10 we deduce (i). Finally, since γ2,t(G)≤ n,
from (i) we deduce (ii).

The following family Hk of graphs was shown in [30]. A graph G belongs to Hk if and
only if it is constructed from a cycle Ck and k empty graphs Ns1, . . . ,Nsk of order s1, . . . ,sk,
respectively, and joining by an edge each vertex from Nsi with the vertices vi and vi+1 of Ck.
Here we are assuming that vi is adjacent to vi+1 in Ck, where the subscripts are taken modulo
k. Figure 2 shows a graph G belonging to Hk, where k = 4, s1 = s3 = 3 and s2 = s4 = 2.

Notice that γt{R2}(G) = γ2,t(G), for every G ∈ Hk. Hence, from Theorems 2.7 (iv) and
2.11 (i) we deduce that γ×2(G ◦ H) = γ2,t(G) for any G ∈ Hk and any graph H such that
γ(H)≥ 2.

Figure 2: The set of black-coloured vertices is a γ2,t(G)-set.

3 Small values of γ×2(G◦H)

First, we characterize the graphs with γ×2(G◦H) = 2.

Theorem 3.1. For any nontrivial graph G and any graph H, the following statements are
equivalent.

8
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(i) γ×2(G◦H) = 2.

(ii) γ(G) = γ(H) = 1 and (γ×2(G) = 2 or γ×2(H) = 2).

Proof. Notice that G ◦H has at least two universal vertices if and only if γ(G) = γ(H) = 1,
and also G has at least two universal vertices or H has at least two universal vertices. Hence,
by Theorem 1.4 we conclude that (i) and (ii) are equivalent.

Next, we characterize the graphs that satisfying γ×2(G◦H) = 3. Before we shall need the
following definitions. For a set S ⊆V (G◦H) we define the following subsets of V (G).

AS = {v ∈V (G) : |S∩V (Hv)| ≥ 2};

BS = {v ∈V (G) : |S∩V (Hv)|= 1};

CS = {v ∈V (G) : S∩V (Hv) = /0}.
Theorem 3.2. For any nontrivial graphs G and H, γ×2(G ◦H) = 3 if and only if one of the
following conditions is satisfied.

(i) G ∼= P2 and γ(H) = 2.

(ii) G 6∼= P2 has at least two universal vertices and γ(H)≥ 2.

(iii) G has exactly one universal vertex and either γ(H) = 2 or H has exactly one universal
vertex.

(iv) G has exactly one universal vertex, γ2,t(G) = 3 and γ(H)≥ 3.

(v) γ(G) = 2 and γ2,t(G) = 3.

(vi) γ(G) = 2, γ×2(G) = 3 < γ2,t(G) and γ(H) = 1.

Proof. Notice that with the above premises, G does not have isolated vertices. Let S be a
γ×2(G ◦H)-set that satisfies Lemma 2.6 and assume that |S| = 3. By Theorems 1.8 and 1.2
we have that 3 = γ×2(G ◦H) > γt(G ◦H) = γt(G) ≥ 2, which implies that γt(G) = 2 and so
γ(G) ∈ {1,2}. We differentiate two cases.

Case 1. γ(G) = 1. In this case, Theorem 3.1 leads to γ×2(H) ≥ 3. Now, we consider the
following subcases.

Subcase 1.1. G ∼= P2. Notice that Theorem 3.1 leads to γ(H)≥ 2. Suppose that γ(H)≥ 3 and
let V (G) = {u,w}. Observe that S∩V (Hu) 6= /0 and S∩V (Hw) 6= /0. Without loss of generality,
let S∩V (Hu) = {(u,v1),(u,v2)} and |S∩V (Hw)|= 1. Since γ(H) ≥ 3, we have that {v1,v2}
is not a dominating set of H, which implies that no vertex in {u}× (V(H) \ (N(v1)∪N(v2))
has two neigbours in S, which is a contradiction. Hence γ(H) = 2. Therefore, (i) follows.

Subcase 1.2. G 6∼= P2 has at least two universal vertices. In this case, γ×2(G) = 2 and by
Theorem 3.1 we deduce that γ(H)≥ 2. Thus, (ii) follows.

Subcase 1.3. G has exactly one universal vertex. If γ(H)≤ 2, then by Theorem 3.1 we deduce
that either γ(H) = 2 or H has exactly one universal vertex, so that (iii) follows. Assume
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that γ(H) ≥ 3. Recall that |S ∩V (Hx)| ≤ 2 for every x ∈ V (G). Now, if there exist two
vertices u,w ∈ V (G) and two vertices v1,v2 ∈ V (H) such that S∩V (Hu) = {(u,v1),(u,v2)}
and |S∩V (Hw)|= 1, then we deduce that no vertex in {u}× (V (H)\ (N(v1)∪N(v2)) has two
neighbours in S, which is a contradiction. Therefore, AS = /0 and BS has to be a γ2,t(G)-set, as
every vertex x ∈V (G) satisfies |N(x)∩BS| ≥ 2. Therefore, (iv) follows.

Case 2. γ(G) = 2. In this case, Theorem 1.4 leads to γ×2(G) ≥ 3. If there exist two vertices
u,w ∈V (G) such that AS = {u} and BS = {w}, then {u,w} is a γt(G)-set, and so for any x ∈
N(w)\N[u] we have that no vertex in V (Hx) has two neighbours in S, which is a contradiction.
Therefore, AS = /0 and |BS| = 3, which implies that BS is a γ×2(G)-set. Notice that either
〈BS〉 ∼=C3 or 〈BS〉 ∼= P3. In the first case, BS is a γ2,t(G)-set and (v) follows. Now, assume that
〈BS〉 ∼= P3. If γ(H)≥ 2, then for any vertex x of degree one in 〈BS〉 we have that V (Hx) have
vertices which do not have two neighbours in S, which is a contradiction. Therefore, γ(H) = 1
and if γ×2(G) = γ2,t(G), then G satisfies (v), otherwise G satisfies (vi), by Theorem 2.11.

Conversely, notice that if G and H satisfy one of the six conditions above, then Theo-
rem 3.1 leads to γ×2(G◦H)≥ 3. To conclude that γ×2(G◦H) = 3, we proceed to show how to
define a double dominating set D of G◦H of cardinality three for each of the six conditions.

(i) Let {v1,v2} be a γ(H)-set and V (G) = {u,w}. In this case, D = {(u,v1),(u,v2),(w,v1)}.

(ii) Let u,w ∈V (G) be two universal vertices, z ∈V (G)\{u,w} and v ∈V (H). In this case,
D = {(u,v),(w,v),(z,v)}.

(iii) Let u be a universal vertex of G and w ∈ V (G) \ {u}. If {v1,v2} is a γ(H)-set or v1 is a
universal vertex of H and v2 ∈V (H)\{v1}, then we set D = {(u,v1),(u,v2),(w,v1)}.

(iv) Let X be a γ2,t(G)-set and v ∈V (H). In this case, D = X ×{v}.

(v) Let X be a γ2,t(G)-set and v ∈V (H). In this case, D = X ×{v}.

(vi) Let X be a γ×2(G)-set and v a universal vertex of H. In this case, D = X ×{v}.

It is readily seen that in all cases D is a double dominating set of G ◦ H. Therefore,
γ×2(G◦H) = 3.

The following result, which is a direct consequence of Theorems 2.2, 3.1 and 3.2, shows
the cases when G is isomorphic to a complete graph or a star graph.

Proposition 3.3. Let H be a nontrivial graph. For any integer n ≥ 3, the following statements
hold.

(i) γ×2(Kn ◦H) =

{
2 i f γ(H) = 1,

3 otherwise.

(ii) γ×2(K1,n−1 ◦H) =





2 i f γ×2(H) = 2,

3 i f γ×2(H)≥ 3 and γ(H)≤ 2,

4 otherwise.
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We now consider the cases in which G is a double star graph or a complete bipartite graph.
The following result is a direct consequence of Theorems 2.2, 3.1 and 3.2.

Proposition 3.4. Let H be a graph. For any integers n2 ≥ n1 ≥ 2, the following statements
hold.

(i) γ×2(Sn1,n2 ◦H) = 4.

(ii) γ×2(Kn1,n2 ◦H) =

{
3 i f n1 = 2 and γ(H) = 1;
4 otherwise.

4 All cases where G ∼= Pn or G ∼=Cn

4.1 Cases where γ(H) = 1

Proposition 4.1. Let n ≥ 3 be an integer and let H be a nontrivial graph. If γ(H) = 1, then

γ×2(Pn ◦H) =

{
2
⌈n

3

⌉
+1, if γ×2(H)≥ 3 and n ≡ 0(mod 3),

2
⌈n

3

⌉
, otherwise.

Proof. If γ×2(H) = 2, then by Corollary 2.9 we deduce that γ×2(Pn ◦H) = 2γ(Pn). Now, if
γ×2(H)≥ 3, then H has exactly one universal vertex and by Theorem 2.7 (iii) we deduce that
γ×2(G◦H) = γt{R2}(Pn).

From now on we assume that V (Cn)= {u1, . . . ,un}, where the subscripts are taken modulo
n and consecutive vertices are adjacent.

Proposition 4.2. Let n ≥ 3 be an integer and let H be a graph. If γ(H) = 1, then

γ×2(Cn ◦H) =

⌈
2n
3

⌉
.

Proof. If H is a trivial graph, then we are done, by Remark 1.6. From now on we assume that
H has at least two vertices. If γ(H) = 1, then by combining Theorem 2.7 (i) and Remark 1.6
(ii), we deduce that γ×2(Cn ◦H)≤

⌈2n
3

⌉
.

Now, let S be a γ×2(Cn ◦H)-set. Notice that for any i ∈ {1, . . . ,n} we have that
∣∣∣∣∣S∩

(
2⋃

j=0

V (Hui+ j)

)∣∣∣∣∣≥ 2.

Hence,

3γ×2(Cn ◦H) = 3|S|=
n

∑
i=1

∣∣∣∣∣S∩
(

2⋃

j=0

V (Hui+ j)

)∣∣∣∣∣≥ 2n.

Therefore, γ×2(Cn ◦H)≥
⌈2n

3

⌉
, and the result follows.
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4.2 Cases where γ(H) = 2

To begin this subsection we need to state the following four lemmas.

Lemma 4.3. Let G be a nontrivial connected graph and let H be a graph. The following
statements hold for every γ×2(G◦H)-set S that satisfies Lemma 2.6.

(i) If γ(H)≥ 2 and x ∈BS ∪CS, then ∑
u∈N(x)

|S∩V (Hu)| ≥ 2.

(ii) If γ(H) = 2 and x ∈AS, then ∑
u∈N(x)

|S∩V(Hu)| ≥ 1.

(iii) If γ(H)≥ 3 and x ∈V (G), then ∑
u∈N(x)

|S∩V (Hu)| ≥ 2.

Proof. First, we suppose that γ(H) = 2. If there exists either a vertex x ∈ BS ∪CS such that
∑u∈N(x) |S∩V (Hu)| ≤ 1 or a vertex x ∈AS such that ∑u∈N(x) |S∩V (Hu)|= 0, then there exists
a vertex in V (Hx)\S which does not have two neighbours in S. Therefore, (ii) follows, and (i)
follows for γ(H) = 2. Now, let x ∈V (G). Since S satisfies Lemma 2.6, if γ(H)≥ 3, then there
exists a vertex in V (Hx) \ S which does not have neighbours in S∩V (Hx), which implies that
∑u∈N(x) |S∩V (Hu)| ≥ 2 and so (i) and (iii) follows. Therefore, the proof is complete.

P2 ◦H, •
• •

P3 ◦H, •
• •

P4 ◦H, •
•

•
•

P5 ◦H, •
• • •

•

P6 ◦H, •
• • • •

•

P7 ◦H, •
• • • •

•

P8 ◦H, •
• • • •

•
•
•

Figure 3: The scheme used in the proof of Lemma 4.4.

Lemma 4.4. For any integer n ≥ 3 and any graph H with γ(H) = 2,

γ×2(Pn ◦H)≤
{

n−
⌊n

7

⌋
+1 if n ≡ 1,2 (mod 7),

n−
⌊n

7

⌋
otherwise.
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Proof. In Figure 3 we show how to construct a double dominating set S of Pn ◦H for n ∈
{2, . . . ,8}. In this scheme, the circles represent the copies of H in Pn ◦H, two dots in a circle
represent two vertices belonging to S, which form a dominating set of the corresponding copy
of H, while a single dot in a circle represents one vertex belonging to S.

We now proceed to describe the construction of S for any n = 7q+ r, where q ≥ 1 and
0 ≤ r ≤ 6. We partition V (Pn) = {u1, . . . ,un} into q sets of cardinality 7 and for r ≥ 1 one
additional set of cardinality r, in such a way that the subgraph induced by all these sets are
paths. For any r 6= 1, the restriction of S to each of these q paths of length 7 corresponds to the
scheme associated with P7 ◦H in Figure 3, while for the path of length r (if any) we take the
scheme associated with Pr ◦H. The case r = 1 and q ≥ 2 is slightly different, as for the first
q−1 paths of length 7 we take the scheme associated with P7 ◦H and for the path associated
with the last 8 vertices of Pn we take the scheme associated with P8 ◦H.

Notice that, for n≡ 1,2 (mod 7), we have that γ×2(Pn◦H)≤ |S|= 6q+r+1= n−
⌊n

7

⌋
+

1, while for n 6≡ 1,2 (mod 7) we have γ×2(Pn ◦H) ≤ |S| = 6q+ r = n−
⌊n

7

⌋
. Therefore, the

result follows.

Lemma 4.5. Let P7 = w1, . . . ,w7 be a subgraph of Cn. Let H be a graph such that γ(H) = 2
and W = {w1, . . . ,w7}×V (H). If S is a double dominating set of Cn◦H which satisfies Lemma
2.6, then

|S∩W | ≥ 6.

Proof. By Lemma 4.3 (i) and (ii) we have that |S ∩ ({w1,w2,w3} ×V (H))| ≥ 2 and |S ∩
({w4,w5,w6,w7}×V (H))| ≥ 3. If |S∩ ({w1,w2,w3}×V (H))| ≥ 3, then we are done. Hence,
we assume that |S∩({w1,w2,w3}×V (H))|= 2. In this case, and by applying again Lemma 4.3
(i) and (ii) we deduce that |S∩({w4,w5,w6,w7}×V (H))| ≥ 4, which implies that |S∩W | ≥ 6,
as desired. Therefore, the proof is complete.

Lemma 4.6. For any integer n ≥ 3 and any graph H with γ(H) = 2,

γ×2(Cn ◦H)≥
{

n−⌊n
7⌋+1 if n ≡ 1,2 (mod 7),

n−⌊n
7⌋ otherwise.

Proof. It is easy to check that γ×2(Cn ◦H) = n for every n ∈ {3,4,5,6}. Now, let n = 7q+ r,
with 0 ≤ r ≤ 6 and q ≥ 1. Let S be a γ×2(Cn ◦H)-set that satisfies Lemma 2.6.

If r = 0, then by Lemma 4.5 we have that |S| ≥ 6q = n−⌊n
7⌋. From now on we assume

that r ≥ 1. By Theorem 1.5 and Lemma 4.4 we deduce thatγ×2(Cn ◦H) ≤ γ×2(Pn ◦H) < n,
which implies that AS 6= /0, otherwise there exists u ∈ V (Cn) such that N(u)∩CS 6= /0 and so
|N(u)∩BS| ≤ 1, which is a contradiction. Let x ∈ AS and, without loss of generality, we can
label the vertices of Cn in such a way that x = u1, and u2 ∈ AS ∪BS whenever r ≥ 2. We
partition V (Cn) into X = {u1, . . . ,ur} and Y = {ur+1, . . . ,un}. Notice that Lemma 4.5 leads to
|S∩ (Y ×V (H))| ≥ 6q.

Now, if r ∈ {1,2}, then |S∩ (X ×V (H))| ≥ r+1, which implies that |S| ≥ r+1+6q =
n−⌊n

7⌋+1. Analogously, if r = 3, then |S∩ (X ×V (H))| ≥ r and so |S| ≥ r+6q = n−⌊n
7⌋.

Finally, if r ∈{4,5,6}, then by Lemma 4.3 (i) and (ii) we deduce that |S∩(X×V (H))| ≥ r,
which implies that |S| ≥ r+6q = n−⌊n

7⌋.

The following result is a direct consequence of Theorem 1.5 and Lemmas 4.4 and 4.6.
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Proposition 4.7. For any integer n ≥ 3 and any graph H with γ(H) = 2,

γ×2(Cn ◦H) = γ×2(Pn ◦H) =

{
n−⌊n

7⌋+1 if n ≡ 1,2 (mod 7),

n−⌊n
7⌋ otherwise.

4.3 Cases where γ(H)≥ 3

To begin this subsection we need to recall the following well-known result.

Remark 4.8. [21] For any integer n ≥ 3,

γt(Pn) = γt(Cn) =





n
2 i f n ≡ 0 (mod 4),
n+1

2 i f n ≡ 1,3 (mod 4),
n
2 +1 i f n ≡ 2 (mod 4).

Lemma 4.9. Let Pn = u1u2 . . .un be a path of order n ≥ 6, where consecutive vertices are
adjacent, and let H be a graph. If γ(H) ≥ 3, then there exists a γ×2(Pn ◦H)-set S such that
un,un−3 ∈ CS and un−1,un−2 ∈AS.

Proof. Let S be a γ×2(Pn ◦H)-set that satisfies Lemma 2.6 such that |AS| is maximum. First,
we observe that un−1 ∈ AS by Lemma 4.3. Now, by applying again Lemma 4.3, we have
that |S∩V (Hun)|+ |S∩V (Hun−2)| ≥ 2. Hence, without loss of generality we can assume that
un−2 ∈ AS and un ∈ CS as |AS| is maximum. If un−3 ∈ CS, then we are done. On the other
hand, if un−3 /∈ CS, then as every vertex of V (Hun−3) has two neighbours in S∩V (Hun−2), we
can redefine S by replacing the vertices in S∩V (Hun−3) with vertices in V (Hun−4)∪V (Hun−5)
and obtain a new γ×2(Pn ◦H)-set S satisfying that un−3 ∈ CS, as desired. Therefore, the result
follows.

Proposition 4.10. Let n ≥ 3 be an integer and let H be a graph. If γ(H)≥ 3, then

γ×2(Pn ◦H) = 2γt(Pn) =





n i f n ≡ 0 (mod 4),

n+1 i f n ≡ 1,3 (mod 4),

n+2 i f n ≡ 2 (mod 4).

Proof. Since Proposition 1.1 leads to γ×2(Pn ◦ H) ≤ 2γt(Pn), we only need to prove that
γ×2(Pn ◦H) ≥ 2γt(Pn). We proceed by induction on n. By Propositions 3.3 and 3.4 we ob-
tain that γ×2(Pn ◦H) = 2γt(Pn) for n = 3,4. By Lemma 4.3 it is easy to see that γ×2(P5 ◦H) =
2γt(P5). This establishes the base case. Now, we assume that n ≥ 6 and that γ×2(Pk ◦H) ≥
2γt(Pk) for k < n. Let S be a γ×2(Pn ◦H)-set that satisfies Lemma 4.9. Let D = V (Pn ◦H) \
(∪3

i=0V (Hun−i)). Notice that S ∩D is a double dominating set of (Pn ◦H)−D ∼= Pn−4 ◦H.
Hence, by applying the induction hypothesis,

γ×2(Pn ◦H)≥ γ×2(Pn−4 ◦H)+4 ≥ 2γt(Pn−4)+4 ≥ 2γt(Pn),

as desired. To conclude the proof we apply Remark 4.8.
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Proposition 4.11. Let n ≥ 3 be an integer and let H be a graph. If γ(H)≥ 3, then

γ×2(Cn ◦H) = n.

Proof. From Theorem 2.11 we know that γ×2(Cn◦H)≤ n. We only need to prove that γ×2(Cn◦
H) ≥ n. Let S be a γ×2(G ◦H)-set that satisfies Lemma 2.6. Since γ(H) ≥ 3, by Lemma 4.3
(iii) we deduce that

2γ×2(Cn ◦H) = 2|S|= ∑
x∈V (Cn)

∑
u∈N(x)

|S∩V (Hu)| ≥ 2n.

Therefore, the result follows.
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Abstract: This paper introduces a general approach to the idea of protection of graphs,
which encompasses the known variants of secure domination and introduces new ones. Specifically,
we introduce the study of secure w-domination in graphs, where w = (w0, w1, . . . , wl) is a vector
of nonnegative integers such that w0 ≥ 1. The secure w-domination number is defined as
follows. Let G be a graph and N(v) the open neighborhood of v ∈ V(G). We say that a function
f : V(G) −→ {0, 1, . . . , l} is a w-dominating function if f (N(v)) = ∑u∈N(v) f (u) ≥ wi for every
vertex v with f (v) = i. The weight of f is defined to be ω( f ) = ∑v∈V(G) f (v). Given a w-dominating
function f and any pair of adjacent vertices v, u ∈ V(G) with f (v) = 0 and f (u) > 0, the function
fu→v is defined by fu→v(v) = 1, fu→v(u) = f (u)− 1 and fu→v(x) = f (x) for every x ∈ V(G) \ {u, v}.
We say that a w-dominating function f is a secure w-dominating function if for every v with
f (v) = 0, there exists u ∈ N(v) such that f (u) > 0 and fu→v is a w-dominating function as well.
The secure w-domination number of G, denoted by γs

w(G), is the minimum weight among all secure
w-dominating functions. This paper provides fundamental results on γs

w(G) and raises the challenge
of conducting a detailed study of the topic.

Keywords: secure domination; secure Italian domination; weak roman domination; w-domination

1. Introduction

Let Z+ = {1, 2, 3, . . . } and N = Z+ ∪ {0} be the sets of positive and nonnegative integers,
respectively. Let G be a graph, l ∈ Z+ and f : V(G) −→ {0, . . . , l} a function. Let Vi = {v ∈ V(G) :
f (v) = i} for every i ∈ {0, . . . , l}. We identify f with the subsets V0, . . . , Vl associated with it, and thus
we use the unified notation f (V0, . . . , Vl) for the function and these associated subsets. The weight of f
is defined to be

ω( f ) = f (V(G)) =
l

∑
i=1

i|Vi|.

Let w = (w0, . . . , wl) ∈ Z+ ×Nl such that w0 ≥ 1. As defined in [1], a function f (V0, . . . , Vl) is
a w-dominating function if f (N(v)) ≥ wi for every v ∈ Vi. The w-domination number of G, denoted by
γw(G), is the minimum weight among all w-dominating functions. For simplicity, a w-dominating
function f of weight ω( f ) = γw(G) is called a γw(G)-function. For fundamental results on the
w-domination number of a graph, we refer the interested readers to the paper by Cabrera et al. [1],
where the theory of w-domination in graphs is introduced.

The definition of w-domination number encompasses the definition of several well-known
domination parameters and introduces new ones. For instance, we highlight the following particular
cases of known domination parameters that we define here in terms of w-domination: the domination
number γ(G) = γ(1,0)(G) = γ(1,0,...,0)(G), the total domination number γt(G) = γ(1,1)(G) =

γ(1,...,1)(G), the k-domination number γk(G) = γ(k,0)(G), the k-tuple domination number γ×k(G) =

γ(k,k−1)(G), the k-tuple total domination number γ×k,t(G) = γ(k,k)(G), the Italian domination number
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γI(G) = γ(2,0,0)(G), the total Italian domination number γtI(G) = γ(2,1,1)(G), and the {k}-domination
number γ{k}(G) = γ(k,k−1,...,0)(G). In these definitions, the appropriate restrictions on the minimum
degree of G are assumed, when needed.

For any function f (V0, . . . , Vl) and any pair of adjacent vertices v ∈ V0 and u ∈ V(G) \ V0,
the function fu→v is defined by fu→v(v) = 1, fu→v(u) = f (u) − 1 and fu→v(x) = f (x) whenever
x ∈ V(G) \ {u, v}.

We say that a w-dominating function f (V0, . . . , Vl) is a secure w-dominating function if for every
v ∈ V0 there exists u ∈ N(v) \ V0 such that fu→v is a w-dominating function as well. The secure
w-domination number of G, denoted by γs

w(G), is the minimum weight among all secure w-dominating
functions. For simplicity, a secure w-dominating function f of weight ω( f ) = γs

w(G) is called a
γs

w(G)-function. This approach to the theory of secure domination covers the different versions of
secure domination known so far. For instance, we emphasize the following cases of known parameters
that we define here in terms of secure w-domination.

• The secure domination number of G is defined to be γs(G) = γs
(1,0)(G). In this case, for any secure

(1, 0)-dominating function f (V0, V1), the set V1 is known as a secure dominating set. This concept
was introduced by Cockayne et al. [2] and studied further in several papers (e.g., [3–9]).

• The secure total domination number of a graph G of minimum degree at least one is defined to be
γst(G) = γs

(1,1)(G). In this case, for any secure (1, 1)-dominating function f (V0, V1), the set V1 is
known as a secure total dominating set of G. This concept was introduced by Benecke et al. [10] and
studied further in several papers (e.g., [7,11–14]).

• The weak Roman domination number of a graph G is defined to be γr(G) = γs
(1,0,0)(G). This concept

was introduced by Henning and Hedetniemi [15] and studied further in several papers
(e.g., [5,6,16,17]).

• The total weak Roman domination number of a graph G of minimum degree at least one is defined to
be γtr(G) = γs

(1,1,1)(G). This concept was introduced by Cabrera et al. in [12] and studied further
in [18].

• The secure Italian domination number of G is defined to be γs
I
(G) = γs

(2,0,0)(G). This parameter was
introduced by Dettlaff et al. [19].

For the graphs shown in Figure 1, we have the following:

• γs
(1,1)(G1) = γs

(2,0)(G1) = γs
(2,1)(G1) = γ(2,0)(G1) = γ(2,1)G1) = γs

(1,1,0)(G1) = γs
(1,1,1)(G1) =

γs
(2,0,0)(G1) = γs

(2,1,0)(G1) = γ(2,0,0)(G1) = γ(2,1,0)(G1) = γ(2,2,0)(G1) = γ(2,2,1)(G1) =

γ(2,2,2)(G1) = 4 and γs
(2,2)(G1) = γ(2,2)(G1) = γs

(2,2,0)(G1) = γs
(2,2,1)(G1) = γs

(2,2,2)(G1) =

γs
(3,0,0)(G1) = γs

(3,1,0)(G1) = γs
(3,1,1)(G1) = γs

(3,2,0)(G1) = γs
(3,2,1)(G1) = γs

(3,2,2)(G1) =

γ(3,0,0)(G1) = γ(3,1,0)(G1) = γ(3,1,1)(G1) = γ(3,2,0)(G1) = γ(3,2,1)(G1) = γ(3,2,2)(G1) = 6.

• γs
(1,1)(G2) = γs

(1,1,0)(G2) = γs
(1,1,1)(G2) = γ(2,2,0)(G2) = γ(2,2,1)(G2) = γ(2,2,2)(G2) = 3.

• γs
(1,1)(G3) = γs

(1,1,0)(G3) = γs
(1,1,1)(G3) = γ(2,1,0)(G3) = γ(3,0,0)(G3) = 3 < 4 = γs

(2,0,0)(G3) =

γs
(2,1,0)(G3) = γs

(3,1,0)(G3) = γ(2,2,0)(G3) = γ(2,2,1)(G3) = γ(2,2,2)(G3) = γ(3,2,0)(G3) <

5 = γs
(2,2,0)(G3) = γs

(3,2,0)(G3) = γs
(2,2,1)(G3) = γs

(2,2,2)(G3) = γs
(3,1,1)(G3) = γs

(3,2,1)(G3) =

γ(3,2,1)(G3) = γ(3,2,2)(G3) < 6 = γs
(3,2,2)(G3).

This paper is devoted to providing general results on secure w-domination. We assume that
the reader is familiar with the basic concepts, notation, and terminology of domination in graph.
If this is not the case, we suggest the textbooks [20,21]. For the remainder of the paper, definitions are
introduced whenever a concept is needed.
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Figure 1. The labels of black-colored vertices describe the positive weights of a γs
(2,1,0)(G1)-function,

a γs
(1,1,1)(G2)-function, and a γs

(2,2,2)(G3)-function, respectively.

2. General Results on Secure w-Domination

Given a w-dominating function f (V0, . . . , Vl), we introduce the following notation.

• Given v ∈ V0, we define M f (v) = {u ∈ V(G) \V0 : fu→v as a w-dominating function}.
• M f (G) =

⋃

v∈V0

M f (v).

• Given u ∈ M f (G), we define D f (u) = {v ∈ V0 : u ∈ M f (v)}.
• Given u ∈ M f (G), we define Tf (u) = {v ∈ V0 : u ∈ M f (v) and f (N(v)) = w0}.

Obviously, if f is a secure w-dominating function, then M f (v) 6= ∅ for every v ∈ V0.

Lemma 1. Let f be a secure w-dominating function on a graph G, and let u ∈ M f (G). If Tf (u) 6= ∅,
then each vertex belonging to Tf (u) is adjacent to every vertex in D f (u) and, in particular, G[Tf (u)] is a clique.

Proof. Since Tf (u) ⊆ D f (u), we only need to suppose the existence of two non-adjacent vertices
v ∈ Tf (u) and v′ ∈ D f (u) with v 6= v′. In such a case, fu→v′(N(v)) < w0, which is a contradiction.
Therefore, the result follows.

Remark 1 ([1]). Let G be a graph of minimum degree δ and let w = (w0, w1, . . . , wl) ∈ Z+ ×Nl . If w0 ≥
w1 ≥ · · · ≥ wl , then there exists a w-dominating function on G if and only if wl ≤ lδ.

Throughout this section, we repeatedly apply, without explicit mention, the following necessary
and sufficient condition for the existence of a secure w-dominating function on G.

Remark 2. Let G be a graph of minimum degree δ and let w = (w0, w1, . . . , wl) ∈ Z+ ×Nl . If w0 ≥ w1 ≥
· · · ≥ wl , then there exists a secure w-dominating function on G if and only if wl ≤ lδ.

Proof. If f is a secure w-dominating function on G, then f is a w-dominating function, and by Remark 1
we conclude that wl ≤ lδ.

Conversely, if wl ≤ lδ, then the function f , defined by f (v) = l for every v ∈ V(G), is a secure
w-dominating function. Therefore, the result follows.

It was shown by Cabrera et al. [1] that the w-domination numbers satisfy a certain monotonicity.
Given two integer vectors w = (w0, . . . , wl) and w′ = (w′0, . . . , w′l), we say that w′ ≺ w if w′i ≤ wi
for every i ∈ {0, . . . , l}. With this notation in mind, we can state the next remark which is a direct
consequence of the definition of w-dominating function.
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Remark 3. [1] Let G be a graph of minimum degree δ and let w = (w0, . . . , wl), w′ = (w′0, . . . , w′l) ∈
Z+ ×Nl such that wi ≥ wi+1 and w′i ≥ w′i+1 for every i ∈ {0, . . . , l− 1} . If w′ ≺ w and wl ≤ lδ, then every
w-dominating function is a w′-dominating function and, as a consequence,

γw′(G) ≤ γw(G).

The monotonicity also holds for the case of secure w-domination.

Remark 4. Let G be a graph of minimum degree δ and let w = (w0, . . . , wl), w′ = (w′0, . . . , w′l) ∈ Z+ ×Nl

such that wi ≥ wi+1 and w′i ≥ w′i+1 for every i ∈ {0, . . . , l − 1} . If w′ ≺ w and wl ≤ lδ, then every secure
w-dominating function is a secure w′-dominating function and, as a consequence,

γs
w′(G) ≤ γs

w(G).

Proof. For any γs
w(G)-function f and any v ∈ V(G) with f (v) = 0, there exists u ∈ M f (v). Since f

and fu→v are w-dominating functions, by Remark 3, we conclude that, if w′ ≺ w and wl ≤ lδ, then both
f and fu→v are w′-dominating functions. Therefore, f is a secure w′-dominating function and, as a
consequence, γs

w′(G) ≤ ω( f ) = γs
w(G).

From the following equality chain, we obtain examples of equalities in Remark 4. Graph G1 is
illustrated in Figure 1.

γs
(3,0,0)(G1) = γs

(3,1,0)(G1) = γs
(3,2,0)(G1) = γs

(3,2,1)(G1) = γs
(3,2,2)(G1).

Theorem 1. Let G be a graph of minimum degree δ, and let w = (w0, . . . , wl) ∈ Z+×Nl such that wi ≥ wi+1
for every i ∈ {0, . . . , l − 1}. If lδ ≥ wl , then the following statements hold.

(i) γw(G) ≤ γs
w(G).

(ii) If k ∈ Z+, then γ(k+1,k=w1,...,wl)
(G) ≤ γs

(k,k=w1,...,wl)
(G).

Proof. Since every secure w-dominating function on G is a w-dominating function on G, (i) follows.
Let f (V0, . . . , Vl) be a γs

(k,k=w1,...,wl)
(G)-function. Since f is a (k, k = w1, . . . , wl)-dominating

function, f (N(v)) ≥ wi for every v ∈ Vi with i ∈ {1, . . . , l} and w1 = k. If V0 = ∅, then f is
a (k + 1, k = w1, . . . , wl)-dominating function, which implies that γ(k+1,k=w1,...,wl)

(G) ≤ ω( f ) =

γs
(k,k=w1,...,wl)

(G). Assume V0 6= ∅. Let v ∈ V0 and u ∈ M f (v). If f (N(v)) = k, then fu→v(N(v)) =
f (N(v))− 1 = k− 1, which is a contradiction. Thus, f (N(v)) ≥ k + 1, which implies that f is a (k +
1, k = w1, . . . , wl)-dominating function. Therefore, γ(k+1,k=w1,...,wl)

(G) ≤ ω( f ) = γs
(k,k=w1,...,wl)

(G),
and (ii) follows.

The inequalities above are tight. For instance, for any integers n, n′ ≥ 4, we have that γ(2,2,2)(Kn +

Nn′) = γs
(2,2,2)(Kn + Nn′) = 3 and γ(3,2,2)(K2,n) = γs

(2,2,2)(K2,n) = 5.

Corollary 1. Let G be a graph of minimum degree δ and order n. Let w = (w0, . . . , wl) ∈ Z+ ×Nl such that
wi ≥ wi+1 for every i ∈ {0, . . . , l − 1} and lδ ≥ wl . The following statements hold.

(i) If n > w0, then γs
w(G) ≥ w0.

(ii) If n > w0 = w1, then γs
w(G) ≥ w0 + 1.

Proof. Assume n > w0. By Theorem 1, we have that γs
w(G) ≥ γw(G). Now, if γw(G) ≤ w0− 1 < n− 1,

then for any γw(G)-function f there exists at least one vertex x ∈ V(G) such that f (x) = 0 and
f (N(x)) ≤ ω( f ) < w0, which is a contradiction. Thus, γs

w(G) ≥ γw(G) ≥ w0.
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Analogously, if w0 = w1, then Theorem 1 leads to γs
w(G) ≥ γ(w0+1,w1,...,wl)

(G). In this case,
if γ(w0+1,w1,...,wl)

(G) ≤ w0 < n, then for any γ(w0+1,w1,...,wl)
(G)-function f there exists at least one

vertex x ∈ V(G) such that f (x) = 0 and f (N(x)) ≤ ω( f ) < w0 + 1, which is a contradiction.
Therefore, γs

w(G) ≥ γ(w0+1,w1,...,wl)
(G) ≥ w0 + 1.

As the following result shows, the bounds above are tight.

Proposition 1. For any integer n and any w = (w0, . . . , wl) ∈ Z+ ×Nl such that wl ≤ · · · ≤ w0 < n,

γs
w(Kn) =

{
w0 + 1 if w0 = w1,

w0 otherwise.

Proof. Assume n > w0. Let S ⊆ V(Kn) such that |S| = w0 + 1 if w0 = w1 and |S| = w0 otherwise.
In both cases, the function f (V0, . . . , Vl), defined by V1 = S, V0 = V(G) \ V1 and Vj = ∅ whenever
j 6∈ {0, 1}, is a secure w-dominating function. Hence, γs

w(Kn) ≤ ω( f ) = |S|. Therefore, by Corollary 1
the result follows.

Theorem 2. Let G be a graph of minimum degree δ, and let w = (w0, . . . , wl), w′ = (w′0, . . . , w′l) ∈ Z+ ×Nl

such that lδ ≥ wl , wi ≥ wi+1 and w′i ≥ w′i+1 for every i ∈ {0, . . . , l − 1}. If wi ≥ w′i−1 − 1 for every
i ∈ {1, . . . , l}, and max{wj − 1, 0} ≥ w′j for every j ∈ {0, . . . , l}, then

γs
w′(G) ≤ γw(G).

Proof. Assume that wi ≥ w′i−1 − 1 for every i ∈ {1, . . . , l} and max{wj − 1, 0} ≥ w′j for every
j ∈ {0, . . . , l}. Let f (V0, . . . , Vl) be a γw(G)-function. We claim that f is a secure w′-dominating
function. Since f (N(x)) ≥ wi ≥ w′i for every x ∈ Vi with i ∈ {0, . . . , l}, we deduce that f is a
w′-dominating function. Now, let v ∈ V0 and u ∈ N(v) ∩Vi with i ∈ {1, . . . , l}. We differentiate the
following cases for x ∈ V(G).

Case 1. x = v. In this case, fu→v(v) = 1 and fu→v(N(v)) = f (N(v))− 1 ≥ w0− 1 ≥ max{w1− 1, 0} ≥
w′1.

Case 2. x = u. In this case, fu→v(u) = f (u)− 1 = i− 1 and fu→v(N(u)) = f (N(u)) + 1 ≥ wi + 1 ≥
w′i−1.

Case 3. x ∈ V(G) \ {u, v}. Assume x ∈ Vj. Notice that fu→v(x) = f (x) = j. Now, if x 6∈ N(u)
or x ∈ N(u) ∩ N(v), then fu→v(N(x)) = f (N(x)) ≥ wj ≥ w′j, while if x ∈ N(u) \ N[v],
then fu→v(N(x)) = f (N(x))− 1 ≥ max{wj − 1, 0} ≥ w′j.

According to the three cases above, fu→v is a w′-dominating function. Therefore, f is a secure
w′-dominating function, and so γs

w′(G) ≤ ω( f ) = γw(G).

The inequality above is tight. For instance, γs
(1,1,1)(Kn,n′) = γ(2,2,2)(Kn,n′) = 4 for n, n′ ≥ 4.

From Theorems 1 and 2, we derive the next known inequality chain, where G has minimum
degree δ ≥ 1, except in the last inequality in which δ ≥ 2.

γs(G) ≤ γ2(G) ≤ γ×2(G) ≤ γst(G) ≤ γ×2,t(G).

The following result is a particular case of Theorem 2.

Corollary 2. Let G be a graph of minimum degree δ, and let w = (w0, . . . , wl) ∈ Z+ ×Nl and 1 = (1, . . . , 1).
If 0 ≤ wj−1 − wj ≤ 2 for every j ∈ {1, . . . , i}, where 1 ≤ i ≤ l and lδ ≥ wl + 1, then

γs
(w0,...,wi ,0,...,0)(G) ≤ γ(w0+1,...,wi+1,0,...,0)(G) ≤ γw+1(G).
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For Graph G2 illustrated in Figure 1, we have that γs
(1,1)(G2) = γs

(1,1,0)(G2) = γ(2,2,0)(G2) =

γs
(1,1,1)(G2) = γ(2,2,2)(G2) = 3. Notice that γs

w(G2) = γw+1(G2) for w = 1 = (1, 1, 1).
Next, we show a class of graphs where γw(G) = γw+1(G). To this end, we need to introduce

some additional notation and terminology. Given the two Graphs G1 and G2, the corona product graph
G1 � G2 is the graph obtained from G1 and G2, by taking one copy of G1 and |V(G1)| copies of G2 and
joining by an edge every vertex from the ith copy of G2 with the ith vertex of G1. For every x ∈ V(G1),
the copy of G2 in G1 � G2 associated to x is denoted by G2,x.

Theorem 3 ([1]). Let G1 � G2 be a corona graph where G1 does not have isolated vertices, and let w =

(w0, . . . , wl) ∈ Z+ ×Nl . If l ≥ w0 ≥ · · · ≥ wl and |V(G2)| ≥ w0, then

γw(G1 � G2) = w0|V(G1)|.

From the result above, we deduce that under certain additional restrictions on G2 and w we can
obtain γs

w(G1 � G2) = γw+1(G1 � G2).

Theorem 4. Let G1 � G2 be a corona graph, where G1 does not have isolated vertices and G2 is a triangle-free
graph. Let w = (w0, . . . , wl) ∈ Z+ ×Nl such that l − 1 ≥ w0 ≥ · · · ≥ wl . If |V(G2)| ≥ w0 + 2, then

γs
w(G1 � G2) = (w0 + 1)|V(G1)| = γw+1(G1 � G2).

Proof. Since G1 does not have isolated vertices, the upper bound γs
w(G1 � G2) ≤ (w0 + 1)|V(G1)| is

straightforward, as the function f , defined by f (x) = w0 + 1 for every x ∈ V(G1) and f (x) = 0 for the
remaining vertices of G1 � G2, is a secure w-dominating function.

On the other hand, let f (V0, . . . , Vl) be a γs
w(G1 � G2)-function and suppose that there exists

x ∈ V(G1) such that f (V(G2,x)) + f (x) ≤ w0. Since |V(G2,x)| ≥ w0 + 2, there exist at least two
different vertices u, v ∈ V(G2,x) ∩ V0. Hence, f (N(u)) = f (N(v)) = w0, which implies that u and
v are adjacent and, since G2 is a triangle-free graph, f (x) = w0 and f (y) = 0 for every y ∈ V(G2,x).
Thus, by Lemma 1, we conclude that G2,x is a clique, which is a contradiction as |V(G2)| ≥ 3 and G2

is a triangle-free graph. This implies that f (V(G2,x)) + f (x) ≥ w0 + 1 for every x ∈ V(G1), and so
γs

w(G1 � G2) = ω( f ) ≥ (w0 + 1)|V(G1)|.
Therefore, γs

w(G1�G2) = (w0 + 1)|V(G1)|, and by Theorem 3 we conclude that γw+1(G1�G2) =

(w0 + 1)|V(G1)|, which completes the proof.

Theorem 5. Let G be a graph of minimum degree δ and l ≥ 2 an integer. For any (w0, . . . , wl−1) ∈ Z+×Nl−1

with w0 ≥ · · · ≥ wl−1 and lδ ≥ wl−1,

γs
(w0,...,wl−1,wl=wl−1)

(G) ≤ γ(w0,...,wl−1)
(G) + γ(G).

Proof. Let f (V0, . . . , Vl−1) be a γ(w0,...,wl−1)
(G)-function and S a γ(G)-set. We define a function

g(W0, . . . , Wl) as follows. Let Wl = Vl−1 ∩ S, W0 = V0 \ S, and Wi = (Vi−1 ∩ S) ∪ (Vi \ S) for every
i ∈ {1, . . . , l − 1}.

We claim that g is a secure (w0, . . . , wl−1, wl = wl−1)-dominating function. First, we observe that,
if x ∈ Wi ∩ S with i ∈ {1, . . . , l}, then x ∈ Vi−1 and g(N(x)) ≥ f (N(x)) ≥ wi−1 ≥ wi. Moreover,
if x ∈ Wi \ S with i ∈ {0, . . . , l − 1}, then x ∈ Vi and g(N(x)) ≥ f (N(x)) ≥ wi. Hence, g is a
(w0, . . . , wl−1, wl = wl−1)-dominating function.

Now, let v ∈W0 = V0 \ S. Notice that there exists a vertex u ∈ N(v)∩Vi−1 ∩ S with i ∈ {1, . . . , l}.
Hence, u ∈ N(v) ∩Wi. We differentiate the following cases for x ∈ V(G).

Case 1. x = v. In this case, gu→v(v) = 1 and, as N(v) ∩ S 6= ∅, we obtain that gu→v(N(v)) =

g(N(v))− 1 ≥ f (N(v)) ≥ w0 ≥ w1.
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Case 2. x = u. In this case, gu→v(u) = g(u) − 1 = i − 1 and gu→v(N(u)) = g(N(u)) + 1 ≥
f (N(u)) + 1 ≥ wi−1 + 1 > wi−1.

Case 3. x ∈ V(G) \ {u, v}. Assume x ∈ Wj. Notice that gu→v(x) = g(x) = j. If x 6∈ N(u) or
x ∈ N(u) ∩ N(v), then gu→v(N(x)) = g(N(x)) ≥ f (N(x)) ≥ wj.

Moreover, if x ∈ (N(u) \ N[v]) ∩ S, then x ∈ Vj−1 and so gu→v(N(x)) = g(N(x)) − 1 ≥
f (N(x)) ≥ wj−1 ≥ wj. Finally, if x ∈ (N(u) \ N[v]) \ S, then x ∈ Vj and therefore gu→v(N(x)) =

g(N(x))− 1 ≥ f (N(x)) ≥ wj.
According to the three cases above, gu→v is a (w0, . . . , wl−1, wl = wl−1)-dominating

function. Therefore, f is a secure (w0, . . . , wl−1, wl = wl−1)-dominating function, and so
γs
(w0,...,wl−1,wl=wl−1)

(G) ≤ ω(g) ≤ ω( f ) + |S| = γ(w0,...,wl−1)
(G) + γ(G).

From Theorem 5, we derive the next known inequalities, which are tight.

Corollary 3. For a graph G, the following statements hold.

• Ref. [15] γr(G) ≤ 2γ(G).

• Ref. [12] γtr(G) ≤ γt(G) + γ(G), where G has minimum degree at least one.

• Ref. [19] γs
I(G) ≤ γ2(G) + γ(G).

To establish the following result, we need to define the following parameter.

νs
(w0,...,wl)

(G) = max{|V0| : f (V0, . . . , Vl) is a γs
(w0,...,wl)

(G)-function.}

In particular, for l = 1 and a graph G of order n, we have that νs
(w0,w1)

(G) = n− γs
(w0,w1)

(G).

Theorem 6. Let G be a graph of minimum degree δ and order n. The following statements hold for any
(w0, . . . , wl) ∈ Z+ ×Nl with w0 ≥ · · · ≥ wl .

(i) If there exists i ∈ {1, . . . , l − 1} such that iδ ≥ wi, then γs
(w0,...,wl)

(G) ≤ γs
(w0,...,wi)

(G).

(ii) If l ≥ i + 1 > w0, then γs
(w0,...,wi ,0,...,0)(G) ≤ (i + 1)γ(G).

(iii) Let k, i ∈ Z+ such that l ≥ ki, and let (w′0, w′1, . . . , w′i) ∈ Z+ ×Nl . If iδ ≥ w′i and wkj = kw′j for every
j ∈ {0, 1, . . . , i}, then γs

(w0,...,wl)
(G) ≤ kγs

(w′0,...,w′i)
(G).

(iv) Let k ∈ Z+ and β1, . . . , βk ∈ Z+. If lδ ≥ k + wl > k and w0 + k ≥ β1 ≥ · · · ≥ βk ≥ w1 + k, then
γs
(w0+k,β1,...,βk ,w1+k,...,wl+k)(G) ≤ γs

(w0,...,wl)
(G) + k(n− νs

(w0,...,wl)
(G)).

(v) If lδ ≥ wl ≥ l ≥ 2, then γs
(w0,...,wl)

(G) ≤ lγs
(w0−l+1,wl−l+1)(G).

Proof. If there exists i ∈ {1, . . . , l − 1} such that iδ ≥ wi, then for any γs
(w0,...,wi)

(G)-function
f (V0, . . . , Vi) we define a secure (w0, . . . , wl)-dominating function g(W0, . . . , Wl) by Wj = Vj for every
j ∈ {0, . . . , i} and Wj = ∅ for every j ∈ {i + 1, . . . , l}. Hence, γs

(w0,...,wl)
(G) ≤ ω(g) = ω( f ) =

γs
(w0,...,wi)

(G). Therefore, (i) follows.
Now, assume l ≥ i + 1 > w0. Let S be a γ(G)-set. Let f be the function defined by f (v) = i + 1

for every v ∈ S and f (v) = 0 for the remaining vertices. Since i + 1 > w0, we can conclude that f is a
secure (w0, . . . , wi, 0 . . . , 0)-dominating function. Therefore, γs

(w0,...,wi ,0...,0)(G) ≤ ω( f ) = (i + 1)|S| =
(i + 1)γ(G), which implies that (ii) follows.
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To prove (iii), assume that l ≥ ki, iδ ≥ w′i and wkj = kw′j for every j ∈ {0, . . . , i}. Let f ′(V′0, . . . , V′i )
be a γs

(w′0,...,w′i)
(G)-function. We construct a function f (V0, . . . , Vl) as f (v) = k f ′(v) for every v ∈ V(G).

Hence, Vkj = V′j for every j ∈ {0, . . . , i}, while Vj = ∅ for the remaining cases. Thus, for every
v ∈ Vkj with j ∈ {0, . . . , i} we have that f (N(v)) = k f ′(N(v)) ≥ kw′j = wkj, which implies that f is a
(w0, . . . , wl)-dominating function. Now, for every x ∈ V0, there exists y ∈ M f ′(x). Hence, for every
v ∈ Vkj with j ∈ {0, . . . , i}, we have that fy→x(N(v)) = k f ′y→x(N(v)) ≥ kw′j = wkj, which implies that
fy→x is a (w0, . . . , wl)-dominating function. Therefore, f is a secure (w0, . . . , wl)-dominating function,
and so γs

(w0,...,wl)
(G) ≤ ω( f ) = kω( f ′) = kγs

(w′0,...,w′i)
(G). Therefore, (iii) follows.

Now, assume that lδ ≥ k + wl > k and w0 + k ≥ β1 ≥ · · · ≥ βk ≥ w1 + k. Let g(W0, . . . , Wl)

be a γs
(w0,...,wl)

(G)-function. We construct a function f (V0, . . . , Vl+k) as f (v) = g(v) + k for every
v ∈ V(G) \W0 and f (v) = 0 for every v ∈ W0. Hence, Vj+k = Wj for every j ∈ {1, . . . , l},
V0 = W0 and Vj = ∅ for the remaining cases. Thus, if v ∈ Vj+k and j ∈ {1, . . . , l},
then f (N(v)) ≥ g(N(v)) + k ≥ wj + k, and if v ∈ V0, then f (N(v)) ≥ g(N(v)) + k ≥ w0 + k.
This implies that f is a (w0 + k, β1, . . . , βk, w1 + k, . . . , wl + k)-dominating function. Now, for every
x ∈ V0 = W0, there exists y ∈ Mg(x). Hence, if v ∈ Vj+k and j ∈ {1, . . . , l}, then fy→x(N(v)) ≥
gy→x(N(v)) + k ≥ wj + k, and if v ∈ V0, then fy→x(N(v)) ≥ gy→x(N(v)) + k ≥ w0 + k. This implies
that fy→x is a (w0 + k, β1, . . . , βk, w1 + k, . . . , wl + k)-dominating function, and so f is a secure
(w0 + k, β1, . . . , βk, w1 + k, . . . , wl + k)-dominating function. Therefore, γs

(w0+k,β1,...,βk ,w1+k,...,wl+k)(G) ≤
ω( f ) = ω(g) + k ∑l

j=1 |Wj| = γs
(w0,...,wl)

(G) + k(n − |W0|) ≤ γs
(w0,...,wl)

(G) + k(n − νs
(w0,...,wl)

(G)),
concluding that (iv) follows.

Furthermore, if lδ ≥ wl ≥ l ≥ 2, then, by applying (iv) for k = l − 1, we deduce that

γs
(w0,...,wl)

(G) ≤ γs
(w0−l+1,wl−l+1)(G) + (l − 1)(n− νs

(w0−l+1,wl−l+1)(G)) = lγs
(w0−l+1,wl−l+1)(G).

Therefore, (v) follows.

In the next subsections, we consider several applications of Theorem 6 where we show that the
bounds are tight. For instance, the following particular cases is of interest.

Corollary 4. Let G be a graph of minimum degree δ, and let k, l, w2, . . . , wl ∈ Z+ with k ≥ w2 ≥ · · · ≥ wl .

(i’) If δ ≥ k, then γs
(k+1,k,w2,...,wl)

(G) ≤ γs
(k+1,k)(G).

(ii’) If δ ≥ k, then γs
(k,k,w2,...,wl)

(G) ≤ γs
(k,k)(G).

(iii’) If lδ ≥ k ≥ l ≥ 2, then γs
(k, k, . . . , k︸ ︷︷ ︸

l+1

)
(G) ≤ lγs

(k−l+1,k−l+1)(G).

(iv’) Let i ∈ Z+. If l ≥ ki and δ ≥ 1, then γs
(k, . . . , k︸ ︷︷ ︸

l+1

)
(G) ≤ kγs

(1, . . . , 1︸ ︷︷ ︸
i+1

)
(G).

Proof. If δ ≥ k, then by Theorem 6 (i) we conclude that (i’) and (ii’) follow. If lδ ≥ k ≥ l ≥ 2, then by
Theorem 6 (v) we deduce (iii’). Finally, if l ≥ k and δ ≥ 1, then by Theorem 6 (iii) we deduce that (iv’)
follows.

To show that the inequalities above are tight, we consider the following examples. For (i’), we have
γs
(2,1,1)(K1 + (K2 ∪ K2)) = γs

(2,1)(K1 + (K2 ∪ K2)) = 3. For (ii’) we have γs
(k,k,w2,...,wl)

(G) = γs
(k,k)(G) =

k + 1 for every graph G with k + 1 universal vertices. Finally, for (iii’) and (iv’), we take l = k = 2 and
γs
(2,2,2)(K2 + Nn) = 2γs

(1,1)(K2 + Nn) = 4 for every n ≥ 2.
We already know that γt(G) = γ(1,1)(G) = γ(1,1,w2,...,wl)

(G), for every w2, . . . , wl ∈ {0, 1}.
In contrast, the picture is quite different for the case of secure (1, 1)-domination, as there are graphs
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where the gap γs
(1,1)(G)− γs

(1,...,1)(G) is arbitrarily large. For instance, lim
n→∞

γs
(1,1)(K1,n−1) = +∞, while,

if l ≥ 2, then lim
n→+∞

γs
(1, . . . , 1︸ ︷︷ ︸

l+1

)(K1,n−1) = 3.

Proposition 2. Let G be a graph of order n. Let w = (w0, . . . , wl) ∈ Z+ ×Nl such that w0 ≥ · · · ≥ wl .
If G′ is a spanning subgraph of G with minimum degree δ′ ≥ wl

l , then

γs
w(G) ≤ γs

w(G
′).

Proof. Let E− = {e1, . . . , ek} be the set of all edges of G not belonging to the edge set of G′. Let G′0 = G
and, for every i ∈ {1, . . . , k}, let Xi = {e1, . . . , ei} and G′i = G− Xi, the edge-deletion subgraph of G
induced by E(G) \ Xi.

For any γs
w(G′i)-function f and any v ∈ V(G′i) = V(G) with f (v) = 0, there exists u ∈ M f (v).

Since f and fu→v are w-dominating functions on G′i , both are w-dominating functions on G′i−1, and so
we can conclude that f is a secure w-dominating function on G′i−1, which implies that γs

w(G′i−1) ≤
γs

w(G′i). Hence, γs
w(G) = γs

w(G′0) ≤ γs
w(G′1) ≤ · · · ≤ γs

w(G′k) = γs
w(G′).

As a simple example of equality in Proposition 2 we can take any graph G of order n, having n′ +
1 ≥ 2 universal vertices. In such a case, for n′ = w1 ≥ · · · ≥ wl we have that

γs
(n′ ,n′=w1,...,wl)

(Kn) = γs
(n′ ,n′=w1,...,wl)

(G) = γs
(n′ ,n′)(Kn) = γs

(n′ ,n′)(G) = n′ + 1.

From Proposition 2, we obtain the following result.

Corollary 5. Let G be a graph of order n and w = (w0, . . . , wl) ∈ Z+ ×Nl such that w0 ≥ · · · ≥ wl .

• If G is a Hamiltonian graph and wl ≤ 2l, then γs
w(G) ≤ γs

w(Cn).

• If G has a Hamiltonian path and wl ≤ l, then γs
w(G) ≤ γs

w(Pn).

To derive some lower bounds on γs
w(G), we need to establish the following lemma.

Lemma 2 ([1]). Let G be a graph with no isolated vertex, maximum degree ∆ and order n. For any w-dominating
function f (V0, . . . , Vl) on G such that w0 ≥ · · · ≥ wl ,

∆ω( f ) ≥ w0n +
l

∑
i=1

(wi − w0)|Vi|.

Theorem 7. Let G be a graph with no isolated vertex, maximum degree ∆ and order n. Let w = (w0, . . . , wl) ∈
Z+ ×Nl such that w0 ≥ · · · ≥ wl and lδ ≥ wl . The following statements hold.

• If w0 = w1 and w0 − wi ≤ i for every i ∈ {2, ..., l}, then γs
w(G) ≥

⌈
(w0+1)n

∆+1

⌉
.

• If w0 = w1, then γs
w(G) ≥

⌈
(w0+1)n

∆+w0

⌉
.

• If w0 = w1 + 1 and w0 − wi ≤ i for every i ∈ {2, ..., l}, then γs
w(G) ≥

⌈ w0n
∆+1

⌉
.

• γs
w(G) ≥

⌈
w0n

∆+w0

⌉
.

Proof. Let w0 = w1 and w0 − wi ≤ i for every i ∈ {2, ..., l}. Let f (V0, . . . , Vl) be a
γ(w0+1,w1,...,wl)

(G)-function. By Lemma 2, we deduce the following.
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∆ω( f ) ≥ (w0 + 1)n +
l

∑
i=1

(wi − w0)|Vi|

≥ (w0 + 1)n−
l

∑
i=1

i|Vi|

= (w0 + 1)n−ω( f ).

Therefore, Theorem 1 (ii) leads to γs
w(G) ≥ ω( f ) ≥

⌈
(w0+1)n

∆+1

⌉
.

The proof of the remaining items is completely analogous. In the last two cases, we consider that
f (V0, . . . , Vl) is a γw(G)-function, and we apply Theorem 1 (i) instead of (ii).

The bounds above are sharp. For instance, γs
(1,1,0)(G) ≥

⌈ 2n
∆+1

⌉
is achieved by Graph G2 shown in

Figure 1, the bound γs
(k,k,0)(G) ≥

⌈
(k+1)n

∆+k

⌉
is achieved by G ∼= Kn for every n > k(k− 1) > 0, the bound

γs
(2,1,1)(G) ≥

⌈ 2n
∆+1

⌉
is achieved by the corona graph K2 � Kn′ with n′ ≥ 4, while γs

(2,0,0)(G) ≥
⌈ 2n

∆+2
⌉

is achieved by G ∼= C5, G ∼= Kn and G ∼= Kn′ ∪ Kn′ with n ≥ 2 and n′ ≥ 4.
To conclude the paper, we consider the problem of characterizing the graphs G and the vectors

w for which γs
w(G) takes small values. It is readily seen that γs

(w0,...,wl)
(G) = 1 if and only if w0 = 1,

w1 = 0 and G ∼= Kn. Next, we consider the case γs
w(G) = 2.

Theorem 8. Let w = (w0, . . . , wl) ∈ Z+ ×Nl such that w0 ≥ · · · ≥ wl . For a graph G of order at least three,
γs
(w0,...,wl)

(G) = 2 if and only if one of the following conditions holds.

(i) w2 = 0, γ(G) = 1 and one of the following conditions holds.

• w0 = w1 = 1.
• w0 = 1, w1 = 0, and G 6∼= Kn.
• w0 = 2, w1 ∈ {0, 1} and G ∼= Kn.

(ii) w0 = 1, w1 = 0, and γs
(1,0)(G) = 2.

(iii) w0 = w1 = 1 and γs
(1,1)(G) = 2.

(iv) w0 = 2, w1 ∈ {0, 1}, and G ∼= Kn.

Proof. Assume first that γs
(w0,...,wl)

(G) = 2 and let f (V0, . . . , Vl) be a γs
(w0,...,wl)

(G)-function. Notice that
(w0, w1) ∈ {(1, 0), (1, 1), (2, 0), (2, 1)} and |V2| ∈ {0, 1}.

Firstly, we consider that |V2| = 1, i.e., V2 = {u} for some universal vertex u ∈ V(G). In this
case, w2 = 0, γ(G) = 1, and Vi = ∅ for every i 6= 0, 2. By Lemma 1, if w0 = 2, then G[Tf (u)] =
G[V(G) \ {u}] is a clique, which implies that G ∼= Kn. Obviously, in such a case, w1 < 2. Finally,
the case, w0 = 1 and w1 = 0 leads to G 6∼= Kn, as γs

(1,0...,0)(Kn) = 1. Therefore, (i) follows.
From now on, assume that V2 = ∅. Hence, Vi = ∅ for every i 6= 0, 1. If w0 = 1 and w1 = 0,

then G 6∼= Kn and V1 is a secure dominating set. Therefore, (ii) follows. If w0 = w1 = 1, then V1 is a
secure total dominating set of cardinality two, and so γs

(1,1)(G) = 2. Therefore, (iii) follows. Finally,
assume w0 = 2. In this case, V1 is a double dominating set of cardinality two, and by Lemma 1 we
know that G[Tf (x)] = G[V(G) \ V1] is a clique for any x ∈ V1. Hence, G ∼= Kn and, in such a case,
w1 < 2. Therefore, (iv) follows.

Conversely, if one of the four conditions holds, then it is easy to check that γs
(w0,...,wl)

(G) = 2,
which completes the proof.
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Abstract: Given a graph G = (V, E), a function f : V → {0, 1, 2, . . . } is said to be a total dominating
function if ∑u∈N(v) f (u) > 0 for every v ∈ V, where N(v) denotes the open neighbourhood of
v. Let Vi = {x ∈ V : f (x) = i}. We say that a function f : V → {0, 1, 2} is a total weak
Roman dominating function if f is a total dominating function and for every vertex v ∈ V0 there
exists u ∈ N(v) ∩ (V1 ∪ V2) such that the function f ′, defined by f ′(v) = 1, f ′(u) = f (u)− 1 and
f ′(x) = f (x) whenever x ∈ V \ {u, v}, is a total dominating function as well. The weight of a function
f is defined to be w( f ) = ∑v∈V f (v). In this article, we introduce the study of the total weak Roman
domination number of a graph G, denoted by γtr(G), which is defined to be the minimum weight
among all total weak Roman dominating functions on G. We show the close relationship that exists
between this novel parameter and other domination parameters of a graph. Furthermore, we obtain
general bounds on γtr(G) and, for some particular families of graphs, we obtain closed formulae.
Finally, we show that the problem of computing the total weak Roman domination number of a
graph is NP-hard.

Keywords: weak Roman domination; total Roman domination; secure total domination; total
domination; NP-hard problem

1. Introduction

The theory of domination in (finite) graphs can be developed using functions f : V(G) → A,
where V(G) is the vertex set of a graph G and A is a set of nonegative numbers. With this approach,
the different types of domination are obtained by imposing certain restrictions on f . To begin with,
let us consider the two simplest cases: f is said to be a dominating function if for every vertex v such
that f (v) = 0, there exists a vertex u, adjacent to v, such that f (u) > 0; furthermore, f is said to be
a total dominating function (TDF) if for every vertex v, there exists a vertex u, adjacent to v, such that
f (u) > 0. Analogously, a set X ⊆ V(G) is a (total) dominating set if there exists a (total) dominating
function f such that f (x) > 0 if and only if x ∈ X. The (total) domination number of G, denoted by
(γt(G)) γ(G), is the minimum cardinality among all (total) dominating sets. These two parameters
have been extensively studied. While the use of functions is not necessary to reach the concept of
(total) domination number, later we will see that this idea helps us to easily introduce other more
elaborate concepts.

From now on, we restrict ourselves to the case of functions f : V(G)→ {0, 1, 2}, which are related
to the following approach to protection of a graph described by Cockayne et al. [1]. Suppose that one
or more entities are stationed at some of the vertices of a simple graph G and that an entity at a vertex
can deal with a problem at any vertex in its closed neighbourhood. In this context, an entity could
consist of a robot, an observer, a guard, a legion, and so on. Consider a function f : V(G)→ {0, 1, 2}
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where f (v) denotes the number of entities stationed at v, and let Vi = {v ∈ V(G) : f (v) = i} for
every i ∈ {0, 1, 2}. We will identify the function f with the partition of V(G) induced by f and write
f (V0, V1, V2). The weight of f is defined to be ω( f ) = f (V(G)) = ∑v∈V(G) f (v) = ∑i i|Vi|. Informally,
we say that G is protected under the function f if there exists at least one entity available to handle
a problem at any vertex. We now define some particular subclasses of protected graphs considered
in [1] and introduce a new one. The functions in each subclass protect the graph according to a
certain strategy.

A Roman dominating function (RDF) is a function f (V0, V1, V2) such that for every vertex v ∈ V0

there exists a vertex u ∈ V2 which is adjacent to v. The Roman domination number, denoted by γR(G), is
the minimum weight among all RDFs on G. This concept of protection has historical motivation [2]
and was formally proposed by Cockayne et al. in [3]. A Roman dominating function with minimum
weight γR(G) on G is called a γR(G)-function. A similar agreement will be assumed when referring to
optimal functions (and sets) associated to other parameters used in the article.

A total Roman dominating function (TRDF) on a graph G is a RDF on G with the additional
condition of being a TDF. The total Roman domination number of G, denoted by γtR(G), was defined by
Liu and Chang [4] as the minimum weight among all TRDFs on G. For recent results on total Roman
domination in graphs we cite [5].

The remaining domination parameters considered in this paper are directly related to the following
idea of protection of a vertex. A vertex v ∈ V0 is said to be (totally) protected under f (V0, V1, V2) if
there exists a vertex u ∈ V1 ∪ V2, adjacent to v, such that the function f ′, defined by f ′(v) = 1,
f ′(u) = f (u) − 1 and f ′(x) = f (x) whenever x ∈ V(G) \ {u, v}, is a (total) dominating function.
In such a case, if it is necessary to emphasize the role of u, then we will say that v is (totally) protected
by u under f .

A weak Roman dominating function (WRDF) is a function f (V0, V1, V2) such that every vertex in V0

is protected under f . The weak Roman domination number, denoted by γr(G), is the minimum weight
among all WRDFs on G. This concept of protection was introduced by Henning and Hedetniemi [6]
and studied further in [7–9].

A secure dominating function is a WRDF function f (V0, V1, V2) in which V2 = ∅. In this case, it
is convenient to define this concept of protection by the properties of V1. Obviously f (V0, V1, ∅) is a
secure dominating function if and only if V1 is a dominating set and for every v ∈ V0 there exists u ∈ V1

which is adjacent to v and (V1 \ {u}) ∪ {v} is a dominating set as well. In such a case, V1 is said to be
a secure dominating set. The secure domination number, denoted by γs(G), is the minimum cardinality
among all secure dominating sets. This concept of protection was introduced by Cockayne et al. in [1],
and studied further in [7,8,10–13].

A set X ⊆ V(G) is said to be a secure total dominating set of G if it is a total dominating set and for
every vertex v /∈ X there exists u ∈ X which is adjacent to v and (X \ {u}) ∪ {v} is a total dominating
set as well. The secure total domination number, denoted by γst(G), is the minimum cardinality among
all secure total dominating sets. This concept of protection was introduced by Benecke et al. in [14].

In this article we introduce the study of total weak Roman domination in graphs. We define a
total weak Roman dominating function (TWRDF) to be a TDF f (V0, V1, V2) such that every vertex in V0 is
totally protected under f . The total weak Roman domination number, denoted by γtr(G), is the minimum
weight among all TWRDFs on G. In particular, we can define a secure total dominating function (STDF)
to be a TWRDF f (V0, V1, V2) in which V2 = ∅. Obviously f (V0, V1, ∅) is a STDF if and only if V1 is a
secure total dominating set.

Figure 1 shows a graph G satisfying γt(G) < γR(G) < γtr(G) < γtR(G) and γr(G) < γR(G) <

γtr(G) < γst(G).
The remainder of this paper is structured as follows. Section 2 will briefly cover some notation

and terminology which have not been stated yet. Section 3 introduces basic results which show the
close relationship that exists between the total weak Roman domination number and other domination
parameters. In Section 4 we obtain general bounds and discuss the extreme cases, while in Section 5
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we restrict ourselves to the case of rooted product graphs. Finally, we show that the problem of finding
the total weak Roman domination number of a graph is NP-hard.

1

1

1

1

(a)

2

1

2

(b)

2

2

2

(c)

2

1

1

1

2

(d)

2

2

2

2

(e)

1

1

1

1

1

1

1

(f)

1 1

Figure 1. Graph G which satisfies γt(G) = 4 (a), γr(G) = 5 (b), γR(G) = 6 (c), γtr(G) = 7 (d),
γtR(G) = 8 (e) and γst(G) = 9 (f).

2. Notation

Throughout the paper, we will use the following notation. We consider finite, undirected, and
simple graphs G with vertex set V(G) and edge set E(G). Given a vertex v of G, N(v) will denote the
open neighbourhood of v in G, while the closed neighbourhood will be denoted by N[v]. We say that a
vertex v ∈ V(G) is universal if N[v] = V(G).

We denote the minimum degree of G by δ(G) = minv∈V(G){|N(v)|} and the maximum degree by
∆(G) = maxv∈V(G){|N(v)|}. For a set S ⊆ V(G), its open neighbourhood is the set N(S) = ∪v∈SN(v),
and its closed neighbourhood is the set N[S] = N(S) ∪ S.

The graph obtained from G by removing all the vertices in S ⊆ V(G) and all the edges incident
with a vertex in S will be denoted by G− S. Analogously, the graph obtained from G by removing all
the edges in U ⊆ E(G) will be denoted by G−U. If H is a graph, then we say that G is H-free if G
does not contain a copy of H as an induced subgraph.

Given a set S ⊆ V(G) and a vertex v ∈ S, the external private neighbourhood of v with respect to S is
defined to be epn(v, S) = {u ∈ V(G) \ S : N(u) ∩ S = {v}}.

The set of leaves, support vertices and strong support vertices of a graph G, will be denoted by
L(G), S(G) and Ss(G), respectively.

We will use the notation Nn, Kn, K1,n−1, Pn, Cn, and Kr,n−r for empty graphs, complete graphs, star
graphs, path graphs, cycle graphs and complete bipartite graphs of order n, respectively. A subdivided
star graph, denoted by K∗1,(n−1)/2, is a graph of order n (odd) obtained from a star graph K1,(n−1)/2 by
subdividing every edge exactly once.

Let G and H be two graphs, respectively. The corona product G � H is defined as the graph
obtained from G and H by taking one copy of G and |V(G)| copies of H and joining by an edge each
vertex from the ith-copy of H with the ith-vertex of G.

From now on, definitions will be introduced whenever a concept is needed.

3. General Results

We begin with two inequality chains relating several domination parameters.

Proposition 1. The following inequalities hold for any graph G with no isolated vertex.

(i) γ(G) ≤ γr(G) ≤ γtr(G) ≤ γtR(G) ≤ 2γt(G).
(ii) γt(G) ≤ γtr(G) ≤ γst(G).
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Proof. It was shown in [5] that γtR(G) ≤ 2γt(G), and in [6] that γ(G) ≤ γr(G). To conclude the proof
of (i), we only need to observe that any TWRDF is a WRDF, which implies that γr(G) ≤ γtr(G), and
any TRDF is a TWRDF, which implies that γtr(G) ≤ γtR(G).

Now, to prove (ii), we only need to observe that any TWRDF is a TDF, which implies that
γt(G) ≤ γtr(G), and any STDF is a TWRDF, which implies that γtr(G) ≤ γst(G).

From Proposition 1 we immediately derive the following problem.

Problem 1. In each of the following cases, characterize the graphs satisfying the equality.

(i) γtr(G) = γt(G).
(ii) γtr(G) = γr(G).
(iii) γtr(G) = γst(G).
(iv) γtr(G) = γtR(G).

The solution of Problem 1 (i) can be found in Theorem 20. While we will give some examples of
graphs satisfying the remaining equalities, these problems remain open.

Theorem 1. Let G be a graph. The following statements are equivalent.

(a) γtr(G) = γr(G).
(b) There exists a γr(G)-function f (V0, V1, V2) such that V1 = ∅ and V2 is a total dominating set.
(c) γr(G) = 2γt(G).

Proof. Suppose that γtr(G) = γr(G) and let f (V0, V1, V2) be a γtr(G)-function. Notice that f is a
γr(G)-function and V1 ∪V2 is a total dominating set. Now, suppose that there exists u ∈ V1. Since every
vertex in V0 has at least one neighbour in V2 or at least two neighbours in V1, we can conclude that
the function g, defined by g(u) = 0 and g(x) = f (x) whenever x ∈ V(G) \ {u}, is a WRDF of weight
ω(g) = ω( f )− 1 = γr(G)− 1, which is a contradiction. Thus, V1 = ∅ and consequently V2 is a total
dominating set.

Now, if there exists a γr(G)-function f (V0, V1, V2) such that V1 = ∅ and V2 is a total dominating
set, then 2γt(G) ≤ 2|V2| = γr(G), and Proposition 1 (i) leads to γr(G) = 2γt(G).

Finally, if γr(G) = 2γt(G), then for any γt(G)-set A, there exists a γr(G)-function f ′(V′0, V′1, V′2)
such that V′1 = ∅ and V′2 = A, which is a TWRDF. Hence, γtr(G) ≤ ω( f ′) = γr(G) and Proposition 1
(i) leads to γtr(G) = γr(G).

From the theorem above and Proposition 1 we deduce the following result.

Theorem 2. For any graph G with no isolated vertex,

γtr(G) ≥ γ(G) + 1.

The bound above is tight. For instance, if G is a graph having two universal vertices,
then γtr(G) = γ(G) + 1 = 2. Another example is shown in Figure 2.

1 1 1

Figure 2. A graph G with γtr(G) = γ(G) + 1.
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Theorem 3. The following statements are equivalent.

(i) γtr(G) = γ(G) + 1.
(ii) γst(G) = γ(G) + 1.

Proof. First, suppose that (i) holds. Let f (V0, V1, V2) be a γtr(G)-function. Since V1 ∪ V2 is a total
dominating set, |V1| + 2|V2| = γtr(G) = γ(G) + 1 ≤ γt(G) + 1 ≤ |V1| + |V2| + 1. Thus, |V2| ≤ 1.
Suppose that V2 = {u} and let v ∈ N(u)∩V1. Notice that in this case V1 ∪V2 is a γ(G)-set. Now, since
v does not have external private neighbours with respect to V1 ∪V2, we have that (V1 ∪V2) \ {v} is
a dominating set, which is a contradiction. Hence, V2 = ∅ and so f is a γst(G)-function. Therefore,
γst(G) = ω( f ) = γ(G) + 1 and (ii) follows.

Conversely, if (ii) holds, then by Proposition 1 and Theorem 2 we have that
γ(G) + 1 = γst(G) ≥ γtr(G) ≥ γ(G) + 1. Therefore, γtr(G) = γ(G) + 1 and (i) follows.

We continue our analysis by showing another family of graphs satisfying that γtr(G) = γst(G),
where K1,3 + e is the graph obtained by adding an edge to K1,3.

Theorem 4. For any {K1,3, K1,3 + e}-free graph G with no isolated vertex,

γtr(G) = γst(G).

Proof. Let f (V0, V1, V2) be a γtr(G)-function such that |V2| is minimum. We suppose that
γtr(G) < γst(G). In such a case, V2 6= ∅ and we fix a vertex v ∈ V2. Notice that there exist
y ∈ N(v) ∩V0 and z ∈ N(v) ∩ (V1 ∪V2). We consider the function f ′(V′0, V′1, V′2) defined by f ′(v) = 1,
f ′(y) = 1 and f ′(x) = f (x) whenever x ∈ V(G) \ {v, y}. We claim that f ′ is a TWRDF on G. First,
we observe that, by construction, f ′ is a TDF on G. Now, let w ∈ V′0 ⊆ V0 and consider the following
two cases.

Case 1. w is not adjacent to v. Since f is a TWRDF on G, w is totally protected under f and, since
w 6∈ N(v), w is also totally protected under f ′.

Case 2. w is adjacent to v. Notice that w 6= y. In order to show that w is totally protected under f ′,
we define f

′′
(V
′′
0 , V

′′
1 , V

′′
2 ) by f

′′
(v) = 0, f

′′
(w) = 1 and f

′′
(x) = f ′(x) whenever x ∈ V(G) \ {v, w}.

Clearly, every vertex x ∈ V(G) \ N(v) is adjacent to some vertex in V
′′
1 ∪ V

′′
2 . Now, we fix u ∈

N(v) and let D be the set of vertices formed by v, u and two vertices in {w, y, z} \ {u}. As G is a
{K1,3, K1,3 + e}-free graph, it follows that at least one vertex in D \ {v} is adjacent to the another
two vertices in D. Since w, y, z ∈ V

′′
1 ∪ V

′′
2 , we have that u ∈ N(V

′′
1 ∪ V

′′
2 ) and so f

′′
is a TDF on G,

as desired.

Thus f ′ is a TWRDF on G with ω( f ′) = ω( f ) and |V′2| < |V2|, which is a contradiction.
Consequently, we conclude that γtr(G) = γst(G).

We would emphasize that the equality γtr(G) = γst(G) is not restrictive to {K1,3, K1,3 + e}-free
graphs. To see this, we can take G ∼= C3�P3 (see Figure 4).

As a direct consequence of the result above we have that any graph G obtained as the disjoin
union of paths and/or cycles satisfies that γtr(G) = γst(G).

Corollary 1. For any graph G with no isolated vertex and maximum degree ∆(G) ≤ 2,

γtr(G) = γst(G).

From Corollary 1 and the values of γst(Pn) and γst(Cn) obtained in [14], we derive the
following result.
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Remark 1. For any path Pn and any cycle Cn,

(i) γtr(Pn) = γst(Pn)
[14]
=
⌈

5(n−2)
7

⌉
+ 2.

(ii) γtr(Cn) = γst(Cn)
[14]
=
⌈ 5n

7
⌉
.

Our next result will become a useful tool to study the total weak Roman domination number.

Proposition 2. If H is a spanning subgraph (with no isolated vertex) of a graph G, then

γtr(G) ≤ γtr(H).

Proof. Let E− = {e1, . . . , ek} be the set of all edges of G not belonging to the edge set of H. Let H0 = G
and, for every i ∈ {1, . . . , k}, let Xi = {e1, . . . , ei} and Hi = G − Xi. Since any TWRDF on Hi is a
TWRDF on Hi−1, we can conclude that γtr(Hi−1) ≤ γtr(Hi). Hence, γtr(G) = γtr(H0) ≤ γtr(H1) ≤
· · · ≤ γtr(Hk) = γtr(H).

From Remark 1 and Proposition 2 we obtain the following result.

Corollary 2. Let G be a graph of order n.

• If G is a Hamiltonian graph, then γtr(G) ≤
⌈ 5n

7
⌉

.
• If G has a Hamiltonian path, then γtr(G) ≤

⌈
5(n−2)

7

⌉
+ 2.

The bounds above are tight, as they are achieved for Cn and Pn, respectively.
A 2-packing of a graph G is a set X ⊆ V(G) such that N[u] ∩ N[v] = ∅ for every pair of

different vertices u, v ∈ X. The 2-packing number ρ(G) is defined as the maximum cardinality among
all 2-packings of G. It is well known that for any graph G, γ(G) ≥ ρ(G) (see for instance [15]).
Furthermore, Meir and Moon [16] showed in 1975 that γ(T) = ρ(T) for every tree T.

Theorem 5. For any graph G with no isolated vertex,

γtr(G) ≥ 2ρ(G).

Furthermore, for any tree T,
γtr(T) ≥ 2γ(T).

Proof. Let f be a γtr(G)-function and S a ρ(G)-set. Since f (N[v]) ≥ 2 for every vertex v ∈ V(G),
and N[x] ∩ N[y] = ∅ for every pair of different vertices x, y ∈ S,

γtr(G) ≥ ∑
v∈S

f (N[v]) ≥ 2|S| = 2ρ(G).

Therefore, the result follows.

To show that the bound above is tight we can consider the case of corona graphs (see Theorem 30).

Theorem 6. For any graph G with no isolated vertex,

γtr(G) ≤ γt(G) + γ(G).

Proof. Let D be a γt(G)-set and S a γ(G)-set. We define the function f (V0, V1, V2) on G,
where V2 = D ∩ S and V1 = (D ∪ S) \ V2. We claim that f is a TWRDF on G. First, notice that
f is a TDF on G. Now, let v ∈ V0. If v has a neighbour in V2, then v is totally protected under
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f . If v has no neighbour in V2, then v has a neighbour x ∈ D \ V2 and a neighbour y ∈ S \ V2.
Consider the function f ′ defined by f ′(v) = 1, f ′(y) = 0, and f ′(x) = f (x) whenever x ∈ V(G) \ {v, y}.
Since D is a total dominating set of G, f ′ is a TDF on G. Hence, f is a TWRDF on G of weight
ω( f ) = 2|V2|+ |V1| = |D|+ |S| = γt(G) + γ(G). Therefore, the result follows.

Notice that for any graph G of order n, minimum degree δ(G) ≥ 1 and maximum degree
∆(G) ≥ n− 2, we have that γt(G) = 2. Therefore, Theorem 6 leads to the following result.

Corollary 3. For any graph G of order n, minimum degree δ(G) ≥ 1 and maximum degree ∆(G) ≥ n− 2,

γtr(G) ≤ 4.

It is not difficult to check that the bound above is achieved for any graph G constructed by joining
with an edge the vertex of a trivial graph N1 and a leaf of a star graph K1,n−2, where n ≥ 4.

If a graph G has diameter two, then for any vertex v ∈ V(G) the open neighbourhood N(v) is a
dominating set and the closed neighbourhood N[v] is a total dominating set. Hence, the following
result is derived from Theorem 6.

Corollary 4. If G is a graph of diameter two and minimum degree δ(G), then

γtr(G) ≤ 2δ(G) + 1.

The bound above is tight. For instance, it is achieved for any star graph K1,n−1 with n ≥ 3.
As shown in [17], if G is a planar graph of diameter two, then γt(G) ≤ 3, and γ(G) ≤ 2 or G is

the graph shown in Figure 3. Hence, from these inequalities and Theorem 6 we derive the following
tight bound.

Theorem 7. If G is a planar graph of diameter two, then γtr(G) ≤ 5.

1

1

1

1

1

Figure 3. A planar graph of diameter two with γtr(G) = 5.

We already know that γtr(G) ≤ 2γt(G) (Proposition 1 (i)). Hence, as a direct consequence of this
inequality and Theorems 1 and 6 we deduce the following result.

Theorem 8. Let G be a graph. If γtr(G) = γr(G), then γt(G) = γ(G).

In general, γt(G) = γ(G) does not imply that γtr(G) = γr(G). For instance, see the graph shown
in Figure 4.

1

1

1

1

1

Figure 4. The graph C3�P3 satisifies γtr(C3�P3) = 5 > 3 = γr(C3�P3),
while γt(C3�P3) = γ(C3�P3) = 3.
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Theorem 9 ([5]). If G is a graph with no isolated vertex, then γtR(G) ≤ 3γ(G). Furthermore, if
γtR(G) = 3γ(G), then every γ(G)-set is a 2-packing of G.

The following result is a direct consequence of combining Proposition 1 (i) and Theorems 6 and 9.

Theorem 10. For any graph G with no isolated vertex,

γtr(G) ≤ 3γ(G).

Furthermore, if γtr(G) = 3γ(G) then γt(G) = 2γ(G) and every γ(G)-set is a 2-packing of G.

Notice that the inequality γtr(G) ≤ 3γ(G) can be also deduced from the following result.

Theorem 11. For any graph G with no isolated vertex,

γtr(G) ≤ γr(G) + γ(G).

Proof. Let f (V0, V1, V2) be a γr(G)-function such that |V2| is maximum among all γr(G)-functions and
let S be a γ(G)-set. Now, we consider the function f ′(V′0, V′1, V′2) defined as follows.

(a) For every x ∈ V2 ∩ S, choose a vertex u ∈ (V0 ∩ N(x)) \ S if it exists, and label it as f ′(u) = 1.
(b) For every x ∈ V1 ∩ S, choose a vertex u ∈ epn(x, V1 ∪V2) \ S if it exists, otherwise choose a vertex

u ∈ (V0 ∩ N(x)) \ S (if exists) and label it as f ′(u) = 1.
(c) For every vertex x ∈ V0 ∩ S, f ′(x) = 1.
(d) For any other vertex u not previously labelled, f ′(u) = f (u).

We claim that f ′ is a TWRDF on G. Firstly, observe that f ′ is a TDF on G. Let v ∈ V′0 ⊆ V0.
If there exists a vertex u ∈ N(v) ∩ V2 ⊆ V′2, then v is totally protected under f ′. Now, suppose that
N(v) ∩ V2 = ∅ and let u ∈ N(v) ∩ V1 ⊆ V′1 such that v is protected by u under f . In order to show
that v is totally protected under f ′, we consider the function f ′′(V′′0 , V′′1 , V′′2 ) defined by f ′′(v) = 1,
f ′′(u) = 0 and f ′′(x) = f ′(x) whenever x ∈ V(G) \ {v, u}. We only need to show that f ′′ is a TDF
on G. By definition of f ′′, every vertex in V(G) \ N(u) is adjacent to some vertex in V′′1 ∪V′′2 . Hence,
we differentiate the following cases for any w ∈ N(u).

Case 1. w ∈ (V1 ∪ V2) \ {u}. If w has degree one, then f (w) = f (u) = 1 and we can construct a
γr(G)-function where the number of vertices with label two is greater than |V2|, which is a contradiction.
Hence, N(w)∩ (V1 ∪V2) \ {u} 6= ∅ or N(w)∩V0 6= ∅. In the first case, we conclude that w is adjacent
to some vertex in (V1 ∪ V2) \ {u} ⊆ V′′1 ∪ V′′2 . If this case does not occur, then by (b) and (c) in the
definition of f ′, there exists y ∈ N(w) ∩V0 satisfying that y ∈ V′1 \ {u} ⊆ V′′1 .

Case 2. w ∈ V0. If w 6∈ epn(u, V1 ∪V2) then it is adjacent to some vertex in (V1 ∪V2) \ {u} ⊆ V′′1 ∪V′′2 .
From now on, suppose that w ∈ epn(u, V1 ∪V2). If v 6= w, then w must be adjacent to v ∈ V′′1 , as v is
protected by u under f . Now, if v = w and u 6∈ S, then w is adjacent to some vertex in S ⊆ V′′1 ∪V′′2 .
Finally, if v = w and u ∈ S, then by (b) in the definition of f ′ we have that f ′(v) = 1, which is
a contradiction.

From the two cases above we can conclude that f ′′ is a TDF on G, as required. Therefore, f ′ is a
TWRDF and, as a consequence, γtr(G) ≤ ω( f ′) ≤ γr(G) + γ(G).

Corollary 5. For any graph G with no isolated vertex,

γtr(G) ≤ 2γr(G).

Furthermore, if γr(G) > γ(G), then γtr(G) ≤ 2γr(G)− 1.
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In order to derive another consequence of Theorem 11 we need to state the following result.

Theorem 12 ([12]). For any connected graph G 6∼= C5 of order n and minimum degree δ(G) ≥ 2,

γs(G) ≤
⌊n

2

⌋
.

Since γr(G) ≤ γs(G), from Theorems 11 and 12 we immediately have the next theorem.

Theorem 13. For any connected graph G of order n and minimum degree δ(G) ≥ 2,

γtr(G) ≤
⌊n

2

⌋
+ γ(G).

The bound above is tight. It is achieved for the graph C5.

Theorem 14. Let G be a graph with no isolated vertex. For any γr(G)-function f (V0, V1, V2),

γtr(G) ≤ 2γr(G)− |V2|.

Proof. Let g(V0, V1, V2) be a γr(G)-function such that |V2| is maximum, and consider the function
g′(V′0, V′1, V′2) defined on G as follows.

(a) For every x ∈ V2, choose a vertex u ∈ V0 ∩ N(x) and label it as g′(u) = 1.
(b) For every x ∈ V1, choose a vertex u ∈ epn(x, V1 ∪ V2) if it exists, otherwise choose a vertex

u ∈ V0 ∩ N(x) (if exists) and label it as g′(u) = 1.
(c) For any other vertex u not previously labelled, g′(u) = g(u).

We claim that g′ is a TWRDF on G. Firstly, observe that g′ is a TDF on G. Let v ∈ V′0 ⊆ V0. If there
exists a vertex u ∈ N(v) ∩V2, then v is totally protected under g′. Now, suppose that N(v) ∩V2 = ∅
and let u ∈ N(v) ∩V1 such that v is protected by u under f . In order to show that v is totally protected
under g′, we consider the function g∗(V∗0 , V∗1 , V∗2 ) defined by g∗(v) = 1, g∗(u) = 0 and g∗(x) = g′(x)
if x ∈ V(G) \ {v, u}. We only need to show that g∗ is a TDF on G.

By definition of g∗, every vertex in V(G) \ N(u) is adjacent to some vertex in V∗1 ∪ V∗2 . Hence,
we differentiate the following two cases for any w ∈ N(u).

Case 1. w ∈ (V1 ∪ V2) \ {u}. If w has degree one, then we can construct a γr(G)-function where
the number of vertices with label two is greater than |V2|, which is a contradiction. Hence, N(w) ∩
(V1 ∪ V2) \ {u} 6= ∅ or N(w) ∩ V0 6= ∅. In the first case, we conclude that w is adjacent to some
vertex in (V1 ∪V2) \ {u} ⊆ V∗1 ∪V∗2 . If this case does not occur, then by definition of g′ there exists
y ∈ N(w) ∩V0 satisfying that y ∈ V′1 \ {u} ⊆ V∗1 .

Case 2. w ∈ V0. If w /∈ epn(u, V1 ∪V2) then it is adjacent to some vertex in (V1 ∪V2) \ {u} ⊆ V∗1 ∪V∗2 .
From now on, we suppose that w ∈ epn(u, V1 ∪V2). If w 6= v, then w must be adjacent to v ∈ V∗1 , as
v is protected by u under f . Now, if w = v, then by (b) in the definition of g′ and the fact that v is
protected by u under f we have that there exists y ∈ V′1 ∩ epn(u, V1 ∪V2) ∩ N(v).

From the two cases above we can conclude that, g∗ is a TDF on G. Thus, g′ is a TWRDF and, as
a consequence, γtr(G) ≤ ω(g′) = |V′1|+ 2|V′2| ≤ |V1|+ 2|V2|+ |V1|+ |V2| = 2γr(G)− |V2|. Finally,
since |V2| is maximum among all γtr(G)-functions, the result follows.

We now proceed to construct a family of graphs Gp,q with γr(Gp,q) = p+ 1 and γtr(Gp,q) = 2p+ 1,
where q ≥ p ≥ 2 are integers. The graph Gp,q is constructed from the complete bipartite graph Kp,q and
the empty graph Np by adding p new edges which form a matching between the vertices of Np and
the vertices of degree q in Kp,q. Notice that there exists a γr(Gp,q)-function g(V0, V1, V2) with |V2| = 1.
Therefore, γtr(Gp,q) = 2p + 1 = 2(p + 1)− 1 = 2γr(Gp,q)− 1 = 2γr(Gp,q)− |V2|.
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Figure 5 shows the graph G3,4 and a γtr(G3,4)-function g(V0, V1, V2), obtained by using the
construction of the proof of Theorem 14. One can check that γtr(G3,4) = 7, γr(G3,4) = 4 and |V2| = 1,
concluding that γtr(G3,4) = 2γr(G3,4)− |V2|.

1

1

1

1

1

2

Figure 5. The graph G3,4.

If γr(G) < γs(G), then there exists a γr(G)-function f (V0, V1, V2) such that V2 6= ∅. Therefore,
the following result is a direct consequence of Theorem 14.

Corollary 6. Let G be a graph with no isolated vertex. If γr(G) < γs(G), then

γtr(G) ≤ 2γr(G)− 1.

We continue with a result that provides a new relationship between the total weak Roman
domination number and the Roman domination number. To this end, we need to state the following
known result.

Theorem 15 ([5]). If G is a graph of order n with no isolated vertex, then γtR(G) ≤ 2γR(G)− 1. Furthermore,
γtR(G) = 2γR(G)− 1 if and only if ∆(G) = n− 1.

Theorem 16. For any graph G of order n with no isolated vertex,

γtr(G) ≤ 2γR(G)− 1.

Furthermore, γtr(G) = 2γR(G)− 1 if and only if γtr(G) = 3 and ∆(G) = n− 1.

Proof. By Proposition 1 (i) and Theorem 15, the inequality holds. Furthermore, if γtr(G) = 2γR(G)− 1
then, again by Proposition 1 and Theorem 15, γtR(G) = 2γR(G)− 1 and this implies that ∆(G) = n− 1.
Thus, γR(G) = 2, and so γtr(G) = 3. Conversely, if γtr(G) = 3 and ∆(G) = n− 1, then γR(G) = 2
and γtr(G) = 2γR(G)− 1.

4. General Bounds

Our next two results provide bounds in terms of the order, the minimum degree and the maximum
degree of G.

Theorem 17. For any graph G of order n with δ(G) ≥ 1,
⌈

2n
∆(G) + 1

⌉
≤ γtr(G) ≤ n− δ(G) + 1.

Proof. Let f (V0, V1, V2) be a γtr(G)-function and let V2
0 = {x ∈ V0 : N(x)∩V2 6= ∅} and V1

0 = V0 \V2
0 .

Since every vertex in V2 can have at most ∆(G)−1 neighbours in V2
0 , we obtain that |V2

0 | ≤ (∆(G)−1)|V2|.
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Furthermore, since every vertex in V1
0 has at least two neighbours in V1 and every vertex in V1 has at most

∆(G)− 1 neighbours in V1
0 , we deduce that 2|V1

0 | ≤ (∆(G)− 1)|V1|. Hence,

n = |V1
0 |+ |V2

0 |+ |V1|+ |V2|
≤ (∆(G)− 1)|V1|/2 + (∆(G)− 1)|V2|+ |V1|+ |V2| = (∆(G) + 1)|V1|/2 + ∆(G)|V2|
≤ (∆(G) + 1)|V1|/2 + ∆(G)|V2|+ |V2|
≤ (∆(G) + 1)(|V1|/2 + |V2|) = (∆(G) + 1)γtr(G)/2.

Therefore, γtr(G) ≥
⌈

2n
∆(G)+1

⌉
.

The upper bound follows for δ(G) = 1, so we assume that δ(G) ≥ 2. Let v ∈ V(G) be a vertex of
degree δ(G) and u ∈ N(v). It is readily seen that the function g, defined by g(x) = 0 for every x ∈
N(v) \ {u} and g(x) = 1 otherwise, is a TWRDF on G. Therefore, γtr(G) ≤ ω(g) = n− δ(G) + 1.

The bounds above are tight. For instance, they are achieved for any complete nontrivial graph
and for the cycles Cn with n ≤ 5. Furthermore, the wheel graph K1 + C4 achieves the upper bound and
any corona graph K2 � H achieves the lower bound, where |V(H)| ≥ 3. Notice that γtr(K2 � H) = 4.
The limit cases γtr(G) = 2 and γtr(G) = n will be discussed in Theorem 20.

Theorem 18 ([14]). Let G be a graph of order n. Then γst(G) = n if and only if V(G) \ (L(G) ∪ S(G)) is an
independent set.

Theorem 19 ([13]). If G is a connected graph, then the following statements are equivalent.

• γst(G) = γt(G).
• γst(G) = 2.
• G has two universal vertices.

We now proceed to characterize all graphs achieving the limit cases of the trivial bounds
2 ≤ γtr(G) ≤ n.

Theorem 20. Given a connected graph G of order n, the following statements hold.

(i) The following statements are equivalent.

(a) γtr(G) = 2.
(b) γtr(G) = γt(G).
(c) γst(G) = γt(G).
(d) G has two universal vertices.

(ii) γtr(G) = n if and only if G is K∗1,(n−1)/2 or H � N1 for some connected graph H.

Proof. We first proceed to prove (i). Notice that (a) directly implies (b), as 2 ≤ γt(G) ≤ γtr(G).
Now, suppose that (b) holds and let f (V0, V1, V2) be a γtr(G)-function. Since f is a TDF,
γt(G) ≤ |V1 ∪ V2| = |V1| + |V2| ≤ |V1| + 2|V2| = γtr(G) = γt(G), so V2 = ∅ and, as a
consequence, f is a STDF of weight γt(G). Hence, (c) holds. On the other hand, by Theorem 19,
(c) implies (d). Finally, it is straightforward that (d) implies (a).

We now proceed to prove (ii). If G is K∗1,(n−1)/2 or H � N1 for some connected graph H, then
is straightforward that γtr(G) = n. From now on we assume that G is a connected graph such
that γtr(G) = n. Since γtr(G) ≤ γst(G) ≤ n, we have that γst(G) = n and so, by Theorem 18,
V(G) = L(G) ∪ S(G) ∪ I, where I is an independent set. Moreover, notice that if n = 2 then
G ∼= P2 ∼= N1 � N1, and if |S(G)| = 1 then G ∼= P3 ∼= K∗1,1. So, we assume that n ≥ 4 and |S(G)| ≥ 2.

Suppose that v ∈ Ss(G) and let h1 and h2 be two leaves adjacent to v. We consider the function g
defined by g(h1) = g(h2) = 0, g(v) = 2 and g(x) = 1 if x ∈ V(G) \ {v, h1, h2}. Hence, g is a TWRDF
on G and ω(g) = n− 1, which is a contradiction. Thus Ss(G) = ∅. We now differentiate two cases.
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Case 1. I = ∅. In this case, V(G) = L(G) ∪ S(G) and, since G is connected, the subgraph H induced
by S(G) is connected. Furthermore, since Ss(G) = ∅, we have that G ∼= H � N1.

Case 2. I 6= ∅. Suppose that S(G) is not an independent set. Notice that there exist two adjacent
support vertices v, w and a third vertex s ∈ N(v) ∩ I. Let h ∈ N(v) ∩ L(G) and consider the function g
defined by g(v) = 2, g(h) = g(s) = 0 and g(x) = 1 if x ∈ V(G) \ {v, h, s}. Notice that g is a TWRDF
on G and ω(g) = n − 1, which is a contradiction, so S(G) is an independent set. Now, suppose
that |I| ≥ 2 and let s1, s2 ∈ I be two vertices at the shortest possible distance. Since S(G) and I are
independent sets, s1 and s2 are at distance two. Let v ∈ S(G) ∩ N(s1) ∩ N(s2), let h ∈ N(v) ∩ L(G)

and let g′ be a function defined by g′(v) = 2, g′(s1) = g′(h) = 0, and g′(x) = 1 if x ∈ V(G) \ {v, s1, h}.
Observe that g′ is a TWRDF on G and ω(g′) = n− 1, which is a contradiction. Thus, |I| = 1. Therefore,
since Ss(G) = ∅, S(G) is an independent set and |I| = 1, we conclude that G is the subdivided star
K∗1,(n−1)/2 and this completes the proof.

To conclude this section, we proceed to characterize all graphs with γtr(G) = 3.

Theorem 21. Let G be a graph and let G be the family of graphs H of order n ≥ 3 such that the subgraph
induced by three vertices of H contains a path P3 and the remaining n− 3 vertices have degree two and they
form an independent set. Then γtr(G) = 3 if and only if there exists H ∈ G ∪ {K1,n−1} which is a spanning
subgraph of G and G has at most one universal vertex.

Proof. We first suppose that γtr(G) = 3. Let f (V0, V1, V2) be a γtr(G)-function. By Theorem 20 (i),
G has at most one universal vertex. If |V2| = 1, then |V1| = 1. In such a case, let V1 = {v} and
V2 = {u}. Notice that u and v are adjacent vertices. Since f is a TWRDF on G, any vertex must be
adjacent to u, concluding that K1,n−1 is a spanning subgraph of G. Now, if |V2| = 0, then |V1| = 3.
With this assumption, let V1 = {u, v, w} and notice that the subgraph of G induced by V1 contains a
path P3, as V1 is a total dominating set of G. We may suppose that v is adjacent to u and w. Since f is
a TWRDF on G, we observe that |N(z) ∩V1| ≥ 2 for every z ∈ V0. Hence, in this case, G contains a
spanning subgraph belonging to G.

Conversely, since G has at most one universal vertex, by Theorem 20 (i) we have that γtr(G) ≥ 3.
Moreover, it is readily seen that γtr(K1,n−1) = 3 and γtr(H) ≤ 3 for any H ∈ G. Hence,
if H ∈ G ∪ {K1,n−1} is a spanning subgraph of G, by Proposition 2 it follows that γtr(G) ≤ 3.
Therefore, γtr(G) = 3.

5. Rooted Product Graphs and Computational Complexity

Let G and H be two graphs and let v ∈ V(H). The rooted product graph G ◦v H is defined to be
the graph obtained from G and H by taking one copy of G and |V(G)| copies of H and identifying the
ith-vertex of G with vertex v in the ith-copy of H for every i ∈ {1, . . . , |V(G)|}.

For every x ∈ V(G), Hx will denote the copy of H in G ◦v H containing x. The restriction of any
γtr(G ◦v H)-function f to V(Hx) will be denoted by fx, and the restriction to V(Hx − {x}) will be
denoted by f−x . Notice that V(G ◦v H) = ∪x∈V(G)V(Hx) and so

γtr(G ◦v H) = ω( f ) = ∑
x∈V(G)

ω( fx) = ∑
x∈V(G)

ω( f−x ) + ∑
x∈V(G)

f (x).

Lemma 1. Let f (V0, V1, V2) be a γtr(G ◦v H)-function. For any x ∈ V(G), ω( fx) ≥ γtr(H) − 2.
Furthermore, if ω( fx) = γtr(H)− 2, then f (x) = 0 and N(x) ∩V(Hx) ⊆ V0.

Proof. Let x ∈ V(G). Notice that every vertex in V0 ∩ V(Hx) \ {x} is totally protected under fx.
Now, suppose that ω( fx) ≤ γtr(H) − 3 and let y ∈ N(x) ∩ V(Hx). Observe that the function g,
defined by g(y) = 2 and g(u) = fx(u) whenever u ∈ V(Hx) \ {y}, is a TWRDF on Hx of weight
ω(g) ≤ γtr(H)− 1, which is a contradiction as Hx ∼= H. Hence, ω( fx) ≥ γtr(H)− 2.
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Now, suppose that ω( fx) = γtr(H) − 2. If f (x) > 0 then given a vertex y ∈ N(x) ∩ V(Hx),
the function h, defined by h(y) = min{ fx(y) + 1, 2} and h(u) = fx(u) whenever u ∈ V(Hx) \ {y}, is a
TWRDF on Hx of weight ω(h) ≤ γtr(H)− 1, which is a contradiction. Hence, f (x) = 0. Now, if there
exists a vertex y ∈ N(x) ∩ V(Hx) ∩ (V1 ∪ V2), then from fx we may define a TWRDF f ′ on Hx with
the only difference that f ′(y) = 2, having weight at most γtr(H)− 1, which is a contradiction again.
Therefore, N(x) ∩V(Hx) ⊆ V0.

Lemma 2. Let H be a graph with no isolated vertex. For any v ∈ V(H) \ S(H),

γtr(H − {v}) ≥ γtr(H)− 2.

Furthermore, if γtr(H − {v}) = γtr(H)− 2, then the following statements hold.

(i) f (N(v)) = 0 for every γtr(H − {v})-function f .
(ii) There exists a γtr(H)-function h0 such that h0(v) = 0.
(iii) There exists a γtr(H)-function h1 such that h1(v) = 1.

Proof. Let f be a γtr(H − {v})-function and suppose that ω( f ) ≤ γtr(H) − 3. Let y ∈ N(v).
Observe that the function g, defined by g(y) = min{ f (y) + 1, 2}, g(v) = 1 and g(u) = f (u) whenever
u ∈ V(H) \ {v, y}, is a TWRDF on H of weight ω(g) ≤ γtr(H)− 1, which is a contradiction. Hence,
ω( f ) ≥ γtr(H)− 2.

Now, assume that ω( f ) = γtr(H) − 2. If there exists a vertex y ∈ N(v) such that f (y) > 0,
then the function f ′, defined by f ′(v) = 0, f ′(y) = 2 and f ′(u) = f (u) whenever u ∈ V(H) \ {v, y}, is
a TWRDF on H of weight at most γtr(H)− 1, which is a contradiction again. Therefore, f (N(v)) = 0.

Furthermore, for any y ∈ N(v), the function h0, defined by h0(v) = 0, h0(y) = 2 and h0(u) = f (u)
whenever u ∈ V(H) \ {v, y}, is a γtr(H)-function. Analogously, the function h1, defined by h1(v) = 1,
h1(y) = 1 and h1(u) = f (u) whenever u ∈ V(H) \ {v, y}, is a γtr(H)-function as well. Therefore,
the result follows.

Corollary 7. Let H be a graph with no isolated vertex and v ∈ V(H) \ S(H). Then the following
statements hold.

(i) If g(v) = 0 for every γtr(H)-function g, then γtr(H − {v}) ∈ {γtr(H), γtr(H)− 1}.
(ii) If h(v) > 0 for every γtr(H)-function h, then γtr(H − {v}) ≥ γtr(H)− 1.

From Lemma 1 we deduce that any γtr(G ◦v H)-function f induces a partition {A f ,B f , C f } of
V(G) as follows.

A f = {x ∈ V(G) : ω( fx) ≥ γtr(H)},

B f = {x ∈ V(G) : ω( fx) = γtr(H)− 1},

C f = {x ∈ V(G) : ω( fx) = γtr(H)− 2}.

Proposition 3. Let f be a γtr(G ◦v H)-function. If C f 6= ∅, then γtr(H − {v}) = γtr(H)− 2.

Proof. By Lemma 1, if x ∈ C f , then f (x) = 0 and f (y) = 0 for every y ∈ N(x) ∩ V(Hx),
which implies that f−x is a TWRDF on Hx − {x} of weight w( f−x ) = γtr(H) − 2. Hence,
γtr(H − {v}) = γtr(Hx − {x}) ≤ γtr(H)− 2, and by Lemma 2 we conclude the proof.

We will show through Theorem 23 that if γtr(G) < n, then the converse of Proposition 3 holds.
An example of graphs where it does not hold is the case of G ∼= K2 and H ∼= P3 � N1, where v is a leaf
adjacent to a support vertex of degree two.

By Lemma 1 and Proposition 3 we deduce the following result.
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Theorem 22. Let G and H be two graphs with isolated vertex and let v ∈ V(H).
If γtr(H − {v}) ≥ γtr(H) − 1, then γtr(G ◦v H) ≥ n(γtr(H)− 1).

The inequality above is achieved, for instance, for any graph G with no isolated vertex and
H ∼= C5.

It is readily seen that from any γtr(G)-function and any γtr(H − {v})-function we can construct
a TWRDF on G ◦v H of weight γtr(G) + n(γtr(H − {v})). Therefore, we can state the following
useful result.

Proposition 4. Let G and H be two graphs with no isolated vertex. If G has order n and v ∈ V(H) \ S(H), then

γtr(G ◦v H) ≤ γtr(G) + nγtr(H − {v}).

Theorem 23. Let G and H be two graphs with no isolated vertex and let v ∈ V(H). If γtr(G) < n, then the
following statements are equivalent.

(a) C f 6= ∅ for any γtr(G ◦v H)-function f .
(b) γtr(H − {v}) = γtr(H)− 2.

Proof. Let f be a γtr(G ◦v H)-function such that x ∈ C f . By Proposition 3, γtr(H − {v}) = γtr(H)− 2.
Conversely, assume that γtr(H − {v}) = γtr(H)− 2 and suppose that C f ′ = ∅ for some γtr(G ◦v

H)-function f ′. By Lemma 1 and Proposition 4 we deduce that n(γtr(H)− 1) ≤ γtr(G ◦v H) ≤ γtr(G)+

n(γtr(H)− 2), which is a contradiction whenever γtr(G) < n. Therefore, the result follows.

The following result states the intervals in which the total weak Roman domination number of a
rooted product graph can be found.

Theorem 24. Let G and H be two graphs with no isolated vertex. If G has order n and v ∈ V(H), then one of
the following statements holds.

(i) γtr(G ◦v H) = nγtr(H).
(ii) n(γtr(H)− 1) ≤ γtr(G ◦v H) ≤ γtr(G) + n(γtr(H)− 1).
(iii) 2γ(G) + n(γtr(H)− 2) ≤ γtr(G ◦v H) ≤ γtr(G) + n(γtr(H)− 2).
(iv) γt(G) + n(γtr(H)− 2) ≤ γtr(G ◦v H) ≤ γtr(G) + n(γtr(H)− 2).

Proof. Let f (V0, V1, V2) be a γtr(G ◦v H)-function and consider the partition {A f ,B f , C f } of V(G)

defined above. We differentiate the following four cases.

Case 1. B f ∪ C f = ∅. In this case, for any x ∈ V(G) we have that ω( fx) ≥ γtr(H) and, as a
consequence, γtr(G ◦v H) ≥ nγtr(H). On the other hand, we can extend any γtr(H)-function to a
TWRDF on G ◦v H of weight nγtr(H). Therefore, (i) follows.

Case 2. B f 6= ∅ and C f = ∅. In this case, for any x ∈ V(G) we have that ω( fx) ≥ γtr(H)− 1 and, as a
result, γtr(G ◦v H) ≥ n(γtr(H)− 1).

We now proceed to show that γtr(G ◦v H) ≤ γtr(G) + n(γtr(H) − 1). From f , some vertex
x′ ∈ B f and any γtr(G)-function h, we define a function g on G ◦v H as follows. For every x ∈ V(G),
the restriction of g to V(Hx) \ {x} is induced by f−x′ and we set g(x) = min{ f (x) + h(x), 2}. It is
readily seen that g is a TWRDF on G ◦v H of weight at most γtr(G) + n(γtr(H)− 1), concluding that
γtr(G ◦v H) ≤ γtr(G) + n(γtr(H)− 1).

Case 3. B f = ∅ and C f 6= ∅. From Lemma 1 we deduce that A f is a dominating set of G. Therefore,
γtr(G ◦v H) ≥ 2|A f |+ n(γtr(H)− 2) ≥ 2γ(G) + n(γtr(H)− 2).

On the other hand, by Proposition 3, γtr(H − {v}) = γtr(H) − 2, and by Proposition 4 we
conclude that γtr(G ◦v H) ≤ γtr(G) + n(γtr(H)− 2).
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Case 4. C f 6= ∅. By Propositions 3 and 4 we conclude that γtr(G ◦v H) ≤ γtr(G) + n(γtr(H)− 2).

In order to conclude the proof of (iv), let us define a function g on G as follows. If x ∈ A f then we
set g(x) = 1 and choose one vertex u ∈ N(x) ∩V(G) and label it as g(u) = 1. For the another vertices
not previously labelled, if x ∈ B f then we set g(x) = 1, and if x ∈ C f then we set g(x) = 0. We will
prove that g is a TDF on G. Notice that by construction of g, if x ∈ A f then x is dominated by some
vertex y ∈ V(G) such that g(y) = 1. Now, by Lemma 1, if x ∈ C f then x is totally protected under f by
a vertex w ∈ V(G). Furthermore, since f (w) > 0, we have that g(w) = 1, as required. If x ∈ B f , then
it must be adjacent to some vertex z ∈ V(G) such that f (z) > 0, otherwise fx is a TWRDF on Hx and
ω( fx) = γtr(H)− 1, which is a contradiction. Hence, g(z) = 1, as required. Therefore, g is a TDF on G
and, as a consequence,

γtr(G ◦v H) = ∑
x∈V(G)

ω( fx)

= ∑
x∈A f

ω( fx) + ∑
x∈B f

ω( fx) + ∑
x∈C f

ω( fx)

≥ ∑
x∈A f

(γtr(H)− 2 + g(x)) + ∑
x∈B f

(γtr(H)− 2 + g(x)) + ∑
x∈C f

(γtr(H)− 2 + g(x))

≥ ∑
x∈V(G)

g(x) + ∑
x∈V(G)

(γtr(H)− 2)

= ω(g) + n(γtr(H)− 2)

≥ γt(G) + n(γtr(H)− 2).

Therefore, (iv) follows.

We now consider some particular cases in which we impose some additional restrictions on G
and H. To begin with, we consider the case in which v is a support vertex of H.

Theorem 25. Let G and H be two graphs with no isolated vertex. If G has order n and v ∈ S(H), then

γtr(G ◦v H) ∈ {n(γtr(H)− 1), nγtr(H)}.

Furthermore, if v ∈ S(H) ∩ N(S(H)), then

γtr(G ◦v H) = nγtr(H).

Proof. Let f be a γtr(G ◦v H)-function and x ∈ V(G). Since x ∈ S(G ◦v H), we have that
f (x) > 0, so that Lemma 1 leads to C f = ∅, and, again by Lemma 1, ω( fx) ≥ γtr(H)− 1. Hence,
γtr(G ◦v H) ≥ n(γtr(H)− 1).

If B f = ∅, then by Case 1 of the proof of Theorem 24, γtr(G ◦v H) = nγtr(H). Now, suppose that
x ∈ B f . From f , we define a function h on G ◦v H as follows. For every z ∈ V(G), the restriction of h
to V(Hz) is induced from fx. It is readily seen that h is a TWRDF on G ◦v H of weight n(γtr(H)− 1),
which implies that γtr(G ◦v H) = n(γtr(H)− 1).

From now on, suppose that v ∈ S(H) ∩ N(S(H)) and let u ∈ N(x) ∩ S(Hx) for some x ∈ V(G).
To conclude the proof we only need to show that γtr(G ◦v H) ≥ nγtr(H). We can assume that
f (V0, V1, V2) is a γtr(G ◦v H)-function satisfying that |V2| is maximum. As x and u are adjacent,
and hey are support vertices, f (x) = f (u) = 2, so that fx is a TWRDF on Hx and, as a consequence,
ω( fx) ≥ γtr(H). Therefore, γtr(G ◦v H) ≥ nγtr(H), as required.

We now proceed to discuss some cases in which v is not a support vertex of H.
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Theorem 26. If γtr(H − {v}) = γtr(H)− 2 and γtr(G) = γt(G), then

γtr(G ◦v H) = 2 + n(γtr(H)− 2).

Proof. By Theorem 24, we have that γtr(G ◦v H) ≥ γt(G) + n(γtr(H)− 2). Now, if γtr(G) = γt(G),
then Theorem 20 leads to γtr(G) = 2, and so γtr(G ◦v H) ≥ 2 + n(γtr(H)− 2).

On the other hand, if γtr(H − {v}) = γtr(H) − 2, then from Proposition 4 we conclude that
γtr(G ◦v H) ≤ 2 + n(γtr(H)− 2).

Notice that in Theorem 26 we have the hypothesis γtr(H − {v}) = γtr(H)− 2 and the conclusion
γtr(G ◦v H) = γtr(G) + n(γtr(H) − 2). On the other hand, we would emphasize that in all the
examples in which we have observed that the left hand side inequalities of Theorem 24 (iii) or (iv)
are achieved, we have that γtr(G) = 2γ(G) or γtr(G) = γt(G), respectively. Hence, in these cases,
γtr(G ◦v H) = γtr(G) + n(γtr(H)− 2). After numerous attempts, we have not been able to prove the
following conjecture.

Conjecture. Let G and H be two graphs with no isolated vertex. For any v ∈ V(H),

γtr(G ◦v H) ≥ γtr(G) + n(γtr(H)− 2),

where n is the order of G. Furthermore, γtr(G ◦v H) = γtr(G) + n(γtr(H)− 2) if and only if γtr(H−{v}) =
γtr(H)− 2.

In order to study the computational complexity of the problem of computing the total weak
Roman domination number of a graph, we need to state the following result.

Theorem 27. Let G and H be two graphs with no isolated vertex. Let n be the order of G and v, u ∈ V(H)

such that u ∈ L(H) \ {v} and N(v) ∩ N(u) 6= ∅. If γtr(H − {v}) = γtr(H)− 1, then

γtr(G ◦v H) = γ(G) + n(γtr(H)− 1),

otherwise
γtr(G ◦v H) = nγtr(H).

Proof. If v ∈ S(H), then Theorem 25 leads to γtr(G ◦v H) = nγtr(H). Hence, from now on we assume
that v 6∈ S(H). Let y ∈ N(v) ∩ N(u). Since u is a leaf in H − {v} and y its support vertex, for any
γtr(H − {v})-function g we have that g(y) > 0. Hence, if γtr(H − {v}) = γtr(H)− 2, then from any
γtr(H − {v})-function we can construct a TWRDF on H of weight at most γtr(H)− 1 by assigning
weight 1 to v, which is a contradiction. Hence, γtr(H − {v}) ≥ γtr(H)− 1.

Let f (V0, V1, V2) be a γtr(G ◦v H)-function and consider the partition {A f ,B f , C f } of V(G) defined
previously. Notice that, for any x ∈ V(G) there exist ux ∈ L(Hx) \ {x} and yx ∈ N(x) ∩ N(ux). With
these tools in mind, we now proceed to study the structure of A f , B f and C f . Since ux is a leaf of
G ◦v H and yx its support vertex, we have that f (yx) > 0, and since yx ∈ N(x), Lemma 1 leads to
C f = ∅. We now differentiate two cases.

Case 1. γtr(H − {v}) = γtr(H)− 1. Suppose that there exists x ∈ B f with f (x) > 0. Since yx is a
support vertex, either f (yx) = 2 or f (yx) = 1 and no vertex in V(Hx) is totally protected by yx under
f . In any case, we can conclude that fx is a TWRDF on Hx of weight ω( fx) = γtr(H)− 1, which is a
contradiction. Hence, B f ⊆ V0.
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Now, since (V1 ∪V2) ∩V(G) ⊆ A f , if there exists x ∈ B f such that N(x) ∩A f = ∅, then fx must
be a TWRDF on Hx, which is a contradiction, as ω( fx) = γtr(H)− 1. Thus, A f is a dominating set
and so,

γtr(G ◦v H) = ∑
x∈A f∪B f

ω( fx)

≥|A f |γtr(H) + |B f |(γtr(H)− 1)

=|A f |+ n(γtr(H)− 1)

≥γ(G) + n(γtr(H)− 1).

On the other hand, since v is adjacent to a support vertex, from any γtr(H − {v})-function and any
γ(G)-function we can construct a TWRDF on G ◦v H of weight γ(G) + n(γtr(H) − 1). Therefore,
γtr(G ◦v H) = γ(G) + n(γtr(H)− 1).

Case 2. γtr(H − {v}) ≥ γtr(H). If there exists x ∈ B f with f (x) > 0, then fx is a TWRDF on Hx

of weight ω( fx) = γtr(H)− 1, which is a contradiction. Now, if x ∈ B f and f (x) = 0, then f−x is a
TWRDF on Hx − {x} of weight ω( f−x ) = γtr(H)− 1, which is a contradiction again. Hence, x ∈ A f ,
and so γtr(G ◦v H) ≥ nγtr(H). Therefore, by Theorem 24 we conclude that γtr(G ◦v H) = nγtr(H).

Recent works have shown that graph operations are useful tools to study problems of
computational complexity.

For instance, the authors of [18,19] have shown that results on the (local) metric dimension of
corona product graphs enables us to deduce NP-hardness results for the (local) adjacency dimension;
while the authors of [20] have shown that the study of lexicographic product graphs is useful to
infer an NP-hardness result for the super domination number, based on a well-known result for the
independence number. Our next result shows that we can use rooted product graphs to study the
problem of finding the total weak Roman domination number of a graph. In this case, the key result is
Theorem 27 which involves the domination number. It is well known that the dominating set problem
is an NP-complete decision problem [21], i.e., given a positive integer k and a graph G, the problem of
deciding if G has a dominating set D of cardinality |D| ≤ k is NP-complete. Hence, the optimization
problem of computing the domination number of a graph is NP-hard.

Corollary 8. The problem of computing the total weak Roman domination number of a graph is NP-hard.

Proof. Let G be a graph with no isolated vertex and construct the graph G ◦v P3, where v is a leaf
of P3. By Theorem 27, it follows that γtr(G ◦v P3) = γ(G) + 2|V(G)|. Therefore, the problem
of computing the total weak Roman domination has the same computational complexity as the
domination number problem.

Theorem 28. Let G and H be two graphs with no isolated vertex and |V(G)| = n. Then the following
statements hold for every v ∈ V(H) such that γtr(H − {v}) 6= γtr(H)− 1.

(i) If g(v) = 0 for every γtr(H)-function g, then γtr(G ◦v H) = nγtr(H).
(ii) If g(v) > 0 for every γtr(H)-function g, then γtr(G ◦v H) ∈ {nγtr(H), n(γtr(H)− 1)}.

Proof. Let f (V0, V1, V2) be a γtr(G ◦v H)-function and consider the partition {A f ,B f , C f } of V(G)

previously defined.
With the assumptions of (i) or (ii), Lemma 2 and Proposition 3 lead to C f = ∅. Moreover, if B f = ∅,

then by analogy to Case 1 in the proof of Theorem 24 we deduce that γtr(G ◦v H) = nγtr(H).
From now on suppose that x ∈ B f . If f (x) = 0, then f−x is a TWRDF on Hx − {x}, so that
γtr(H − {v}) = γtr(Hx − {x}) ≤ ω( f−x ) = ω( fx) = γtr(H)− 1. From the hypothesis of (i) and (ii)
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and Lemma 2 we deduce that γtr(H − {v}) = γtr(H)− 1. Thus, if γtr(H − {v}) 6= γtr(H)− 1, then
f (x) > 0.

We now assume the hypothesis of (i) and take a vertex u ∈ N(x) ∩V(Hx). If f (u) = 2, then fx

is a TWRDF on Hx of weight ω( fx) = γtr(H)− 1, which is a contradiction. Hence, f (u) ≤ 1 and we
can define a function g as g(u) = f (u) + 1 and g(w) = f (w) for every w ∈ V(Hx) \ {u}. Notice that g
is a TWRDF on Hx of weight γtr(H), so g is a γtr(H)-function and satisfies that g(v) > 0, which is a
contradiction. Hence, B f = ∅ and we are done.

We now assume the hypothesis of (ii). By analogy to Case 2 in the proof of Theorem 24 we
deduce that γtr(G ◦v H) ≥ n(γtr(H)− 1). Now, we proceed to show that γtr(G ◦v H) ≤ n(γtr(H)− 1).
From f , we define a function h on G ◦v H as follows. For every z ∈ V(G), the restriction of h to V(Hz)

is induced from fx. It is readily seen that h is a TWRDF on G ◦v H of weight n(γtr(H)− 1), which
completes the proof.

As a particular case of Theorem 28 (i) we have the following result.

Corollary 9. Let G and H be two graphs with no isolated vertex. Let n be the order of G, v ∈ L(H) and
u, u′ ∈ S(H). If u′, v ∈ N(u) and |N(u) ∩ L(H)| ≥ 3, then γtr(G ◦v H) = nγtr(H).

Theorem 29. If G is a graph of order n with δ(G) ≥ 1, then for every graph H having a universal vertex
v ∈ V(H),

γtr(G ◦v H) = 2n.

Proof. The upper bound γtr(G ◦v H) ≤ 2n is straightforward, as the function f , defined by f (x) = 2
for every vertex x ∈ V(G) and f (x) = 0 for every x ∈ V(G ◦v H) \V(G), is a TWRDF on G ◦v H.

On the other hand, let f be a γtr(G ◦v H)-function and suppose that there exists x ∈ V(G) such
that ω( fx) ≤ 1. In such a case, f (N[y]) ≤ 1 for every y ∈ V(Hx) \ {x}, which is a contradiction.
Therefore γtr(G ◦v H) = ω( f ) ≥ 2n.

Since any corona graph G� G′ is a rooted product graph G ◦v H where H ∼= K1 + G′ and v is the
vertex of K1, the result above is equivalent to the following theorem.

Theorem 30. If G is a graph of order n with no isolated vertex, then for every graph G′,

γtr(G� G′) = 2n.

To conclude the analysis, we consider the extreme case in which γtr(H) = 2.

Theorem 31. If G is a graph of order n and H is a graph with γtr(H) = 2, then for any v ∈ V(H),

γtr(G ◦v H) = 2n.

Proof. By Theorem 24, γtr(G ◦v H) ≤ 2n. Now, if γtr(G ◦v H) ≤ 2n − 1, then for any
γtr(G ◦v H)-function f , there exists x ∈ V(G) such that ω( fx) ≤ 1. Hence, f (N[y]) ≤ 1 for every
y ∈ V(Hx) \ {x}, which is a contradiction.

6. Conclusions and Open Problems

This article is a contribution to the theory of total protection of graphs. In particular, we introduced
the study of the total weak Roman domination number of a graph. We studied the properties of this
novel parameter in order to obtain its exact value or general bounds. Among the main contributions
we emphasize the following.

• The work proved several new theorems, thanks to which we have shown the close relationship that
exists between the total weak Roman domination number and other domination parameters such
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as the (total) domination number, secure (total) domination number, weak Roman domination
number, (total) Roman domination number and 2-packing number.

• We obtained general bounds and discussed some extreme cases.
• In a specific section of the paper, we focused on the case of rooted product graphs and we obtained

closed formulas and tight bounds for the total weak Roman domination number of these graphs.
• Through the results obtained on rooted product graphs, we have shown that the problem of

finding the total weak Roman domination number of a graph is NP-hard.

Among the open problems arising from the analysis, the following should be highlighted.

(a) We have shown that if G is a {K1,3, K1,3 + e}-free graph with no isolated vertex,
then γtr(G) = γst(G). We conjecture that these two parameters also coincide for lexicographic
product graphs, and we propose the general problem of characterizing all graphs for which the
equality holds.

(b) We have shown that γtr(G) = γ(G) + 1 if and only if γst(G) = γ(G) + 1. Therefore, the problem
of characterizing all graphs with γst(G) = γ(G) + 1 is an open problem, which is a particular
case of problem (a).

(c) We have shown that γtr(G) ≤ γt(G) + γ(G) and γtr(G) ≤ γr(G) + γ(G). We propose the
problem of characterizing all graphs for which these equalities hold; or providing necessary or
sufficient conditions for achieving them.

(d) Since the problem of finding γtr(G) is NP-hard, we consider the following question. Is there a
polynomial-time algorithm for finding γtr(T) for any tree T of order n?
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Abstract: A total dominating set D of a graph G is said to be a secure total dominating set if for every
vertex u ∈ V(G) \ D, there exists a vertex v ∈ D, which is adjacent to u, such that (D \ {v}) ∪ {u} is a
total dominating set as well. The secure total domination number of G is the minimum cardinality among
all secure total dominating sets of G. In this article, we obtain new relationships between the secure
total domination number and other graph parameters: namely the independence number, the matching
number and other domination parameters. Some of our results are tight bounds that improve some
well-known results.
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1. Introduction

The following approach to the protection of a graph was proposed by Cockayne et al. [1]. Suppose that
one or more entities are stationed at some of the vertices of a graph G and that an entity at a vertex can deal
with a problem at any vertex in its closed neighbourhood. In general, an entity could consist of an observer,
a robot, a guard, a legion, and so on. Informally, we say that G is protected under a given placement of
entities if there exists at least one entity available to handle a problem at any vertex. The simplest cases of
graph protection are those in which you can locate at most one entity per vertex. In such a case, the set of
vertices containing the entities is said to be a dominating set.

In a graph G = (V(G), E(G)), a vertex dominates itself and its neighbours. A subset S ⊆ V(G) is
said to be a dominating set of G if S dominates every vertex of G, while S is said to be a total dominating set
if every vertex v ∈ V(G) is dominated by at least one vertex in S \ {v}. As usual, the neighbourhood of a
vertex v ∈ V(G) will be denoted by N(v). Now, a set S ⊆ V(G) is said to be a secure (total) dominating set if
S is a (total) dominating set and for every v ∈ V(G) \ S there exists u ∈ N(v)∩ S such that (S∪ {v}) \ {u}
is a (total) dominating set. In the case of secure (total) domination, the graph is deemed protected by a
(total) dominating set and when an entity moves (to deal with a problem) to a neighbour not included
in the (total) dominating set, the new set of entities obtained from the movement of the entity is a (total)
dominating set which protects the graph as well.

The minimum cardinality among all dominating sets of G is the domination number of G, denoted
by γ(G). The total domination number, the secure domination number and the secure total domination number of
G are defined by analogy, and are denoted by γt(G), γs(G) and γst(G), respectively.
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The domination number and the total domination number have been extensively studied. For instance,
we cite the following books [2–4]. The secure domination number, which has been less studied, was
introduced by Cockayne et al. in [1] and studied further in several works including [5–10], while the secure
total domination number was introduced by Benecke et al. in [11] and studied further in [9,12–14].

In this work we study the relationships between the secure total domination number and other
graph parameters. The article is organized as follows. In Section 2 we define key terms and
additional notation. In Section 3 we show that γst(G) ≤ α(G) + γ(G), where α(G) denotes the
independence number of G. Since γ(G) ≤ α(G), this result improves the bound γst(G) ≤ 2α(G) obtained
in [14]. Section 4 is devoted to the study of relationships between the secure total domination number and
other domination parameters. In particular, we outline some known results that become tools to derive
new ones. Finally, in Section 5 we obtain several bounds on the secure total domination number in terms
of the matching number and other graph parameters.

2. Some Additional Concepts and Notation

All graphs considered in this paper are finite and undirected, without loops or multiple edges.
The minimum degree of a graph G will be denoted by δ(G) and the maximum degree by ∆(G). As usual,
the closed neighbourhood of a vertex v ∈ V(G) is denoted by N[v] = N(v) ∪ {v}. We say that a vertex
v ∈ V(G) is a universal vertex of G if N[v] = V(G). By analogy with the notation used for vertices, for a
set S ⊆ V(G), its open neighbourhood is the set N(S) = ∪v∈SN(v), and its closed neighbourhood is the set
N[S] = N(S) ∪ S. We also define the following sets associated with v ∈ V(G).

• The internal private neighbourhood of v relative to S is defined by

ipn(v, S) = {u ∈ S : N(u) ∩ S = {v}}.

• The external private neighbourhood of v relative to S is defined by

epn(v, S) = {u ∈ V(G) \ S : N(u) ∩ S = {v}}.

• The private neighbourhood of v relative to S is defined by

pn(v, S) = ipn(v, S) ∪ epn(v, S) = {u ∈ V(G) : N(u) ∩ S = {v}}.

The subgraph induced by S ⊆ V(G) will be denoted by 〈S〉, while the graph obtained from G by
removing all the vertices in S ⊆ V(G) (and all the edges incident with a vertex in S) will be denoted by
G− S. If H is a graph, then we say that a graph G is H-free if G does not contain any copy of H as an
induced subgraph.

We denote the set of leaves of a graph G by L(G), and the set of support vertices (vertices adjacent
to leaves) by S(G). The set of isolated vertices of 〈V(G) \ (S(G) ∪ L(G))〉 will be denoted by IG.

We will use the notation Cn, Nn and Pn for cycle graphs, empty graphs and path graphs of order
n, respectively.

Let f : V(G) → {0, 1, 2} be a function. For any i ∈ {0, 1, 2} we define the subsets of vertices
Vi = {v ∈ V(G) : f (v) = i} and we identify f with the three subsets of V(G) induced by f . Thus, in order
to emphasize the notation of these sets, we denote the function by f (V0, V1, V2). Given a set X ⊆ V(G),
we define f (X) = ∑v∈X f (v), and the weight of f is defined to be ω( f ) = f (V(G)) = |V1|+ 2|V2|.

A (total) weak Roman dominating function is a function f (V0, V1, V2) satisfying that V1 ∪ V2 is (total)
dominating set and for every vertex v ∈ V0 there exists u ∈ N(v) ∩ (V1 ∪ V2) such that the function
f ′(V′0, V′1, V′2), defined by f ′(v) = 1, f ′(u) = f (u) − 1 and f ′(x) = f (x) whenever x ∈ V(G) \ {u, v},
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satisfies that V′1 ∪V′2 is (total) dominating set. Notice that S ⊆ V(G) is a secure (total) dominating set if and
only if there exits a (total) weak Roman dominating function f (V0, V1, V2) such that V2 = ∅ and V1 = S.

The weak Roman domination number, denoted by γr(G), is the minimum weight among all weak Roman
dominating functions on G. By analogy we define the total weak Roman domination number, which is denoted
by γtr(G). The weak Roman domination number was introduced by Henning and Hedetniemi [15] and
studied further in several works including [7,8,10,16,17], while the total weak Roman domination number
was recently introduced in [12].

A dominating set of cardinality γ(G) will be called a γ(G)-set. A similar agreement will be assumed
when referring to optimal sets associated with other parameters used in the article. As usual, we will use
the acronyms TDS and STDS to refer to total dominating sets and secure total dominating sets, respectively.

A TDS X is said to be a total outer-connected dominating set if the subgraph induced by V(G) \ X is
connected. The total outer-connected domination number of G, denoted by γtoc(G), is the minimum cardinality
among all total outer-connected dominating sets of G. This parameter was introduced by Cyman in [18]
and studied further in [19–21].

An independent set of a graph G is a subset of vertices such that no two vertices in the subset represent
an edge of G. The maximum cardinality among all independent sets is the independence number of G,
denoted by α(G). Analogously, two edges in a graph G are independent if they are not adjacent in G.
A set of pairwise independent edges of G is called a matching of G. The matching number α′(G) , sometimes
known as the edge independence number, is the maximum cardinality among all matchings of G.

For the remainder of the paper, definitions will be introduced whenever a concept is needed.

3. Secure Total Domination & Independence

Klostermeyer and Mynhardt [9] in 2008, established the following upper bound.

Theorem 1. [9] For any graph G with no isolated vertex,

γst(G) ≤ 3α(G)− 1.

In 2017 Duginov [14] answered the following open question posed by Klostermeyer and
Mynhardt [9] p. 282: Is there a graph G such that γst(G) = 3α(G) − 1, where α(G) ≥ 2? Duginov
provided a negative answer to this question by confirming the suspicions of Klostermeyer and Mynhardt
that γst(G) ≤ 2α(G).

Theorem 2. [14] For any graph G with no isolated vertex,

γst(G) ≤ 2α(G).

We now proceed to improve the bound above.

Lemma 1. For any graph G and any set D ⊆ V(G), there exists an α(G)-set I such that for any x ∈ I,
ipn(x, D ∪ I) = ∅.

Proof. Let I be an α(G)-set, D ⊆ V(G) and DI = {x ∈ I : ipn(x, D ∪ I) 6= ∅}. We can assume that we
have taken I in such a way that |DI | is minimum among all α(G)-sets. Suppose that there exists u ∈ DI ,
and consequently, let v ∈ ipn(u, D ∪ I). Observe that v ∈ D \ I and I′ = (I ∪ {v}) \ {u} is an α(G)-set.
Since ipn(v, D ∪ I′) = ∅ and ipn(x, D ∪ I′) = ipn(x, D ∪ I) for every x ∈ I′ \ {v}, we can conclude that I′
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is an α(G)-set satisfying that |DI′ | < |DI |, which is a contradiction. Therefore, DI = ∅, which completes
the proof.

Since γ(G) ≤ α(G), the following result improves Theorem 2.

Theorem 3. For any graph G with no isolated vertex,

γst(G) ≤ α(G) + γ(G).

Proof. Let D be a γ(G)-set. By Lemma 1 there exists an α(G)-set I such that ipn(x, D ∪ I) = ∅ for every
x ∈ I. We define the set S ⊆ V(G) as follows.

(a) D ∪ I ⊆ S.
(b) For every vertex x ∈ D ∩ I,

• if epn(x, D ∪ I) 6= ∅, then choose one vertex u ∈ epn(x, D ∪ I) and set u ∈ S.
• if epn(x, D ∪ I) = ∅, then choose one vertex u ∈ N(x) \ (D ∪ I) (if any) and set u ∈ S.

It is readily seen that S is a TDS. Now, let v ∈ V(G) \ S. Since I ⊆ S is also a dominating set,
there exists a vertex u ∈ N(v) ∩ I ⊆ N(v) ∩ S. To conclude that S is STDS, we only need to prove that
S′ = (S \ {u}) ∪ {v} is a TDS. To this end, we differentiate two cases for any w ∈ N(u).

Case 1. u ∈ I \ D. If w /∈ D, then there exists some vertex in D ⊆ S′ which dominates w, as D is a
dominating set. If w ∈ D, then by Lemma 1 we have that w /∈ ipn(u, D ∪ I). Hence, there exists some
vertex in (D ∪ I) \ {u} ⊆ S′ which dominates w.

Case 2. u ∈ I ∩ D. If w ∈ D, then by Lemma 1 we have that w /∈ ipn(u, D ∪ I), and so there exists some
vertex in (D ∪ I) \ {u} ⊆ S′ which dominates w. From now on, suppose that w /∈ D. If w /∈ epn(u, D ∪ I),
then w is dominated by some vertex in (D ∪ I) \ {u} ⊆ S′. If w ∈ epn(u, D ∪ I) then, as all vertices in
epn(u, D∪ I) form a clique and by (b) in the definition of S, w is dominated by some vertex in S \ {u} ⊆ S′.

Now, since S is a TDS, we have that every vertex in V(G) \ N(u) is dominated by some vertex in S′

and, according to the two cases above, we can conclude that S′ is a TDS. Therefore, S is a STDS and so
γst(G) ≤ |S| ≤ α(G) + γ(G), which completes the proof.

The bound above is tight. For instance, it is achieved for any corona product graph G = H1 � H2,
where H1 is an arbitrary graph and H2 is the disjoint union of k complete nontrivial graphs. Notice that
α(G) = k|V(H1)|, γ(G) = |V(H1)| and γst(G) = (k + 1)|V(H1)| = α(G) + γ(G). Another example is the
graph G shown in Figure 2, where γst(G) = 8, α(G) = 6 and γ(G) = 2.

4. Secure Total Domination & Other Kinds of Domination

For any graph G with no isolated vertex, V(G) is a secure total dominating set, which implies that
γst(G) ≤ |V(G)|. All graphs achieving this trivial bound were characterized by Benecke et al. as follows.

Theorem 4. [11] Let G be a graph of order n. Then γst(G) = n if and only if V(G) \ (L(G) ∪ S(G)) is an
independent set.

Since every secure total dominating set is a total dominating set, it is clear that γt(G) ≤ γst(G). All
graphs satisfying the equality were characterized by Klostermeyer and Mynhardt in [9].

Theorem 5. [9] If G is a connected graph, then the following statements are equivalent.
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• γst(G) = γt(G).
• γst(G) = 2.
• G has two universal vertices.

The result above is an important tool to characterize all graphs with γst(G) = 3. To begin with, we
need to state the following basic tool.

Proposition 1. If H is a spanning subgraph (with no isolated vertex) of a graph G, then

γst(G) ≤ γst(H).

Proof. Let E− = {e1, . . . , ek} be the set of all edges of G not belonging to the edge set of H. Let H0 = G
and, for every i ∈ {1, . . . , k}, let Xi = {e1, . . . , ei} and Hi = G − Xi. Since any STDS of Hi is a STDS
of Hi−1, we can conclude that γst(Hi−1) ≤ γst(Hi). Hence, γst(G) = γst(H0) ≤ γst(H1) ≤ · · · ≤
γst(Hk) = γst(H).

Let G be the family of graphs H of order n ≥ 3 such that the subgraph induced by three vertices of H
contains a path P3 and the remaining n− 3 vertices have degree two and they form an independent set.
Figure 1 shows a graph belonging to G.

Figure 1. A graph H belonging to G. The set of black-coloured vertices forms a γst(H)-set

Theorem 6. Given a graph G, the following statements are equivalent.

• γst(G) = 3.
• G has at most one universal vertex and there exists H ∈ G which is a spanning subgraph of G.

Proof. Let D be a γst(G)-set and assume that |D| = 3. By Theorem 5, G has at most one universal vertex.
Let D = {u, v, w} and notice that 〈D〉 contains a path P3, as D is a total dominating set of G. Since D is
a STDS of G, we observe that |N(z) ∩ D| ≥ 2 for every z ∈ V(G) \ D. Hence, in this case, G contains a
spanning subgraph belonging to G.

Conversely, since G has at most one universal vertex, by Theorem 5 we have that γst(G) ≥ 3.
Moreover, it is readily seen that γst(H) ≤ 3 for any H ∈ G. Hence, if H ∈ G is a spanning subgraph of G,
by Proposition 1 it follows that γst(G) ≤ 3. Therefore, γst(G) = 3.

We now consider the relationship between γs(G) and γst(G).

Theorem 7. [9] Let G be a graph with no isolated vertex.

(i) If δ(G) = 1, then γs(G) + 1 ≤ γst(G).
(ii) If δ(G) ≥ 2, then γs(G) ≤ γst(G) ≤ 2γs(G).

A natural question is if the bound γst(G) ≤ 2γs(G), due to Klostermeyer and Mynhardt, can
be improved with γst(G) ≤ γs(G) + γ(G). The example given in Figure 2 shows that, in general,
this inequality does not hold.
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Figure 2. A graph G with γst(G) = 8, γs(G) = 5 and γ(G) = 2. The set of black-coloured vertices forms a
γst(G)-set.

In Theorem 10 we will show some cases in which γst(G) ≤ γs(G) + γ(G). To this end, we need to
outline the following two known results.

Theorem 8. [12] The following inequalities hold for any graph G with no isolated vertex.

(i) γt(G) ≤ γtr(G) ≤ γst(G).
(ii) γtr(G) ≤ min{γt(G), γr(G)}+ γ(G).

Although the problem of characterizing all graphs with γtr(G) = γst(G) remains open, some
particular cases were described in [12].

Theorem 9. [12]

(i) γst(G) = γ(G) + 1 if and only if γtr(G) = γ(G) + 1.
(ii) For any {K1,3, K1,3 + e}-free graph G with no isolated vertex, γst(G) = γtr(G).
(iii) For any graph G with no isolated vertex and maximum degree ∆(G) ≤ 2, γst(G) = γtr(G).

From Theorems 8 and 9 (ii), and using the fact that γr(G) ≤ γs(G), we can show that the bound
γst(G) ≤ 2γs(G) established in Theorem 7 can be improved for any {K1,3, K1,3 + e}-free graph.

Theorem 10. For any {K1,3, K1,3 + e}-free graph G with no isolated vertex,

γst(G) ≤ min{γt(G), γr(G)}+ γ(G) ≤ γs(G) + γ(G).

The previous bounds are tight. They are achieved, for instance, for the wheel graph G ∼= N1 + C4

and for G ∼= N2 + P3, which is the join of N2 and P3. For these two graphs we have that γst(G) = 3,
γs(G) = γr(G) = γt(G) = 2 and γ(G) = 1.

To derive a consequence of Theorem 10 we need to state the following result due to Burger et al. [6].

Theorem 11. [6] For any connected graph G 6∼= C5 of order n and δ(G) ≥ 2,

γs(G) ≤
⌊n

2

⌋
.

Notice that γst(C5) = 4 =
⌊ 5

2
⌋
+ γ(C5). Hence, from Theorems 10 and 11 we immediately have the

next result.

Theorem 12. For any connected {K1,3, K1,3 + e}-free graph G of order n and δ(G) ≥ 2,

γst(G) ≤
⌊n

2

⌋
+ γ(G).

The bound above is tight. It is achieved for G ∼= N1 + C4, G ∼= C5 and G ∼= C6, where γst(G) equals
3, 4 and 5, respectively.
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The following result shows us a relationship between the secure total domination number and the
total outer-connected domination number.

Theorem 13. Let G be a graph of order n. If γtoc(G) ≤ n− 2, then

γst(G) ≤
⌊

γtoc(G) + n
2

⌋
.

Proof. We assume that γtoc(G) ≤ n− 2. Let D be a γtoc(G)-set and S a γ(〈V(G) \ D〉)-set. Since D is
a TDS of G, D ∪ S is a TDS as well. Furthermore, every vertex u ∈ V(G) \ (D ∪ S) is dominated by
some vertex v ∈ S, and D ⊆ (D ∪ S ∪ {u}) \ {v} is a TDS of G. Hence, D ∪ S is a STDS of G, which
implies that γst(G) ≤ |D ∪ S| = |D|+ |S|. Now, since 〈V(G) \ D〉 is a connected nontrivial graph, we
have that |S| = γ(〈V(G) \ D〉) ≤ |V(G)\D|

2 = n−γtoc(G)
2 . Therefore, γst(G) ≤ b γtoc(G)+n

2 c, which completes
the proof.

The bound above is tight. For instance, it is achieved for the wheel graph G ∼= N1 + C4 and for
G ∼= N2 + P3. In both cases γst(G) = 3 and γtoc(G) = 2.

The following result was obtained by Favaron et al. in [20].

Theorem 14. [20] For any graph G of order n, diameter diam(G) ≤ 2 and minimum degree δ(G) ≥ 3,

γtoc(G) ≤
⌊

2n− 2
3

⌋
.

The following result is a direct consequence of combining the result above and Theorem 13.

Theorem 15. For any graph G of order n, diameter two and minimum degree δ(G) ≥ 3,

γst(G) ≤
⌊

5n− 2
6

⌋
.

The bound above is achieved for the wheel graph G ∼= N1 + C4 and for G ∼= N2 + P3. As we already
know, in both cases γst(G) = 3.

5. Secure Total Domination & Matching

To begin this section, we proceed to introduce new definitions and terminology. Given a matching
M of a graph G, let VM be the set formed by the end-vertices of edges belonging toM. Given a vertex
v ∈ VM, we say that v′ ∈ VM is the partner of v if vv′ ∈ M. Observe that if v′ is the partner of v, then v is
the partner of v′.

A maximum matching is a matching of cardinality α′(G). The following lemmas show some properties
of maximum matchings.

Lemma 2. LetM be a maximum matching of a graph G. The following statements hold.

(i) N(u) ⊆ VM for every u ∈ V(G) \VM.
(ii) If u ∈ V(G) \VM is adjacent to v ∈ VM, then N(v′) ⊆ VM ∪ {u}, where v′ is the partner of v.

Proof. Let u ∈ V(G) \ VM. If there exists a vertex w ∈ N(u) ∩ (V(G) \ VM), then the set M∪ {uw}
is a matching of G of cardinality greater than |M|, which is a contradiction. Hence, N(u) ⊆ VM and
(i) follows.
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Now, we suppose that there exists u ∈ V(G) \VM and a vertex v ∈ N(u) ∩VM. Let v′ be the partner
of v. If there exists a vertex w ∈ N(v′) ∩ (V(G) \ (VM ∪ {u})), then the setM\ {vv′} ∪ {uv, v′w} is a
matching of G of cardinality greater than |M|, which is a contradiction. Hence, N(v′) ⊆ VM ∪ {u} and
(ii) follows.

Lemma 3. For any graph G with L(G) 6= ∅, there exists a maximum matching M such that for each vertex
x ∈ S(G) there exists y ∈ L(G) such that xy ∈ M.

Proof. LetM be a maximum matching of G such that |VM ∩ L(G)| is maximum. It is easy to see that the
maximality ofM leads to S(G) ⊆ VM. Suppose that there exists a support vertex x such that xx′ ∈ M
and x′ /∈ L(G). Let y ∈ N(x) ∩ L(G). Notice that the setM′ =M\ {xx′} ∪ {xy} is a maximum matching
of G and |VM′ ∩ L(G)| > |VM ∩ L(G)|, which is a contradiction. Therefore, the result follows.

The next result provides a relationship between the secure total domination number, the matching
number and some special vertices of a graph.

Theorem 16. For any graph G with minimum degree δ(G) = 1,

γst(G) ≤ 2α′(G) + |L(G)| − |S(G)|+ |IG|.

Proof. Let M be a maximum matching satisfying Lemma 3. Let S = VM ∪ L(G) ∪ IG. Notice that
VM ∩ IG = ∅ and S(G) ⊆ VM. Hence, |S| = 2α′(G) + |L(G)| − |S(G)|+ |IG|.

Notice that that S is a TDS of G. We shall show that S is a STDS of G. Now, let v ∈ V(G) \ S.
Since v /∈ IG and VM is a dominating set of G, there exists a vertex u ∈ VM \ S(G) which is adjacent to v.
Let S′ = (S \ {u}) ∪ {v}. We will see that S′ is a TDS of G as well. Since S is a TDS of G, every vertex
w ∈ V(G) \ N(u) is adjacent to some vertex belonging to S′. Let w ∈ N(u) and observe that |N(w)| ≥ 2
as u /∈ S(G).

If w ∈ V(G) \ VM, then by Lemma 2 (i) we have that N(w) ⊆ VM. Hence there exists a vertex in
VM \ {u} ⊆ S′ which is adjacent to w, as |N(w)| ≥ 2. Now, if w ∈ VM \ {u′}, where u′ is the partner of u,
then w is adjacent to its partner, which belongs to S′. Finally, if w = u′, then by Lemma 2 (ii) we have that
N(w) ⊆ VM ∪ {v} and since |N(w)| ≥ 2 it follows that N(w) ⊆ (VM \ {u}) ∪ {v} ⊆ S′.

Thus, S′ is a TDS of G, as desired. Therefore, S is a STDS and so γst(G) ≤ |S| = 2α′(G) + |L(G)| −
|S(G)|+ |IG|.

The bound above is tight. For instance, it is achieved for the graph shown in Figure 3. In this case,
γst(G) = 22, α′(G) = 7, |L(G)| = 12, |S(G)| = 6 and |IG| = 2.

Figure 3. The set of black-coloured vertices forms a γst(G)-set.

From now on we consider the case of graphs with minimum degree δ(G) ≥ 2.

On the secure total domination number of graphs 140



Symmetry 2019, 11, 1165 9 of 12

Definition 1. Given a maximum matching M of a graph G with δ(G) ≥ 2, we construct a set DM ⊆ VM
as follows.

(i) |DM| = α′(G).
(ii) xy /∈ M for all x, y ∈ DM.
(iii) |N(x) ∩ (V(G) \VM)| ≥ |N(x′) ∩ (V(G) \VM)| for all x ∈ DM, where x′ is the partner of x.

We proceed to show some properties of DM ⊆ VM.

Lemma 4. LetM be a maximum matching of a graph G with δ(G) ≥ 2. The following statements hold.

(a) If u ∈ V(G) \VM is adjacent to v′ ∈ VM \ DM, then u is adjacent to v ∈ DM, where v is the partner of v′.
(b) DM is a dominating set of G.
(c) If v ∈ DM, then its partner v′ ∈ VM \ DM satisfies that |N(v′) ∩VM| ≥ δ(G)− 1.

Proof. Let u ∈ V(G) \ VM. By Lemma 2 (i) we have that N(u) ⊆ VM. If there exists a vertex v′ ∈
VM \ DM, then by Lemma 2 (ii) we have that N(v) ⊆ VM ∪ {u} (where v ∈ DM is the partner of v′). By
item (iii) in the definition of DM it follows that u ∈ N(v) and (a) holds.

From item (a) we deduce that N(u) ∩ DM 6= ∅. Now, by definition of DM, every vertex in VM \ DM
is dominated by its partner, which belongs to DM. Therefore, DM is a dominating set of G and so
(b) follows.

Now, let z ∈ DM and z′ its partner. If |N(z′) ∩ VM| ≤ δ(G) − 2, then there exist two vertices
x, y ∈ N(z′) ∩ (V(G) \ VM). By Lemma 4 (a) we have that x, y ∈ N(z), which is a contradiction by
Lemma 2 (ii). Therefore, |N(z′) ∩VM| ≥ δ(G)− 1 and (c) follows, which completes the proof.

Theorem 17. For any graph G with minimum degree δ(G) ≥ 2,

γst(G) ≤ 2α′(G)− δ(G) + 2.

Proof. Let n be the order of G. Let v ∈ V(G) be a vertex of degree δ(G) and u ∈ N(v). It is readily
seen that the set S = (V(G) \ N(v)) ∪ {u} is a STDS of G and, as a consequence, γst(G) ≤ n− δ(G) + 1.
Thus, the inequality holds for 2α′(G) ∈ {n− 1, n}.

From now on we suppose that 2α′(G) ≤ n − 2. Let M be a maximum matching of G.
Since |VM| = 2α′(G) ≤ n − 2, there exist two vertices x, y ∈ V(G) \ VM. By Lemma 4 (b) we
have that DM is a dominating set of G, which implies that there exists a vertex vx ∈ N(x) ∩ DM.
Since δ(G) ≥ 2, by Lemmas 2 and 4 (a), there exists a vertex vy ∈ N(y)∩ (DM \ {vx}) and also we deduce
that N(x) ∪ N(y) ⊆ VM and N(x) ∩ N(y) ⊆ DM. Let R = (N(x) ∪ N(y)) ∩ DM. Hence |R| = |N(x) ∩
N(y)| + |(N(x) \ N(y)) ∩ DM| + |(N(y) \ N(x)) ∩ DM| ≥ (|N(x)| + |N(y)|)/2 ≥ δ(G). Let Z ⊆
R \ {vx, vy} such that |Z| = δ(G)− 2 and let Z′ be the set of partners of the vertices in Z.

LetM′ = (M\{vxv′x, vyv′y})∪ {xvx, yvy}, where v′x and v′y are the partners of vx and vy respectively.
Notice thatM′ is a maximum matching of G and the set DM′ = DM ⊆ VM′ satisfies the conditions given
in Definition 1.

We will prove that S = VM′ \ Z′ is a STDS of G. By Lemma 4 (b) we have that DM is a dominating
set of G, which implies that every vertex in V(G) \ S is dominated by some vertex in DM ⊆ S. Also, every
vertex in Z is dominated by either x or y, which belong to S, and every vertex in S \ Z satisfies that its
partner belongs to S as well. Hence S is a TDS of G.

Let v ∈ V(G) \ S and let S′ = (S \ {v∗}) ∪ {v}, where either v∗ = v′ is the partner of v if v ∈ Z′,
or v∗ is a vertex belonging to N(v) ∩ DM if v ∈ V(G) \VM′ (notice that in this case, v∗ exists since DM
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is a dominating set). We only need to prove that S′ is a TDS of G. Since S is a TDS of G, every vertex in
V(G) \ N(v∗) has at least one neighbour in S′. Now, let u ∈ N(v∗) and consider the following two cases.

Case 1. u ∈ V(G) \VM′ . Since |VM′ ∩ (V(G) \ S′)| = δ(G)− 1, by Lemma 2 (i) we deduce that there exists
some vertex in N(u) ∩ S′.

Case 2. u ∈ VM′ . In this case, we analyse three subcases. If u ∈ Z, then u is dominated by either x
or y, which belong to S′. If u = v, then as u ∈ VM′ \ DM′ , by Lemma 4 (c) it follows that |N(u) ∩
VM′ | ≥ δ(G) − 1. As in this case |VM′ ∩ (V(G) \ S′)| = δ(G) − 2, we deduce that N(u) ∩ S′ 6= ∅.
Finally, if u ∈ VM′ \ (Z ∪ {v}), then its partner belongs to S′.

Hence, S′ is a TDS of G, as desired. Therefore, S is a STDS of G and γst(G) ≤
|S| = |VM′ \ Z′| = 2α′(G)− δ(G) + 2, which completes the proof.

The bound above is tight. For instance, it is achieved for the graphs G ∼= N2 + P3 and G ∼= N1 + C4.
In both cases γst(G) = 3, α′(G) = 2 and δ(G) = 3.

Cockayne et al. in [8] obtained the following bound on the secure domination number in terms of the
order and the matching number.

Theorem 18. [8] If a graph G of order n does not have isolated vertices, then

γs(G) ≤ n− α′(G).

Therefore, by Theorems 10 and 18 we deduce the following result.

Theorem 19. For any {K1,3, K1,3 + e}-free graph G with minimum degree δ(G) ≥ 1 and order n,

γst(G) ≤ n− α′(G) + γ(G).

The bound above is tight. For instance, it is achieved for the graphs G ∼= C6 and G ∼= P6, as for these
graphs we have γst(G) = 5, α′(G) = 3 and γ(G) = 2.

The k-domination number of G, denoted by γk(G), is another well-known parameter [3]. The following
theorem is a contribution of DeLaViña et al. in [22].

Theorem 20. [22] Let k be a positive integer. For any graph G with minimum degree δ(G) ≥ 2k− 1,

γk(G) ≤ α′(G).

Since every γ2(G)-set is a secure dominating set of G, it is immediate that γs(G) ≤ γ2(G), and so
Theorems 10 and 20 lead to the following result.

Theorem 21. For any {K1,3, K1,3 + e}-free graph G with minimum degree δ(G) ≥ 3,

γst(G) ≤ α′(G) + γ(G).

The bound above is tight. For instance, it is achieved for the wheel graph G ∼= N1 + C4 and for
G ∼= N2 + P3, as in both cases γst(G) = 3, α′(G) = 2 and γ(G) = 1.
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6. Conclusions

This article is a contribution to the theory of protection of graphs. In particular, it is devoted to the
study of the secure total domination number of a graph. We study the properties of this parameter in order
to obtain its exact value or general bounds. Among our main contributions we highlight the following.

• We show that γst(G) ≤ α(G) + γ(G). Since γ(G) ≤ α(G), this result improves the bound γst(G) ≤
2α(G) obtained in [14].

• We characterize the graphs with γst(G) = 3.
• We show that if G is a {K1,3, K1,3 + e}-free graph G with no isolated vertex, then

γst(G) ≤ min{γt(G), γr(G)}+ γ(G) ≤ γs(G) + γ(G).
• We study the relationship that exists between the secure total domination number and the matching

number of a graph. In particular, we obtain the following results.

(a) γst(G) ≤ 2α′(G) + |L(G)| − |S(G)|+ |IG| for any graph G of minimum degree one.
(b) γst(G) ≤ 2α′(G)− δ(G) + 2 for every graph G of minimum degree δ(G) ≥ 2.
(c) γst(G) ≤ α′(G) + γ(G) for every {K1,3, K1,3 + e}-free graph G of minimum degree δ(G) ≥ 3.

All bounds obtained in the paper are tight.
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The authors wish to make the following corrections on paper [1]:

(1) Eliminate Lemma 1 because we have found that this lemma is not correct.

(2) Theorem 3 states that for any graph G with no isolated vertex,

γst(G) ≤ α(G) + γ(G).

The result is correct, but the proof uses Lemma 1. For this reason, we propose the
following alternative proof for Theorem 3.

Proof. Let D be a γ(G)-set. Let I be an α(G)-set such that |D ∩ I| is at its maximum among
all α(G)-sets. Notice that for any x ∈ D ∩ I,

epn(x, D ∪ I) ∪ ipn(x, D ∪ I) ⊆ epn(x, I). (1)

We next define a set S ⊆ V(G) of minimum cardinality among the sets satisfying the
following properties.

(a) D ∪ I ⊆ S.
(b) For every vertex x ∈ D ∩ I,

(b1) if epn(x, D ∪ I) 6= ∅, then S ∩ epn(x, D ∪ I) 6= ∅;
(b2) if epn(x, D ∪ I) = ∅, ipn(x, D ∪ I) 6= ∅ and epn(x, I) \ ipn(x, D ∪ I) 6= ∅,

then either epn(x, I) \ D = ∅ or S ∩ epn(x, I) \ D 6= ∅;
(b3) if epn(x, D∪ I) = ∅ and epn(x, I) = ipn(x, D∪ I) 6= ∅, then S∩N(epn(x, I)) \

{x} 6= ∅;
(b4) if epn(x, D ∪ I) = ipn(x, D ∪ I) = ∅, then N(x) \ (D ∪ I) = ∅ or S ∩ N(x) \

(D ∪ I) 6= ∅.

Since D and I are dominating sets, from (a) and (b) we conclude that S is a TDS. From
now on, let v ∈ V(G) \ S. Observe that there exists a vertex u ∈ N(v) ∩ I ⊆ N(v) ∩ S,
as I ⊆ S is an α(G)-set. To conclude that S is a STDS, we only need to prove that S′ =
(S \ {u}) ∪ {v} is a TDS of G.

First, notice that every vertex in V(G) \ N(u) is dominated by some vertex in S′,
because S is a TDS of G. Let w ∈ N(u). Now, we differentiate two cases with respect to
vertex u.

Case 1. u ∈ I \ D. If w /∈ D, then there exists some vertex in D ⊆ S′ which dominates
w, as D is a dominating set. Suppose that w ∈ D. If w ∈ ipn(u, D ∪ I), then I′ =
(I ∪ {w}) \ {u} is an α(G)-set such that |D ∩ I′| > |D ∩ I|, which is a contradiction. Hence,
w /∈ ipn(u, D ∪ I), which implies that there exists some vertex in (D ∪ I) \ {u} ⊆ S′ which
dominates w.

Case 2. u ∈ I ∩ D. We first suppose that w /∈ D. If w /∈ epn(u, D ∪ I), then w is dominated
by some vertex in (D ∪ I) \ {u} ⊆ S′. If w ∈ epn(u, D ∪ I), then by (b1) and the fact that
in this case all vertices in epn(u, D ∪ I) form a clique, w is dominated by some vertex in
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S \ {u} ⊆ S′. From now on, suppose that w ∈ D. If w /∈ ipn(u, D ∪ I), then there exists
some vertex in (D ∪ I) \ {u} ⊆ S′ which dominates w. Finally, we consider the case in that
w ∈ ipn(u, D ∪ I).

We claim that ipn(u, D ∪ I) = {w}. In order to prove this claim, suppose that there
exists w′ ∈ ipn(u, D ∪ I) \ {w}. Notice that w′ ∈ D. By (1) and the fact that all vertices in
epn(u, I) form a clique, we prove that ww′ ∈ E(G), and so w /∈ ipn(u, D ∪ I), which is a
contradiction. Therefore, ipn(u, D ∪ I) = {w} and, as a result,

epn(u, D ∪ I) ∪ {w} ⊆ epn(u, I). (2)

In order to conclude the proof, we consider the following subcases.

Subcase 2.1. epn(u, D ∪ I) 6= ∅. By (2), (b1), and the fact that all vertices in epn(u, I)
form a clique, we conclude that w is adjacent to some vertex in S \ {u} ⊆ S′, as desired.

Subcase 2.2. epn(u, D ∪ I) = ∅ and epn(u, I) \ {w} 6= ∅. By (2), (b2), and the fact
that all vertices in epn(u, I) form a clique, we show that w is dominated by some vertex in
S \ {u} ⊆ S′, as desired.

Subcase 2.3. epn(u, D ∪ I) = ∅ and epn(u, I) = {w}. In this case, by (b3) we deduce
that w is dominated by some vertex in S \ {u} ⊆ S′, as desired.

According to the two cases above, we can conclude that S′ is a TDS of G, and so S is
a STDS of G. Now, by the the minimality of |S|, we show that |S| ≤ |D ∪ I|+ |D ∩ I| =
|D| + |I|. Therefore, γst(G) ≤ |S| ≤ |I| + |D| = α(G) + γ(G), which completes the
proof.

The authors would like to apologize for any inconvenience caused to the readers by
these changes. The changes do not affect the scientific results.

Reference
1. Cabrera Martínez, A.; Montejano, L.P.; Rodríguez-Velázquez, J.A. On the secure total domination number of graphs. Symmetry

2019, 11, 1165. [CrossRef]

On the secure total domination number of graphs 148



Secure total domination in rooted
product graphs

This chapter includes a complete copy of the following paper.

A. Cabrera Martı́nez, A. Estrada-Moreno, J.A. Rodrı́guez-Velázquez. Se-
cure total domination in rooted product graphs, Mathematics (2020) 8(4),
600.
URL: https://doi.org/10.3390/math8040600

Quality indicators:
2020 JCR Impact factor: 2.258, Q1 (24/330), Mathematics.

149

https://doi.org/10.3390/math8040600




mathematics

Article

Secure Total Domination in Rooted Product Graphs

Abel Cabrera Martínez , Alejandro Estrada-Moreno and Juan A. Rodríguez-Velázquez *

Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Av. Països Catalans 26,
43007 Tarragona, Spain; abel.cabrera@urv.cat (A.C.M.); alejandro.estrada@urv.cat (A.E.-M.)
* Correspondence: juanalberto.rodriguez@urv.cat

Received: 16 March 2020; Accepted: 14 April 2020; Published: 15 April 2020
����������
�������

Abstract: In this article, we obtain general bounds and closed formulas for the secure total domination
number of rooted product graphs. The results are expressed in terms of parameters of the factor
graphs involved in the rooted product.
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1. Introduction

Recently, many authors have considered the following approach to the problem of protecting a
graph [1–7]: suppose that one “entity” is stationed at some of the vertices of a (simple) graph G and
that an entity at a vertex can deal with a problem at any vertex in its closed neighbourhood. In general,
an entity could consist of a robot, an observer, a legion, a guard, and so on. Informally, we say that
a graph G is protected under a given placement of entities if there exists at least one entity available
to handle a problem at any vertex. Various strategies (or rules for entities placements) have been
considered, under each of which the graph is deemed protected. As we can expect, the minimum
number of entities required for protection under each strategy is of interest. Among these strategies
we cite, for instance, domination [8,9], total domination [10], secure domination [1], secure total
domination [2], Roman domination [6,7], Italian domination, [11] and weak Roman domination [5].
The first four strategies are described below.

The simplest strategies of graph protection are the strategy of domination and the strategy of
total domination. In such cases, the sets of vertices containing the entities are dominating sets and
total dominating sets, respectively. Typically, a vertex in a graph G = (V(G), E(G)) dominates itself
and its neighbouring vertices. A set S ⊆ V(G) is said to be a dominating set of G if every vertex in
V(G) \ S is dominated by at least one vertex in S, while S is said to be a total dominating set if every
vertex v ∈ V(G) is dominated by at least one vertex in S \ {v}.

The minimum cardinality among all dominating sets of G is the domination number of G,
denoted by γ(G). The total domination number, denoted by γt(G), is defined by analogy. These two
parameters have been extensively studied. For instance, we cite the following books, [8–10].

Let N(v) be the open neighbourhood of v ∈ V(G) and let S ⊆ V(G). In the case of the secure
(total) domination strategy, a vertex v ∈ V(G) \ S is deemed (totally) protected under S ⊆ V(G) if S is
a (total) dominating set and there exists u ∈ N(v) ∩ S such that (S ∪ {v}) \ {u} is a (total) dominating
set. In such a case, in order to emphasise the role of vertex u, we say that v is (totally) protected by u
under S. A set S ⊆ V(G) is said to be a secure (total) dominating set if every vertex in v ∈ V(G) \ S is
(totally) protected under S.

For instance, let G be the graph shown in Figure 1, and suppose that an observer is stationed
at vertex a and another one is stationed at b. In such a case, the graph is under the control of the
observers, as its vertices are (i.e., {a, b} is a dominating set). Now, if the observer stationed at vertex a
moves to any vertex in {c, d, e}, then the graph is under the control of the observers as well. In this
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case, {a, b} is a secure dominating set. Furthermore, if there are three observers and they are stationed
at a, b, and c, then every vertex of the graph (including a, b, and c) is under the control of the observers,
and this property is preserved if the observer stationed at c moves to d or e. Hence, {a, b, c} is a secure
total dominating set.

Figure 1. In this case, {a} is a dominating set, {a, b} is a total dominating set and also a secure
dominating set, while {a, b, c} is a secure total dominating set.

The minimum cardinality among all secure dominating sets of G is the secure domination number
of G, denoted by γs(G). This domination parameter was introduced by Cockayne et al. in [1] and
studied further in a number of works including [12–17]. Now, the minimum cardinality among all
secure total dominating sets of G is the secure total domination number of G, which is denoted by
γst(G). This parameter was introduced by Benecke et al. in [2] and studied further in [3,4,16,18,19].

A secure total dominating set of cardinality γst(G) will be called a γst(G)-set. A similar agreement
will be assumed when referring to optimal sets associated to other parameters used in the article.

The problem of computing γst(G) is NP-hard [18], even when restricted to chordal bipartite
graphs, planar bipartite graphs with arbitrary large girth and maximum degree three, split graphs
and graphs of separability at most two. This suggests finding the secure total domination number for
special classes of graphs or obtaining tight bounds on this invariant. This is precisely the aim of this
article in which we study the case of rooted product graphs.

2. Some Notation and Tools

All graphs considered in this paper are finite and undirected, without loops or multiple edges.
The minimum degree of a graph G will be denoted by δ(G), i.e., δ(G) = minv∈V(G) |N(v)|. As usual,
the closed neighbourhood of a vertex v ∈ V(G) is denoted by N[v] = N(v) ∪ {v}. We say that a vertex
v ∈ V(G) is a universal vertex if N[v] = V(G). By analogy with the notation used for vertices, the
open neighbourhood of S ⊆ V(G) is the set N(S) = ∪v∈SN(v), while the closed neighbourhood is the
set N[S] = N(S) ∪ S.

A set S ⊆ V(G) is a double dominating set of G if |N[u] ∩ S| ≥ 2 for every u ∈ V(G).
The double domination number of G, denoted by γ×2(G), is the minimum cardinality among all
double dominating sets of G. The k-domination number of a graph G, denoted by γk(G), is the
cardinality of a smallest set of vertices such that every vertex not in the set is adjacent to at least k
vertices of the set. Such sets are called k-dominating sets.

Remark 1. Every secure total dominating set is a double dominating set and every double dominating set is a
2-dominating set. Therefore, for any graph G with no isolated vertex, γst(G) ≥ γ×2(G) ≥ γ2(G).

By Remark 1, for every secure total dominating set S and every vertex v ∈ S, the set S \ {v} is a
dominating set. Therefore, the following remark holds.

Remark 2. For every graph G with no isolated vertex, γst(G) ≥ γ(G) + 1.

A leaf of G is a vertex of degree one. A support vertex of G is a vertex which is adjacent to a leaf and
a strong support vertex is a support vertex which is adjacent to at least two leaves. A leaf is said to be a
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strong leaf if it is adjacent to a strong support vertex, otherwise it is called a weak leaf. The set of leaves,
support vertices, strong leaves and weak leaves are denoted by L(G), S(G), Ls(G), and Lw(G), respectively.

Remark 3. If D is a secure total dominating set of a graph G, then (S(G) ∪ L(G)) ⊆ D and no vertex of G is
totally protected under D by vertices in S(G) ∪ L(G).

If v is a vertex of a graph H, then the vertex-deletion subgraph H − {v} is the subgraph of H
induced by V(H) \ {v}. In Section 3 we will show the importance of γst(H − {v}) in the study of the
secure total domination number of rooted product graphs. Now we proceed to state some basic tools.

Lemma 1. Let H be a graph with no isolated vertex. If v ∈ V(H) \ (Lw(H) ∪ S(H)), then

γst(H − {v}) ≥ γst(H)− 2.

Furthermore, if γst(H − {v}) > γst(H), then v belongs to every γst(H)-set.

Proof. Assume that v ∈ V(H) \ (Lw(H) ∪ S(H)) and let D be a γst(H − {v})-set. Suppose that
|D| ≤ γst(H)− 3. If |N(v) ∩ D| ≥ 2, then D ∪ {v} is a secure total dominating set of H of cardinality
|D ∪ {v}| ≤ γst(H)− 2, which is a contradiction. Suppose that |N(v) ∩ D| ≤ 1. If v /∈ L(H), then for
every y ∈ N(v) \ D we have that D ∪ {v, y} is a secure total dominating set of H of cardinality
|D ∪ {v, y}| ≤ γst(H)− 1, which is a contradiction. Now, if v ∈ Ls(H), then by Remark 3 we can
conclude that D ∪ {v} is a secure total dominating set of H of cardinality |D ∪ {v}| ≤ γst(H)− 2,
which is a contradiction again. Hence, γst(H − {v}) = |D| ≥ γst(H)− 2.

On the other hand, if there exists a γst(H)-set S such that v /∈ S, then S is a secure total dominating
set of H − {v}, and so γst(H − {v}) ≤ |S| = γst(H). Therefore, if γst(H − {v}) > γst(H), then v ∈ S
for every γst(H)-set S.

If v is a weak leaf of H, then it could be that γst(H) ≥ γst(H − {v}) + 2. For instance, Figure 2
shows the existence of cases in which the gap γst(H)− γst(H − {v}) is arbitrarily large. In Remark 4
we highlight this fact.

Figure 2. A graph H where V(H) is the γst(H)-set. Since {a, b, c, d} forms a γst(H − {v})-set, we have
that γst(H)− γst(H − {v}) = k + 1 for every integer k ≥ 1.

Remark 4. For any integer k ≥ 1 there exists a graph H having a weak leaf vertex v such that γst(H)−
γst(H − {v}) = k + 1.

In contrast to Remark 4, the following result shows the case where v is a strong leaf.

Lemma 2. Let H be a graph with no isolated vertex. If v ∈ Ls(H), then

γst(H − {v}) = γst(H)− 1.

Proof. Let D be a γst(H)-set, v ∈ Ls(H) and N(v) = {sv}. By Remark 3 we deduce that D \ {v}
is a secure total dominating set of H − {v} and so γst(H − {v}) ≤ |D \ {v}| ≤ γst(H) − 1. Now,
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let D′ be a γst(H − {v})-set. Since sv ∈ S(H − {v}), by Remark 3 we have that sv ∈ D′ and no
vertex of H − {v} is totally protected by sv under D′, which implies that D′ ∪ {v} is a secure total
dominating set of H and, as a result, γst(H)− 1 ≤ |D′ ∪ {v}| − 1 = |D′| = γst(H − {v}). Therefore,
γst(H − {v}) = γst(H)− 1.

Lemma 3. For any graph H having a universal vertex v,

γst(H) = γ(H − {v}) + 1.

Proof. Let D be a γ(H − {v})-set. Since v is a universal vertex of H, it is straightforward that D ∪ {v}
is a secure total dominating set of H. Thus, γst(H) ≤ |D ∪ {v}| = γ(H − {v}) + 1.

From now on, suppose that γst(H) ≤ γ(H − {v}) and let S be a γst(H)-set. We differentiate the
following two cases.
Case 1. v ∈ S. In this case, as |S| ≤ γ(H − {v}), we deduce that S \ {v} is not a dominating set
of H − {v}. Hence, there exists a vertex y ∈ V(H − {v}) such that N(y) ∩ S = {v}, which is a
contradiction, as S is a 2-dominating set, by Remark 1.
Case 2. v /∈ S. In this case, S is a secure total dominating set of H − {v} and so γst(H − {v}) ≤ |S| ≤
γ(H − {v}), which is a contradiction with Remark 2.

Therefore, the result follows.

3. The Case of Rooted Product Graphs

Given a graph G of order n(G) and a graph H with root vertex v, the rooted product graph G ◦v H
is defined as the graph obtained from G and H by taking one copy of G and n(G) copies of H and
identifying the ith vertex of G with the root vertex v in the ith copy of H for every i ∈ {1, 2, . . . , n(G)}.

If H or G is a trivial graph, then G ◦v H is equal to G or H, respectively. In this sense, hereafter we
will only consider graphs G and H of order greater than or equal to two.

For every x ∈ V(G), Hx ∼= H will denote the copy of H in G ◦v H containing x. The restriction
of any set S ⊆ V(G ◦v H) to V(Hx) will be denoted by Sx, and the restriction to V(Hx − {x}) will be
denoted by S−x . Hence, V(G ◦v H) = ∪x∈V(G)V(Hx) and for every γst(G ◦v H)-set S we have that

γst(G ◦v H) = |S| = ∑
x∈V(G)

|Sx| = ∑
x∈V(G)

|S−x |+ |S ∩V(G)|.

Theorem 1. For any graphs G and H with no isolated vertex and any v ∈ V(H),

γst(G ◦v H) ≤ n(G)γst(H).

Furthermore, if v /∈ S(H), then

γst(G ◦v H) ≤ γst(G) + n(G)γst(H − {v}).

Proof. Let D be a γst(H)-set and S ⊆ V(G ◦v H) such that Sx is the subset of V(Hx) induced by D
for every x ∈ V(G). Since S is a secure total dominating set of G ◦v H, we deduce that γst(G ◦v H) ≤

∑
x∈V(G)

|Sx| = n(G)γst(H).

Now, assume that v /∈ S(H). Let W be a γst(H − {v})-set and S′ ⊆ V(G ◦v H) \ V(G) such
that S′x is the subset of V(Hx − {x}) induced by W for every x ∈ V(G). Since for any γst(G)-set X,
we have that X ∪ S′ is a secure total dominating set of G ◦v H, we deduce that γst(G ◦v H) ≤ |X ∪ S′| =
γst(G) + n(G)γst(H − {v}).
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We now proceed to analyse three cases in which it is not difficult to give closed formulas for
γst(G ◦v H). Specifically, we consider the cases in which the root vertex v is a support vertex, a strong
leaf, or a universal vertex.

Theorem 2. The following statements hold for any graphs G and H with no isolated vertex.

(i) If v ∈ S(H), then γst(G ◦v H) = n(G)γst(H). Furthermore, |Dx| = γst(H) for every γst(G ◦v H)-set
D and every x ∈ V(G).

(ii) If v ∈ V(H) is a universal vertex, then γst(G ◦v H) = n(G)γst(H).
(iii) If v ∈ Ls(H), then γst(G ◦v H) = γ(G) + n(G)(γst(H)− 1).

Proof. Let D be a γst(G ◦v H)-set. Let us first consider the case where v ∈ S(H). Since x ∈ S(G ◦v H)

for every x ∈ V(G), by Remark 3 we deduce that Dx is a secure total dominating set of Hx, and as a
consequence |Dx| ≥ γst(Hx) for every x ∈ V(G). Hence, γst(G ◦v H) = ∑x∈V(G) |Dx| ≥ n(G)γst(H).
Now, if |Dx| ≥ γst(Hx) + 1 for some x ∈ V(G), then γst(G ◦v H) > n(G)γst(H), which contradicts
Theorem 1. Therefore, (i) follows.

Let us now consider the case where v /∈ S(H) is a universal vertex. Let x ∈ V(G). If x ∈ Dx,
then Dx is a secure total dominating set of Hx and, as a result, |Dx| ≥ γst(Hx). Now, if x /∈ Dx,
then D−x is a secure total dominating set of Hx − {x}, and so Remark 2 and Lemma 3 lead to |Dx| ≥
γst(Hx − {x}) ≥ γ(Hx − {x}) + 1 = γst(Hx). Hence, γst(G ◦v H) = ∑x∈V(G) |Dx| ≥ n(G)γst(H)

and (ii) follows by Theorem 1.
From now on we assume that v ∈ Ls(H). Let sx ∈ V(Hx) be the support of x in Hx for every

x ∈ V(G). Since x ∈ Ls(Hx), we have that sx ∈ S(Hx −{x})∩D. Hence, by Remark 3 we deduce that
D−x is a secure total dominating set of Hx−{x}, and by Lemma 2 we have that |D−x | ≥ γst(Hx−{x}) =
γst(H)− 1. Moreover, since N(x) ∩ Dx = {sx} for every x ∈ V(G), by Remark 1 it follows that every
vertex in V(G) \D has to have a neighbour in V(G)∩D, which implies that V(G)∩D is a dominating
set of G. Therefore, γst(G ◦v H) = |D| = |D ∩V(G)|+

∣∣∣∪x∈V(G)D−x
∣∣∣ ≥ γ(G) + n(G)(γst(H)− 1).

It remains to show that γst(G ◦v H) ≤ γ(G) + n(G)(γst(H)− 1). To this end, let X be a γ(G)-set,
Y a γst(H − {v})-set, and W ⊆ V(G ◦v H) \V(G) such that Wx is the subset of V(Hx − {x}) induced
by Y for every x ∈ V(G). Notice that sx ∈ Wx. In order to show that S = X ∪W is a secure total
dominating set of G ◦v H, we only need to observe that every vertex in V(G) \ S is totally protected
under S by any neighbour in X, while every w ∈ V(Hx) \Wx is totally protected under S by some
neighbour in Wx. Thus, γst(G ◦v H) ≤ |S| = γ(G) + n(G)γst(H − {v}), and by Lemma 2 we deduce
that γst(G ◦v H) ≤ γ(G) + n(G)(γst(H)− 1) . Therefore, (iii) follows.

Given two graphs G and G′, the corona graph G � G′ can be seen as a rooted product graph
G ◦v H where H is the join (The join graph G′ + G′′ is the graph obtained from G′ and G′′ by joining
each vertex of G′ to all vertices of G′′) graph K1 + H and v is the vertex of K1. Therefore, Lemma 3 and
Theorem 2 (ii) lead to the following result on corona graphs.

Theorem 3. If G is a graph with no isolated vertex, then for every nontrivial graph G′,

γst(G� G′) = n(G)(γ(G′) + 1).

As we will see later, the behaviour of γst(G ◦v H) changes depending on whether the root vertex
v is a weak leaf or not. First we proceed to consider the cases where the root vertex is not a weak leaf.

Lemma 4. Let S be a γst(G ◦v H)-set and x ∈ V(G). If v /∈ Lw(H), then the following statements hold.

• |Sx| ≥ γst(H)− 2.
• If |Sx| = γst(H)− 2, then N[x] ∩ Sx = ∅.
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Proof. Let x ∈ V(G). Notice that every vertex in V(Hx) \ (S ∪ {x}) is totally protected under S
by some vertex in Sx. Now, suppose that |Sx| ≤ γst(H)− 3 and let y ∈ N(x) ∩ V(Hx). If y /∈ Sx,
then Sx ∪ {x, y} is a secure total dominating set of Hx of cardinality at most γst(H)− 1, which is a
contradiction. Assume that N(x) ∩ V(Hx) ⊆ Sx. If N(x) ∩ V(Hx) = {y}, then x ∈ Ls(Hx) and y ∈
S(G ◦v H). Thus, by Remark 3 no vertex in V(Hx) is totally protected by y under S, and so Sx ∪ {x} is
a secure total dominating set of Hx of cardinality at most γst(H)− 2, which is a contradiction. Finally,
if |N(x) ∩V(Hx)| ≥ 2, then Sx ∪ {x} is a secure total dominating set of Hx and, as above, we arrive to
a contradiction. Therefore, |Sx| ≥ γst(H)− 2.

Now, assume that |Sx| = γst(H)− 2. First, suppose that x ∈ S. Notice that if N(x) ∩V(Hx) ⊆ Sx,
then Sx is a secure total dominating set of Hx, which is a contradiction. Hence, there exists y ∈
(N(x)∩V(Hx)) \ Sx, and so Sx ∪{y} is a secure total dominating set of Hx and |Sx ∪{y}| = γst(H)− 1,
which is a contradiction. Thus, x /∈ S. Now, suppose that N(x) ∩ Sx 6= ∅. If there exists z ∈
(N(x) ∩V(Hx)) \ Sx, then Sx ∪ {z} is a secure total dominating set of Hx and |Sx ∪ {z}| = γst(H)− 1,
which is a contradiction. Now, if N(x) ∩ V(Hx) ⊆ Sx, then one can easily check that Sx ∪ {x} is a
secure total dominating set of Hx, which is a contradiction again, as |Sx ∪ {x}| = γst(H)− 1. Therefore,
N(x) ∩V(Hx) ∩ S = ∅.

From Lemma 4 we deduce that if v /∈ Lw(H), then any γst(G ◦v H)-set S induces a partition
{AS,BS, CS} of V(G) as follows.

AS = {x ∈ V(G) : |Sx| ≥ γst(H)},

BS = {x ∈ V(G) : |Sx| = γst(H)− 1},

CS = {x ∈ V(G) : |Sx| = γst(H)− 2}.

The following corollary is a direct consequence of Theorem 2 (i).

Corollary 1. Let S be a γst(G ◦v H)-set. If BS ∪ CS 6= ∅, then v /∈ S(H).

Lemma 5. Let S be a γst(G ◦v H)-set, where v /∈ Lw(H). If CS 6= ∅, then γst(H − {v}) = γst(H)− 2.

Proof. By Lemma 4, if x ∈ CS, then N[x] ∩ Sx = ∅, which implies that S−x is a secure total dominating
set of Hx − {x} of cardinality |S−x | = |Sx| = γst(Hx)− 2. Hence, x /∈ S(Hx) and γst(Hx − {x}) ≤
|S−x | = γst(Hx)− 2. Notice that Lemma 2 leads to x /∈ Ls(Hx). Thus, by Lemma 1 we conclude that
γst(Hx − {x}) = γst(Hx)− 2. Therefore, the result follows.

The following result states the intervals in which the secure total domination number of a rooted
product graph can be found.

Theorem 4. Let G and H be two graphs with no isolated vertex. At least one of the following statements holds
for every v ∈ V(H) \ Lw(H).

(i) γst(G ◦v H) = n(G)γst(H).
(ii) n(G)(γst(H)− 1) ≤ γst(G ◦v H) ≤ γst(G) + n(G)(γst(H)− 1).
(iii) γ×2(G) + n(G)(γst(H)− 2) ≤ γst(G ◦v H) ≤ γst(G) + n(G)(γst(H)− 2).

Proof. Let S be a γst(G ◦v H)-set and consider the partition {AS,BS, CS} of V(G) defined above.
We differentiate the following four cases.

Case 1. BS ∪ CS = ∅. In this case, for any x ∈ V(G) we have that |Sx| ≥ γst(H) and, as a consequence,
γst(G ◦v H) ≥ n(G)γst(H). Thus, Theorem 1 leads to (i).

Case 2. BS 6= ∅ and CS = ∅. In this case, for any x ∈ V(G) we have that |Sx| ≥ γst(H)− 1 and, as a
result, γst(G ◦v H) ≥ n(G)(γst(H)− 1).
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In order to conclude the proof of (ii), we proceed to show that γst(G ◦v H) ≤ γst(G) +

n(G)(γst(H) − 1). To this end, we fix x′ ∈ BS, yx′ ∈ V(Hx′) ∩ N(x′), a γst(G)-set D and define
a subset W of vertices of G ◦v H as follows.

(a) If x′ 6∈ S, then for any x ∈ V(G) we set W ∩ V(G) = D and W−x is induced by S−x′ = Sx′ . It is
readily seen that the set W constructed in this manner is a secure total dominating set of G ◦v H
and so γst(G ◦v H) ≤ |W| = |D|+ n(G)|Sx′ | = γst(G) + n(G)(γst(H)− 1).

(b) Assume that x′ ∈ S. If x ∈ V(G) \ L(G), then Wx is induced by Sx′ , while if x ∈ L(G), then
Wx is induced by Sx′ ∪ {yx′}. It is readily seen that the set W constructed in this manner is a
secure total dominating set of G ◦v H and, as a result, γst(G ◦v H) ≤ |W| = |L(G)|+ n(G)|Sx′ | ≤
γst(G) + n(G)(γst(H)− 1).

Case 3. BS = ∅ and CS 6= ∅. By Corollary 1, v 6∈ S(H), and by Lemma 5 we have that γst(H− {v}) =
γst(H)− 2. Hence, by Theorem 1 we conclude that γst(G ◦v H) ≤ γst(G) + n(G)(γst(H)− 2).

From Lemma 4 we deduce that AS is a 2-dominating set of G. Hence, γst(G ◦v H) ≥
|AS|γst(H) + |CS|(γst(H) − 2) = 2|AS| + n(G)(γst(H) − 2) ≥ 2γ2(G) + n(G)(γst(H) − 2) ≥
γ×2(G) + n(G)(γst(H)− 2). Therefore, in this case (iii) holds.

Case 4. BS 6= ∅ and CS 6= ∅. By Corollary 1, v 6∈ S(H), and by Lemma 5, γst(H − {v}) = γst(H)− 2.
Thus, by Theorem 1 we conclude that γst(G ◦v H) ≤ γst(G) + n(G)(γst(H)− 2).

In order to conclude that in this case (iii) holds, let us define a double dominating set D of G such
that |D| ≤ 2|AS|+ |BS|. Set D has minimum cardinality among the sets satisfying that AS ∪ BS ⊆ D
and for any x ∈ AS, if N(x) ∩ CS 6= ∅, then there exists x′ ∈ N(x) ∩ CS ∩ D. Notice that every vertex
in AS is dominated by at least one vertex in D and, by Lemma 4, every vertex in CS is dominated
by at least two vertices in AS ∪ BS ⊆ D. Furthermore, if there exists one vertex x ∈ BS such that
N(x) ∩AS ∩ BS = ∅, then Sx is a secure total dominating set of Hx, which is a contradiction, as |Sx| =
γst(Hx)− 1. Hence, D is a double dominating set of G. Therefore, γst(G ◦v H) = |S| ≥ |AS|γst(H) +

|BS|(γst(H)− 1) + |CS|(γst(H)− 2) ≥ |D|+ n(G)(γst(H)− 2) ≥ γ×2(G) + n(G)(γst(H)− 2).

The bounds given in the previous theorem are tight. To see this, we consider the following
examples where H1 and H2 are the graphs shown in Figure 3.

• γst(G ◦v P7) = n(G) (γst(P7)− 1), where v is the central vertex of P7 and G is a graph with
δ(G) ≥ 2.

• γst(Kr ◦v H1) = 2 + r(3− 1) = γst(Kr) + n(Kr) (γst(H1)− 1), where r ≥ 2.
• Theorem 5 gives some conditions to achieve the equalities γst(G ◦v H) = γst(G) + n(G)(γst(H)−

2) = γ×2(G) + n(G)(γst(H)− 2). In this case we can take H ∼= H2.

Figure 3. The set of black-coloured vertices forms a γst(Hi)-set for i ∈ {1, 2}. The set {a, b} is a
γst(H1 − {v})-set, while {a, b, c} is a γst(H2 − {v})-set.

We now consider some particular cases in which we impose some additional restrictions on G
and H. We begin with an immediate consequence of Theorem 4.
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Theorem 5. Let G and H be two graphs with no isolated vertex and v ∈ V(H) \ Lw(H). If γst(H − {v}) =
γst(H)− 2 and γst(G) = γ×2(G), then

γst(G ◦v H) = γst(G) + n(G)(γst(H)− 2).

Proof. If γst(H − {v}) = γst(H)− 2, then v /∈ S(H) and Theorem 1 leads to γst(G ◦v H) ≤ γst(G) +

n(G)(γst(H) − 2). Thus, by Theorem 4 we conclude that if γst(G) = γ×2(G), then γst(G ◦v H) =

γst(G) + n(G)(γst(H)− 2).

The following result considers the case in which γst(H − {v}) ≥ γst(H)− 1.

Theorem 6. Let G and H be two graphs with no isolated vertex and v ∈ V(H) \ Lw(H). If γst(H − {v}) ≥
γst(H)− 1, then

n(G)(γst(H)− 1) ≤ γst(G ◦v H) ≤ n(G)γst(H).

Now, if δ(G) ≥ 2 and γst(H − {v}) ≥ γst(H), then γst(G ◦v H) = n(G)(γst(H)− 1) or γst(G ◦v H) =

n(G)γst(H).

Proof. Let S be a γst(G ◦v H)-set and assume that γst(H − {v}) ≥ γst(H)− 1. By Lemma 5 we have
that CS = ∅, and so Lemma 4 leads to |Sx| ≥ γst(Hx)− 1 for every x ∈ V(G). Thus, γst(G ◦v H) =

∑x∈V(G) |Sx| ≥ n(G)(γst(H)− 1). Therefore, Theorem 1 leads to n(G)(γst(H)− 1) ≤ γst(G ◦v H) ≤
n(G)γst(H).

From now on we assume that δ(G) ≥ 2 and γst(H − {v}) ≥ γst(H). Let us distinguish between
two cases, according to whether or not γst(H − {v}) > γst(H).

Case 1. γst(H − {v}) > γst(H). We define a set D ⊆ V(G ◦v H) as follows. For any x ∈ V(G) \ S we
take D ∩V(Hx) as a γst(Hx)-set, while for any x ∈ V(G) ∩ S we set D ∩V(Hx) = Sx. Notice that D
is a secure total dominating set of G ◦v H. Now, if there exists a vertex x ∈ V(G) \ S, then the set S−x
is a secure total dominating set of Hx − {x}. Hence, |Sx| = |S−x | ≥ γst(H − {x}) > γst(Hx) = |Dx|,
and so |D| < |S|, which is a contradiction. Thus, V(G) ⊆ S.

If |Sx| ≥ γst(H) for every x ∈ V(G), then Theorem 1 leads to γst(G ◦v H) = n(G)γst(H).
Suppose that there exists a vertex x ∈ V(G) such that |Sx| ≤ γst(H) − 1. We define a set D′ ⊆
V(G ◦v H) as follows. For every z ∈ V(G), the restriction of D′ to V(Hz) is induced by Sx. Notice that
V(G) ⊆ D′ and, if δ(G) ≥ 2, then every vertex in V(Hz) \ D′ is totally protected under D′ by
some vertex in D′z, which implies that D′ is a secure total dominating set of G ◦v H. Therefore,
γst(G ◦v H) ≤ |D′| ≤ n(G)(γst(H)− 1), concluding that γst(G ◦v H) = n(G)(γst(H)− 1).

Case 2. γst(H−{v}) = γst(H). First, assume that V(G)∩ S = ∅. Since S−x is a secure total dominating
set of Hx − {x} for every x ∈ V(G), we have that γst(G ◦v H) = ∑x∈V(G) |S−x | ≥ ∑x∈V(G) γst(H −
{x}) = n(G)γst(H − {v}) = n(G)γst(H), and so Theorem 1 leads to γst(G ◦v H) = n(G)γst(H).

Now, assume that there exists y ∈ V(G) ∩ S. Notice that Lemma 5 leads to CS = ∅. Hence,
y ∈ AS ∪ BS. If y ∈ BS, we define a set D′ ⊆ V(G ◦v H) as follows. For every z ∈ V(G), the restriction
of D′ to V(Hz) is induced by Sy. As in Case 1, we deduce that D′ is a secure total dominating set
of G ◦v H and so we can conclude that γst(G ◦v H) = |D′| = n(G)(γst(H)− 1). Finally, if BS = ∅,
then V(G) = AS and by Theorem 1 we conclude that γst(G ◦v H) = |S| = n(G)γst(H).

Now, we consider a particular case in which γst(H − {v}) = γst(H).

Theorem 7. Let G be a graph with no isolated vertex. Let H be a graph and v ∈ V(H) such that γst(H −
{v}) = γst(H). If v /∈ S for every γst(H)-set S, then

γst(G ◦v H) = n(G)γst(H).
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Proof. Assume that v /∈ S for every γst(H)-set S. Notice that v /∈ L(H) ∪ S(H). Let D be a
γst(G ◦v H)-set. By Lemma 5 we conclude that CD = ∅. Now, if BD = ∅, then by analogy to
Case 1 in the proof of Theorem 4 it follows that γst(G ◦v H) = n(G)γst(H).

Suppose that there exists a vertex x ∈ BD. If x /∈ D, then D−x is a secure total dominating set of
Hx − {x}, which implies that γst(H − {v}) = γst(Hx − {x}) ≤ |D−x | = |Dx| = γst(H)− 1, which is
a contradiction. Hence, x ∈ D. Now, if N(x) ∩ V(Hx) ⊆ D, then Dx is a secure total dominating
set of Hx and so γst(Hx) ≤ |Dx| = γst(Hx) − 1, which is a contradiction. Finally, if there exists
x′ ∈ N(x) ∩ V(Hx) \ D, then D′x = Dx ∪ {x′} is a secure total dominating set of Hx of cardinality
γst(Hx) and x ∈ D′x, which is a contradiction again. Therefore, BD = ∅, and we are done.

The Case in Which the Root Vertex Is a Weak Leaf

The first part of this section is devoted to the case in which the support vertex of the root v has
degree greater than or equal to three. From Remark 4 we learned that if v ∈ Lw(H), N(v) = {s}
and |N(s)| ≥ 3, then the gap γst(H)− γst(H − {v}) could be arbitrarily large.

Remark 5. Let H be a graph with no isolated vertex, v ∈ Lw(H) and N(v) = {s}. If |N(s)| ≥ 3, then

γst(H) ≥ γst(H − {v}).

Proof. Let S be a γst(H)-set. By Remark 3, we have that v, s ∈ S. If N(s) ⊆ S, then since |N(s)| ≥ 3,
we deduce S \ {v} is a secure total dominating set of H − {v}. Hence, γst(H − {v}) ≤ |S \ {v}| <
γst(H). Now, if there exists u ∈ N(s) \ S, then (S \ {v}) ∪ {u} is also a secure total dominating set of
H − {v}. Thus, γst(H − {v}) ≤ |(S \ {v}) ∪ {u}| = γst(H). Therefore, the result follows.

By Remarks 4 and 5, it seems reasonable to express γst(G ◦v H) in terms of γst(H − {v})
rather than γst(H). To this end, we consider the following lemma.

Lemma 6. Let S be a γst(G ◦v H)-set. If v ∈ Lw(H), N(v) = {s} and |N(s)| ≥ 3, then |Sx| ≥ γst(H −
{v}) for every x ∈ V(G)

Proof. Let x ∈ V(G). Notice that every vertex in V(Hx) \ (S ∪ {x}) is totally protected under S by
some vertex in Sx. Now, suppose that |Sx| < γst(H − {v}) and let N(x) ∩ V(Hx) = {sx}. If x /∈ S,
then S−x is a secure total dominating set of Hx − {x}, which is a contradiction as |S−x | = |Sx| <
γst(H − {v}) = γst(Hx − {x}). Hence, x ∈ S. Now, if N(sx) ⊆ S, then we set S′ = (Sx \ {x}) ∪ {sx}
and otherwise we set S′ = (Sx \ {x}) ∪ {w} for any w ∈ N(sx) \ S. In both cases, S′ is a secure total
dominating set of Hx − {x} and γst(Hx − {x})− 1 > |Sx| − 1 ≥ |S′| ≥ γst(Hx − {x}), which is a
contradiction. Therefore, |Sx| ≥ γst(H − {v}).

By Theorem 1 and Lemma 6, we deduce the next result.

Theorem 8. Let G and H be two graphs with no isolated vertex. If v ∈ Lw(H), N(v) = {s}
and |N(s)| ≥ 3, then

n(G)γst(H − {v}) ≤ γst(G ◦v H) ≤ min{n(G)γst(H), γst(G) + n(G)γst(H − {v})}.

The following result is an immediate consequence of the theorem above.

Corollary 2. Let G and H be two graphs with no isolated vertex. Let v ∈ Lw(H) and N(v) = {s}.
If |N(s)| ≥ 3 and γst(H − {v}) = γst(H), then

γst(G ◦v H) = n(G)γst(H).
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Theorem 9. Let G be a graph with δ(G) ≥ 2 and H a graph with no isolated vertex. Let v ∈ Lw(H)

and N(v) = {s}. If |N(s)| ≥ 3 and N(s) ∩ S(H) 6= ∅, then the following statements hold.

(i) If s /∈ D for every γst(H − {v})-set D, then

γst(G ◦v H) = γst(G) + n(G)γst(H − {v}).

(ii) If there exists a γst(H − {v})-set D such that s ∈ D, then

γst(G ◦v H) ∈ {n(G)γst(H − {v}, γ(G) + n(G)γst(H − {v}), γt(G) + n(G)γst(H − {v})}.

Proof. Let S be a γst(G ◦v H)-set such that |S ∩ N[V(G)]| is maximum. For any vertex x ∈ V(G),
let {sx} = N(x) ∩V(Hx). Let {M0,M1,N0,N1} be the partition of V(G) defined as follows.

M0 = {x ∈ V(G) \ S : sx ∈ S}, M1 = {x ∈ V(G) ∩ S : sx ∈ S},

N0 = {x ∈ V(G) \ S : sx /∈ S}, N1 = {x ∈ V(G) ∩ S : sx /∈ S}.

By Theorem 1 we have that γst(G ◦v H) ≤ γst(G)+n(G)γst(H−{v}). Hence, in order to prove (i)
we proceed to show that γst(G ◦v H) ≥ γst(G) + n(G)γst(H − {v}). To this end, we need to estimate
the gap |Sx| − γst(H − {v}). Obviously, if x ∈ N0, then |Sx| = γst(H − {v}). Now, since N(sx) ∩
S(Hx) 6= ∅, if x ∈ M0 ∪M1, then S−x is a secure total dominating set of Hx − {x}, and so |S−x | ≥
γst(Hx − {x}) = γst(H − {v}). By hypothesis of (i) we deduce that, if x ∈ M0, then |Sx| ≥ |S−x | >
γst(H − {v}), while if x ∈ M1, then |Sx| > |S−x | > γst(H − {v}). We now consider the case x ∈
N1. By Lemma 6 we have that |Sx| ≥ γst(H − {v}). If |Sx| = γst(H − {v}), then S−x ∪ {sx} is a
secure total dominating set of Hx − {x} and |S−x ∪ {sx}| = |Sx| = γst(H − {v}) = γst(Hx − {x}),
which contradicts the hypothesis of (i). Hence, x ∈ N1 leads to |Sx| > γst(H − {v}).

In summary, we can conclude that if x ∈ N0, then |Sx| = γst(H − {v}), if x ∈ M0 ∪ N1,
then |Sx| ≥ γst(H − {v}) + 1, while if x ∈ M1, then |Sx| ≥ γst(H − {v}) + 2. We claim that there
exists a secure total dominating set Z of G such that |Z| ≤ |N1|+ |M0|+ 2|M1|.

We define Z as a set of minimum cardinality satisfying that N1 ∪M0 ∪M1 ⊆ Z and for any
x ∈ M1 with N(x)∩N0 6= ∅ there exists wx ∈ N(x)∩N0 ∩ Z. Notice that, by definition, Z is a double
dominating set of G and, since δ(G) ≥ 2, every vertex inM1 has at least two neighbours in Z \ N0 or
one neighbour in Z ∩N0. Let x ∈ V(G) \ Z. Since x ∈ N0, there exists y ∈ S ∩V(G) =M1 ∩N1 ⊆ Z
such that x is totally protected under S by y. We claim that Z′ = (Z \ {y}) ∪ {x} is a total dominating
set of G. Since Z is a total dominating set of G, we have that every vertex in V(G) \ N(y) is dominated
by some vertex in Z′. Now, if there exists u ∈ N(y) ∩ V(G) such that N(u) ∩ S ∩ V(G) = {y},
then u ∈ M1, and so N(u) ∩ Z ∩N0 6= ∅, concluding that Z′ is a total dominating set of G. Hence,
Z is a secure total dominating set of G, and as a consequence,

γst(G ◦v H) = ∑x∈V(G) |Sx|
= ∑x∈M1

|Sx|+ ∑x∈M0
|Sx|+ ∑x∈N1

|Sx|+ ∑x∈N0
|Sx|

≥ ∑x∈M1
(γst(H − {v}) + 2) + ∑x∈M0∪N1

(γst(H − {v}) + 1) + ∑x∈N0
γst(H − {v})

= ∑x∈V(G) γst(H − {v}) + (2|M1|+ |M0|+ |N1|)
≥ ∑x∈V(G) γst(H − {v}) + |Z|
≥ n(G)γst(H − {v}) + γst(G).

Therefore, proof of (i) is complete.
We now proceed to prove (ii). From Lemma 6 we can consider the partition {R0, R1} of V(G)

defined as follows.

R0 = {x ∈ V(G) : |Sx| = γst(H − {v})}, R1 = {x ∈ V(G) : |Sx| > γst(H − {v})}.
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By assumptions, there exists a γst(H − {v})-set D such that s ∈ D. Let W ⊆ V(G ◦v H) \V(G)

such that Wx is induced by D for every vertex x ∈ V(G).
If x ∈ N0, then S′ = (S \ Sx) ∪Wx is a γst(G ◦v H)-set with |S′ ∩ N[V(G)]| > |S ∩ N[V(G)]|,

which is a contradiction. Hence, N0 = ∅. If x ∈ R1 ∩ N1, then S′ = (S \ Sx) ∪ (Wx ∪ {x}) is a
γst(G ◦v H)-set with |S′ ∩ N[V(G)]| > |S ∩ N[V(G)]|, which is a contradiction. Hence, R1 ∩N1 = ∅,
and so N1 ⊆ R0. Now, by hypothesis of (ii),M0 ⊆ R0. Moreover, if x ∈ M1, then S−x is a secure total
dominating set of Hx − {x}, and so x ∈ R1. Therefore, R1 =M1 and R0 =M0 ∪N1.

Now, we suppose that there exists a vertex x′ ∈ N1. Let W ′ ⊆ V(G ◦v H) such that W ′x is induced
by Sx′ for every vertex x ∈ V(G). Since δ(G) ≥ 2 we have that W ′ is a secure total dominating
set of G ◦v H of cardinality n(G)γst(H − {v}). Therefore, γst(G ◦v H) ≤ n(G)γst(H − {v}) and by
Theorem 8, we deduce that γst(G ◦v H) = n(G)γst(H − {v}).

From now on, we assume that N1 = ∅. Hence, R1 = M1 and R0 = M0. Let x ∈ M1.
As N(sx) ∩ S(Hx) 6= ∅, we have that S−x is a secure total dominating set of Hx − {x}, and by
hypothesis of (ii) we deduce that |S−x | = γst(H − {v}), which implies that |Sx| = γst(H − {v}) + 1.
Hence, γst(G ◦v H) = |M1|+ n(G)γst(H − {v}).

Since V(G) =M0 ∪M1 andM0 ∩M1 = ∅, by Remark 1, any vertex inM0 is dominated by at
least one vertex inM1. Hence,M1 is a dominating set of G and we differentiate the following two cases.

Case 1. There exists a γst(H − {v})-set D containing s, such that no vertex in N(s) \ D is necessarily
totally protected by s under D. Let W ′′ ⊆ V(G ◦v H) \V(G) such that W ′′x is induced by D for every
vertex x ∈ V(G). In this case, for every γ(G)-set X we have that X ∪W ′′ is a secure total dominating
set of G ◦v H. Hence |M1| = γ(G), and as a consequence, γst(G ◦v H) = γ(G) + n(G)γst(H − {v}).
Case 2. For every γst(H − {v})-set D containing s, there exists a vertex in V(H) \ D that is totally
protected uniquely by s under D. In this case, any vertex inM1 is dominated by another vertex in
M1, which implies thatM1 is a total dominating set of G. As in Case 1, let W ′′ ⊆ V(G ◦v H) \V(G)

such that W ′′x is induced by D for every vertex x ∈ V(G). In this case, for every γt(G)-set X we
have that X ∪W ′′ is a secure total dominating set of G ◦v H. Hence |M1| = γt(G). Therefore,
γst(G ◦v H) = γt(G) + n(G)γst(H − {v}).

From now on we consider the case in which the support vertex of the root v has degree two.

Lemma 7. Let H be a graph with no isolated vertex. If v ∈ Lw(H), N(v) = {s} and |N(s)| = 2,
then γst(H − {v}) ≥ γst(H)− 1.

Proof. Suppose that γst(H − {v}) ≤ γst(H)− 2 and let D be a γst(H − {v})-set. Since both s and its
support vertex in H − {v} are included in D, we have that D ∪ {v} is a secure total dominating set of
H. Hence, γst(H) ≤ |D ∪ {v}| = γst(H − {v}) + 1 ≤ γst(H)− 1, which is a contradiction. Therefore,
γst(H − {v}) ≥ γst(H)− 1, which completes the proof.

Theorem 10. Let S be a γst(G ◦v H)-set. If v ∈ Lw(H), N(v) = {s} and |N(s)| = 2, then for any
x ∈ V(G),

γst(H)− 1 ≤ |Sx| ≤ γst(H).

Therefore, with the assumptions above,

n(G)(γst(H)− 1) ≤ γst(G ◦v H) ≤ n(G)γst(H).

Proof. We first consider the case in which Sx is a secure total dominating set of Hx. Since x ∈ L(Hx)

we have that x belongs to every γst(Hx)-set. So, |Sx| = γst(Hx) = γst(H).
Now, assume that Sx is not a secure total dominating set of Hx. Notice that every vertex in

V(Hx) \ (S ∪ {x}) is totally protected under S by some vertex in Sx. Since {x, sx} ∩ Sx 6= ∅, we have
that Sx ∪ {x, sx} is a secure total dominating set of Hx. Hence, γst(H) − 1 = γst(Hx) − 1 ≤ |Sx ∪
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{x, sx}| − 1 ≤ |Sx|. Now, if there exists x′ ∈ V(G) such that |Sx′ | > γst(H), then for any γst(Hx′)-set
D, we have that S′ = (S \ Sx′) ∪ D is a secure total dominating set of G ◦v H and |S′| < |S|, which is
a contradiction. Therefore, γst(H)− 1 ≤ |Sx| ≤ γst(H) for every x ∈ V(G), and since γst(G ◦v H) =

∑x∈V(G) |Sx|, the result follows.

We now consider the particular case where δ(G) ≥ 2. By Lemma 7 we only need to consider two
cases according to whether γst(H− {v}) ≥ γst(H) or γst(H− {v}) = γst(H)− 1. These two cases are
discussed in Theorems 11 and 12, respectively.

Theorem 11. Let G be a graph with δ(G) ≥ 2 and H a graph with no isolated vertex. Let v ∈ Lw(H),
N(v) = {s} and |N(s)| = 2. If γst(H − {v}) ≥ γst(H), then

γst(G ◦v H) ∈ {n(G)γst(H), n(G)(γst(H)− 1)}.

Proof. Let S be a γst(G ◦v H)-set such that |S| < n(G)γst(H). For any vertex x ∈ V(G), let {sx} =
N(x) ∩ V(Hx) and {s′x} = N(sx) \ {x}. By Theorem 10 there exists a vertex y ∈ V(G) such that
|Sy| = γst(H)− 1. If y /∈ Sy, then S−y is a secure total dominating set of Hy − {y} and so |S−y | = |Sy| =
γst(H)− 1 < γst(H − {v}) = γst(Hy − {y}), which is a contradiction. Hence, y ∈ Sy.

We suppose that sy ∈ Sy. Since |Sy| = γst(H) − 1, we deduce that s′y /∈ Sy. So, the set D =

(Sy \ {y}) ∪ {s′y} is a secure total dominating set of Hy − {y} of cardinality |D| = |Sy| = γst(H)− 1 <

γst(H − {v}) = γst(Hy − {y}, which is a contradiction. Hence, sy /∈ Sy, and so s′y ∈ Sy.
Let W ⊆ V(G ◦v H) such that Wx is induced by Sy, for any x ∈ V(G). Since δ(G) ≥ 2, we deduce

that W is a secure total dominating set of G ◦v H, and, as a result, γst(G ◦v H) ≤ |W| = n(G)|Sy| =
n(G)(γst(H)− 1). By Theorem 10 we obtain that γst(G ◦v H) = n(G)(γst(H)− 1), which completes
the proof.

Theorem 12. Let G be a graph with δ(G) ≥ 2 and H a graph with no isolated vertex. Let v ∈ Lw(H),
N(v) = {s} and |N(s)| = 2. If γst(H − {v}) = γst(H)− 1, then

γst(G ◦v H) ∈ {n(G)(γst(H)− 1), γ(G) + n(G)(γst(H)− 1)}.

Proof. By Theorem 10 we have that γst(G ◦v H) ≥ n(G)(γst(H) − 1). Since s ∈ L(H − {v}),
any γst(H − {v})-set D contains N[s] \ {v} as a subset. Let W ⊆ V(G ◦v H) \ V(G) such that Wx

is induced by D for every vertex x ∈ V(G). As for any γ(G)-set X, the set X ∪W is a secure total
dominating set of G ◦v H, we deduce that γst(G ◦v H) ≤ |X ∪W| = γ(G) + n(G)γst(H − {v}) =

γ(G) + n(G)(γst(H)− 1).
Let S be a γst(G ◦v H)-set such that |S| > n(G)(γst(H)− 1). For any vertex x ∈ V(G), let {sx} =

N(x) ∩ V(Hx). By Theorem 10, we can conclude that the set Z = {z ∈ V(G) : |Sz| = γst(H)} is
not empty. Since there exists a γst(H)-set containing N[s], we can assume, without loss of generality,
that N[sz] ⊆ Sz for every vertex z ∈ Z. We claim that Z is a dominating set of G. Let x′ ∈ V(G) \ Z
and suppose that x′ ∈ S. In such a case, |Sx′ | = γst(H)− 1 and we can define a set W ′ ⊆ V(G ◦v H)

such that W ′x is induced by Sx′ for every vertex x ∈ V(G). Notice that W is a secure total dominating
set of G ◦v H and |W| = n(G)(γst(H) − 1), which is a contradiction. Thus, (V(G) \ Z) ∩ S = ∅,
which implies that Z is a dominating set of G and so γst(G ◦v H) = |S| ≥ | ∪x∈V(G) Sx| = |Z| +
n(G)(γst(H)− 1) ≥ γ(G) + n(G)(γst(H)− 1), which completes the proof.

Theorem 13. Let G be a graph such that δ(G) ≥ 2 and H a graph with no isolated vertex. If v ∈ Lw(H),
N(v) = {s}, |N(s)| = 2 and N(s) ∩ S(H) 6= ∅, then

γst(G ◦v H) = n(G)(γst(H)− 1).
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Proof. For any vertex x ∈ V(G), let {sx} = N(x) ∩V(Hx) and notice that any γst(Hx)-set Dx satisfies
that N[sx] ⊆ Dx and Dx \ {x, sx} is a secure total dominating set of Hx − {x, sx}. Since δ(G) ≥ 2,
we have that D =

⋃
x∈V(G)(Dx \ {sx}) is a secure total dominating set of G ◦v H. Hence, γst(G ◦v

H) ≤ |D| = n(G)(γst(H) − 1). By Theorem 10 we obtain that γst(G ◦v H) = n(G)(γst(H) − 1),
which completes the proof.

4. Concluding Remarks

It is well-known that the problem of finding the secure total domination number of a graph
is NP-hard. This suggests the challenge of finding closed formulas or giving tight bounds for this
parameter. In this paper we develop the theory for the class of rooted product graph. The study shows
that if the root vertex is strong leaf, a support, or a universal vertex, then there exists a formula for the
secure total domination number of the rooted product graph. In the remaining cases, two different
behaviours are observed depending on whether the root vertex is a weak leaf or not. Although in
a different way, in both cases we were able to give the intervals to which the parameter belongs.
The endpoints of these intervals are expressed in terms of other domination parameters of the graphs
G and H involved in the product, which allows us to obtain closed formulas when certain conditions
are imposed on G or H.
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Abstract

Given a graph G with vertex set V (G), a function f : V (G) → {0, 1, 2}
is said to be a total dominating function if

∑
u∈N(v) f(u) > 0 for every

v ∈ V (G), where N(v) denotes the open neighbourhood of v. Let Vi =
{x ∈ V (G) : f(x) = i}. A total dominating function f is a total weak
Roman dominating function if for every vertex v ∈ V0 there exists a vertex
u ∈ N(v) ∩ (V1 ∪ V2) such that the function f ′, defined by f ′(v) = 1,
f ′(u) = f(u) − 1 and f ′(x) = f(x) whenever x ∈ V (G) \ {u, v}, is a total
dominating function as well. If f is a total weak Roman dominating function
and V2 = ∅, then we say that f is a secure total dominating function. The
weight of a function f is defined to be ω(f) =

∑
v∈V (G) f(v). The total weak

Roman domination number (secure total domination number) of a graph G
is the minimum weight among all total weak Roman dominating functions
(secure total dominating functions) on G. In this article, we show that these
two parameters coincide for lexicographic product graphs. Furthermore, we
obtain closed formulae and tight bounds for these parameters in terms of
invariants of the factor graphs involved in the product.

Keywords: total weak Roman domination, secure total domination, total
domination, lexicographic product.
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1. Introduction

It is well known that the theory of domination in graphs can be developed using
functions f : V (G) → A, where V (G) is the vertex set of a graph G and A
is a set of nonnegative numbers. With this approach, the different types of
domination are obtained by imposing certain restrictions on f . For instance,
f : V (G) → {0, 1, . . . } is said to be a dominating function if for every vertex v
such that f(v) = 0, there exists a vertex u ∈ N(v) such that f(u) > 0, where
N(v) denotes the open neighbourhood of v. Analogously, f : V (G)→ {0, 1, . . . }
is said to be a total dominating function (TDF) if for every vertex v, there exists
u ∈ N(v) such that f(u) > 0.

The weight of a function f is defined to be ω(f) =
∑

v∈V (G) f(v). The (total)
domination number of G, denoted by (γt(G)) γ(G), is the minimum weight among
all (total) dominating functions. These two parameters have been extensively
studied. For instance, we cite the following books [15, 16, 19]. Although the use
of functions is not necessary to reach the concept of (total) domination number,
later we will see that this idea helps us to easily introduce other more elaborate
concepts. Obviously, a set X ⊆ V (G) is a (total) dominating set if there exists a
(total) dominating function f such that such that X = {x : f(x) > 0}.

From now on, we restrict ourselves to the case of functions f : V (G) →
{0, 1, 2}, which are related to the following approach to protection of a graph
described by Cockayne et al. [12]. Suppose that one or more guards are stationed
at some of the vertices of a simple graph G and that a guard at a vertex can deal
with a problem at any vertex in its closed neighbourhood. Consider a function
f : V (G) → {0, 1, 2} where f(v) is the number of guards at v, and let Vi =
{v ∈ V (G) : f(v) = i} for every i ∈ {0, 1, 2}. We will identify f with the
partition of V (G) induced by f and write f(V0, V1, V2). Given a set S ⊆ V (G),
f(S) =

∑
v∈S f(v). In this case, the weight of f is ω(f) = f(V (G)) = |V1|+2|V2|.

We now consider some graph protection approaches. The functions in each
approach protect the graph according to a certain strategy.

A Roman dominating function (RDF) is a function f(V0, V1, V2) such that
for every vertex v ∈ V0 there exists a vertex u ∈ V2 which is adjacent to v. The
Roman domination number, denoted by γR(G), is the minimum weight among
all RDFs on G. This concept of protection has historical motivation [23] and was
formally proposed by Cockayne et al. in [9]. Many variations and generalizations
of Roman domination number like double Roman domination number [1], Italian
domination number [17] (also known as Roman 2-domination number [7]), perfect
Italian domination number [14] and weak Roman domination number [18] are
available in literature.

A weak Roman dominating function (WRDF) is defined to be a dominating
function f(V0, V1, V2) satisfying that for every vertex v ∈ V0 there exists a vertex
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u ∈ N(v) ∩ (V1 ∪ V2) such that the function f ′, defined by f ′(v) = 1, f ′(u) =
f(u)−1 and f ′(x) = f(x) whenever x ∈ V (G)\{u, v}, is a dominating function as
well. The weak Roman domination number, denoted by γr(G), is the minimum
weight among all weak Roman dominating functions on G. This concept of
protection was introduced by Henning and Hedetniemi [18] and studied further
in [8, 11, 22].

In this paper we will use the following idea of total protection of a vertex. A
vertex v ∈ V0 is said to be totally protected under f(V0, V1, V2) if f is a TDF and
there exists a vertex u ∈ N(v) ∩ (V1 ∪ V2) such that the function f ′, defined by
f ′(v) = 1, f ′(u) = f(u) − 1 and f ′(x) = f(x) whenever x ∈ V (G) \ {u, v}, is a
TDF as well. In such a case, if it is necessary to emphasize the role of u, then we
will say that v is totally protected by u under f . In this context, if V2 = ∅, then
we also say that v is totally protected by u under V1.

The following concept was introduced in [5]. A total weak Roman dominating
function (TWRDF) is a TDF f(V0, V1, V2) such that every vertex in V0 is totally
protected under f . The total weak Roman domination number, denoted by γtr(G),
is the minimum weight among all total weak Roman dominating functions on G.

A secure total dominating function (STDF) is defined to be a TWRDF
f(V0, V1, V2) in which V2 = ∅. Obviously, f(V0, V1, ∅) is a STDF if and only if V1
is a total dominating set and for every vertex v ∈ V0 there exists u ∈ N(v) ∩ V1
such that (V1 \ {u}) ∪ {v} is a total dominating set as well. In such a case, V1
is said to be a secure total dominating set (STDS). The secure total domination
number, denoted by γst(G), is the minimum cardinality among all secure total
dominating sets. This concept was introduced by Benecke et al. in [2] and studied
further in [3, 4, 6, 13, 20].

Given a graph G, the problem of computing γtr(G) is NP-hard [5], and the
problem of computing γst(G) is also NP-hard [13]. This suggests finding the
total weak Roman domination number and the secure total domination number
for special classes of graphs or obtaining good bounds on these invariants. In
this article, we show that these two parameters coincide for lexicographic prod-
uct graphs. Furthermore, we obtain closed formulae and tight bounds for these
parameters in terms of invariants of the factor graphs involved in the product.

The lexicographic product of two graphs G and H is the graph G ◦H whose
vertex set is V (G ◦H) = V (G) × V (H) and (u, v)(x, y) ∈ E(G ◦H) if and only
if ux ∈ E(G) or u = x and vy ∈ E(H). Notice that for any vertex u ∈ V (G) the
subgraph of G ◦ H induced by {u} × V (H) is isomorphic to H. For simplicity,
we will denote this subgraph by Hu.

Throughout the paper, we will use the notation Kn, Nn, K1,n−1, Cn and Pn

for complete graphs, empty graphs, star graphs, cycle graphs and path graphs of
order n, respectively. We will use the notation G ∼= H if G and H are isomorphic
graphs. For a vertex v of a graph G, the closed neighbourhood, denoted by N [v],

Total protection of lexicographic product graphs 169



4 A. Cabrera Mart́ınez and J.A. Rodŕıguez-Velázquez

equals N(v) ∪ {v}. A vertex v ∈ V (G) such that N [v] = V (G) is said to be a
universal vertex.

A TWRDF of weight γtr(G) will be called a γtr(G)-function. A similar agree-
ment will be assumed when referring to optimal functions (and sets) associated to
other parameters used in the article. For the remainder of the paper, definitions
will be introduced whenever a concept is needed.

2. Some Tools

In this short section we collect some tools, which are known results on the (total)
weak Roman domination number and the secure total domination number.

Proposition 1 [5]. The following inequalities hold for any graph G with no
isolated vertex.

(i) γ(G) ≤ γr(G) ≤ γtr(G) ≤ 2γt(G).

(ii) γt(G) ≤ γtr(G) ≤ γst(G).

(iii) γ(G) + 1 ≤ γtr(G).

Theorem 2 [5]. Let G be a graph. The following statements are equivalent.

(a) γtr(G) = γr(G).

(b) There exists a γr(G)-function f(V0, V1, V2) such that V1 = ∅ and V2 is a total
dominating set.

(c) γr(G) = 2γt(G).

The problem of characterizing the graphs with γst(G) = γt(G) was solved by
Klostermeyer and Mynhardt [20].

Theorem 3 [20]. If G is a connected graph, then the following statements are
equivalent.

• γst(G) = γt(G).

• γst(G) = 2.

• G has at least two universal vertices.

The following result is a direct consequence of Proposition 1(ii) and Theo-
rem 3.

Theorem 4. Let G be a connected graph. If G does not have two universal
vertices, then

γst(G) ≥ γt(G) + 1.

Remark 5. For any nontrivial path Pn and any cycle Cn of order n ≥ 4,
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(i) γtr(Pn)
[5]
= γst(Pn)

[2]
=
⌈
5(n−2)

7

⌉
+ 2;

(ii) γtr(Cn)
[5]
= γst(Cn)

[3]
=
⌈
5n
7

⌉
.

A set X ⊆ V (G) is called a 2-packing if N [u] ∩ N [v] = ∅ for every pair of
different vertices u, v ∈ X [16]. The 2-packing number ρ(G) is the maximum
cardinality among all 2-packings of G. A 2-packing of cardinality ρ(G) is called
a ρ(G)-set.

Theorem 6 [22]. For any graph G with no isolated vertex and any noncomplete
graph H,

γr(G ◦H) ≥ max{γr(G), γt(G), 2ρ(G)}.

Furthermore, for any graph G and any integer n ≥ 1,

γr(G ◦Kn) = γr(G).

Theorem 7 [22]. Let n ≥ 2 be an integer and let H be a graph. If γ(H) ≥ 4,
then

γr(Pn ◦H) =


n, n ≡ 0 (mod 4),
n+ 2, n ≡ 2 (mod 4),
n+ 1, otherwise.

A double total dominating set of a graph G with minimum degree at least
two is a set S of vertices of G such that every vertex in V (G) is adjacent to at
least two vertices in S [19]. The double total domination number of G, denoted
by γ2,t(G), is the minimum cardinality among all double total dominating sets.

Theorem 8 [22]. If G is a graph with minimum degree at least two, then for any
graph H,

γ2,t(G ◦H) ≤ γ2,t(G).

To conclude this section we would recall the following upper bound on the
total domination number.

Theorem 9 [10]. For any connected graph G of order n ≥ 3,

γt(G) ≤ 2n

3
.

3. Main Results on Lexicographic Product Graphs

The next theorem shows that the total weak Roman domination number and the
secure total domination number coincide for all lexicographic product graphs.
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Theorem 10. For any graph G with no isolated vertex and any nontrivial graph
H, i.e., any graph H of order greater than one,

γtr(G ◦H) = γst(G ◦H).

Proof. Proposition 1(ii) leads to γtr(G ◦H) ≤ γst(G ◦H). Let f(V0, V1, V2) be
a γtr(G ◦H)-function such that |V2| is minimum. We suppose that γtr(G ◦H) <
γst(G◦H). In such a case, V2 6= ∅ and we fix a vertex (u, v) ∈ V2. We differentiate
two cases.

Case 1. (N(u)× V (H)) ∩ (V1 ∪ V2) 6= ∅. If f(u, v′) > 0 for every v′ ∈ V (H),
then the function g, defined by g(u, v) = 1 and g(a, b) = f(a, b) whenever (a, b) 6=
(u, v), is a TWRDF onG◦H and ω(g) = ω(f)−1, which is a contradiction. Hence,
there exists v′ ∈ V (H) such that f(u, v′) = 0. In this case, we define the function
g(V ′0 , V

′
1 , V

′
2) by V ′0 = V0\{(u, v′)}, V ′1 = V1∪{(u, v), (u, v′)} and V ′2 = V2\{(u, v)}.

Now, if a vertex w ∈ V ′0 ⊆ V0 is totally protected by z ∈ V1∪V2 ⊆ V ′1∪V ′2 under f ,
then w is also totally protected under g by z, which implies that g is a γtr(G◦H)-
function. Notice that |V ′2 | = |V2| − 1, which is a contradiction again.

Case 2. N(u, v) ∩ (V1 ∪ V2) ⊆ V (Hu). In this case, for any (u′, v′) ∈ N(u)×
V (H) we define the function g(V ′0 , V

′
1 , V

′
2) by V ′0 = V0 \ {(u′, v′)}, V ′1 = V1 ∪

{(u, v), (u′, v′)} and V ′2 = V2 \ {(u, v)}. As above, if a vertex w ∈ V ′0 ⊆ V0
is totally protected by z ∈ V1 ∪ V2 ⊆ V ′1 ∪ V ′2 under f , then w is also totally
protected by z under g. Hence, g is a γtr(G ◦ H)-function and |V ′2 | = |V2| − 1,
which is a contradiction.

According to the two cases above we conclude that V2 = ∅, which implies
that f is a γst(G ◦H)-function, an so γtr(G ◦H) = γst(G ◦H).

From now on we proceed to express the value of γst(G ◦H) (or its bounds)
in terms of several parameters of G and H. To this end, we need to introduce
the following notation. For a set S ⊆ V (G ◦H) we define the following subsets
of V (G):

AS = {v ∈ V (G) : |S ∩ V (Hv)| ≥ 2};

BS = {v ∈ V (G) : |S ∩ V (Hv)| = 1};

CS = {v ∈ V (G) : S ∩ V (Hv) = ∅}.

Surprisingly, we have not been able to find any reference about the following
basic result.

Theorem 11. For any graph G with no isolated vertex and any graph H,

γt(G ◦H) = γt(G).
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Proof. Let D be a γt(G)-set and let v ∈ V (H). Observe that D′ = D×{v} is a
total dominating set of G ◦H. Hence, γt(G ◦H) ≤ |D′| = |D| = γt(G).

Now, let S be a γt(G ◦H)-set and define S′ ⊆ V (G) as follows.

• For every vertex x ∈ AS ∪ BS , set x ∈ S′.
• For every vertex x ∈ AS , choose a vertex x′ ∈ N(x) \ (AS ∪BS) (if any) and

set x′ ∈ S′.
Since G does not have isolated vertices, S′ is a total dominating set of G.

Hence, γt(G) ≤ |S′| ≤ |S| = γt(G ◦H), which completes the proof.

Theorem 12. For any graph G with no isolated vertex and any nontrivial
graph H,

max{γr(G), γt(G), 2ρ(G)} ≤ γst(G ◦H) ≤ 2γt(G).

Proof. By Proposition 1 and Theorems 10 and 11, we have that

γt(G) = γt(G ◦H) ≤ γst(G ◦H) = γtr(G ◦H) ≤ 2γt(G ◦H) = 2γt(G).

Now, by Proposition 1 and Theorems 6 and 11 we have that

γst(G ◦H) = γtr(G ◦H) ≥ γr(G ◦H) ≥ γr(G).

Finally, for any ρ(G)-set X and any γst(G ◦H)-set S we have that

γst(G◦H) = |S| =
∑

u∈V (G)

|S∩V (Hu)| ≥
∑
u∈X

∑
w∈N [u]

|S∩V (Hw)| ≥ 2|X| = 2ρ(G).

Therefore, the result follows.

In Theorem 22 we will characterize the graphs satisfying γst(G ◦H) = γt(G)
and later we will give some examples of graphs achieving the remaining bounds
established in Theorem 12.

Corollary 13. If G is a nontrivial graph and γ(G) = 1, then for any nontrivial
graph H,

γst(G ◦H) ≤ 4.

In Section 4 we characterize the graphs with γst(G ◦H) ∈ {2, 3}. Hence, by
Corollary 13 the graphs with γst(G ◦H) = 4 will be automatically characterized
whenever γ(G) = 1.

The following result is a direct consequence of Theorems 2 and 12.

Theorem 14. Let G be a graph with no isolated vertex and let H be any graph.

(i) If γtr(G) = γr(G), then γst(G ◦H) = 2γt(G).

(ii) If γt(G) = 1
2 max{γr(G), 2ρ(G)}, then γst(G ◦H) = 2γt(G).
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Theorem 15. For any graph G with no isolated vertex and any nontrivial graph
H, the following statements are equivalent.

(i) γst(G ◦H) = γr(G ◦H).

(ii) γr(G ◦H) = 2γt(G).

Proof. The result is obtained by combining Theorems 2, 10 and 11.

We now consider the case where G is a graph of minimum degree at least
two.

Theorem 16. Let G be a graph of minimum degree at least two and order n.
The following statements hold.

(i) For any graph H, γst(G ◦H) ≤ γ2,t(G).

(ii) For any graph H, γst(G ◦H) ≤ n.

Proof. Since every γ2,t(G ◦H)-set is an STDS of G ◦H, we deduce that γst(G ◦
H) ≤ γ2,t(G◦H). Hence, from Theorem 8 we deduce (i). Finally, since γ2,t(G) ≤
n, from (i) we deduce (ii).

Particular cases of graphs where γst(G◦H) = γ2,t(G) will be shown in Theo-
rem 23(iii) and (v). Moreover, an example of graphs where γst(G◦H) = γ2,t(G) =
n will be shown in Theorem 31.

As shown in [22] there exists a familyHk of graphs such that γr(G) = γ2,t(G),
for every G ∈ Hk. Hence, for any G ∈ Hk and any graph H we have that
γst(G ◦ H) = γ2,t(G). A graph G belongs to Hk if and only if it is constructed
from a cycle Ck and k empty graphs Ns1 , . . . , Nsk of order s1, . . . , sk, respectively,
and joining by an edge each vertex from Nsi with the vertices vi and vi+1 of Ck.
Here we are assuming that vi is adjacent to vi+1 in Ck, where the subscripts
are taken modulo k. Figure 1 shows a graph G belonging to Hk, where k = 4,
s1 = s3 = 3 and s2 = s4 = 2.

Theorems 12 and 9 lead to the following bound which is useful if G has
vertices of degree one.

Theorem 17. For any connected graph G of order n ≥ 3 and any graph H,

γst(G ◦H) ≤ 2

⌊
2n

3

⌋
.

As shown in [22] there exists a family of trees Tn, which we will call combs,
such that for any graph H with γ(H) ≥ 4 we have that γr(Tn ◦ H) = 2

⌊
2n
3

⌋
.

Therefore, for these graphs, γst(Tn◦H) = 2
⌊
2n
3

⌋
. We now proceed to describe the

family of combs. Take a path Pk of length k =
⌈
n
3

⌉
, with vertices v1, . . . , vk, and

attach a path P3 to each vertex v1, . . . , vk−1, by identifying each vi with a leaf of
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Figure 1. The set of black-coloured vertices is a γ2,t(G)-set.

its corresponding copy of P3. Finally, we attach a path of length l = n−3
⌈
n
3

⌉
+2

to vk. Figure 2 shows the construction of Tn for different values of n. Notice that
the comb of order six is simply T6 ∼= P6.

...
...

...

Figure 2. Tn for l = 0, 1, 2.

Lemma 18. For any graph G with no isolated vertex and any nontrivial graph
H, there exists a γst(G◦H)-set S such that |S∩V (Hu)| ≤ 2, for every u ∈ V (G).

Proof. Given an STDS S of G◦H, we define S3 = {x ∈ V (G) : |S∩V (Hx)| ≥ 3}.
Let S be a γst(G ◦H)-set such that |S3| is minimum among all γst(G ◦H)-sets.
If |S3| = 0, then we are done. Hence, we suppose that there exists u ∈ S3 and
let (u, v) ∈ S. We assume that |S ∩ V (Hu)| is minimum among all vertices in
S3. It is readily seen that if there exists u′ ∈ N(u) such that |S ∩ V (Hu)| ≥ 2,
then S′ = S \ {(u, v)} is an STDS of G ◦H, which is a contradiction. Hence, if
u′ ∈ N(u), then |S ∩V (Hu′)| ≤ 1, and in this case it is not difficult to check that
for (u′, v′) /∈ S the set S′′ = (S \ {(u, v)}) ∪ {(u′, v′)} is an STDS of G ◦ H. If
|S′′3 | < |S3|, then we obtain a contradiction, otherwise we can repeat this process
with S′′, until obtaining a contradiction. Therefore, the result follows.
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Theorem 19. Let G be a graph with no isolated vertex and let H be a nontrivial
graph.

(i) If γ(H) = 1, then γst(G ◦H) ≤ γtr(G).

(ii) If H has at least two universal vertices, then γst(G ◦H) ≤ 2γ(G).

(iii) If γ(H) > 2, then γst(G ◦H) ≥ γtr(G).

Proof. Let f be a γtr(G)-function and let v be a universal vertex of H. Let f ′

be the function defined by f ′(u, v) = f(u) for every u ∈ V (G) and f ′(x, y) = 0
whenever x ∈ V (G) and y ∈ V (H) \ {v}. It is readily seen that f ′ is a TWRDF
on G ◦H. Hence, by Theorem 10 we conclude that γst(G ◦H) = γtr(G ◦H) ≤
ω(f ′) = ω(f) = γtr(G) and (i) follows.

Let D be a γ(G)-set and let y1, y2 be two universal vertices of H. It is
not difficult to see that S = D × {y1, y2} is an STDS of G ◦ H. Therefore,
γst(G ◦H) ≤ |S| = 2γ(G) and (ii) follows.

From now on, let S be a γst(G ◦H)-set that satisfies Lemma 18 and assume
that γ(H) > 2. Let g(V0, V1, V2) be the function defined by g(u) = |S ∩ V (Hu)|
for every u ∈ V (G). We claim that g is a TWRDF on G. It is clear that every
vertex in V1 has to be adjacent to some vertex in V1 ∪ V2 and, if γ(H) > 2, then
by Theorem 3 we have that γst(H) > 3, which implies that every vertex in V2 has
to be adjacent to some vertex in V1 ∪ V2. Hence, V1 ∪ V2 is a total dominating
set of G. Now, if x ∈ V0, then S ∩ V (Hx) = ∅, and so there exists a vertex
(x1, y1) ∈ N(V (Hx))∩ S which totally protects every vertex in V (Hx). Hence, x
is totally protected by x1 ∈ V1 ∪ V2 under g. Thus, g is a TWRDF on G and so
γtr(G) ≤ ω(g) = |S| = γst(G ◦H). Therefore, (iii) follows.

The following result is a direct consequence of Theorems 12 and 19. Notice
that a graph H has at least two universal vertices if and only if γst(H) = 2, by
Theorem 3.

Theorem 20. Let G be a graph with no isolated vertex and let H be a nontrivial
graph.

(i) If γ(G) = ρ(G) and γst(H) = 2, then γst(G ◦H) = 2γ(G).

(ii) If γtr(G) ∈ {γr(G), γt(G), 2ρ(G)} and γ(H) = 1, then γst(G ◦H) = γtr(G).

(iii) If γtr(G) = 2γt(G) and γ(H) > 2, then γst(G ◦H) = γtr(G).

In general, for a graphH such that γ(H) ≥ 2, the equality γst(G◦H) = γtr(G)
does not imply that γtr(G) = 2γt(G). For instance, the graph P5 ◦ P4 shown in
Figure 3 satisfies γst(P5 ◦ P4) = γtr(P5) = 5 < 6 = 2γt(P5).

It is well known that γ(T ) = ρ(T ) for any tree T . Hence, the following
corollary is a direct consequence of Theorem 20.
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Figure 3. The set of black-coloured vertices is a γst(P5 ◦ P4)-set.

Corollary 21. For any tree T of order at least two and any graph H with
γst(H) = 2,

γst(T ◦H) = 2γ(T ).

4. Small Values of γst(G ◦H)

We now characterize the graphs with γst(G ◦H) ∈ {2, 3}.

Theorem 22. For any nontrivial connected graph G and any nontrivial graph
H, the following statements are equivalent.

(i) γst(G ◦H) = γt(G).

(ii) γst(G ◦H) = 2.

(iii) γst(G) = γ(G) + 1 = γ(H) + 1 = 2 or γst(H) = γ(G) + 1 = γ(H) + 1 = 2.

Proof. By Theorems 3 and 11 we conclude that (i) and (ii) are equivalent. Notice
that G◦H has at least two universal vertices if and only if γ(G) = γ(H) = 1, and
also G has at least two universal vertices or H has at least two universal vertices.
Hence, by Theorem 3 we conclude that (ii) and (iii) are equivalent.

Theorem 23. Let G be a nontrivial connected graph and H a graph with no
isolated vertex. Then γst(G◦H) = 3 if and only if one of the following conditions
is satisfied.

(i) G ∼= P2 and γ(H) = 2.

(ii) G has exactly one universal vertex and either γ(H) = 2 or H has exactly
one universal vertex.

(iii) G has exactly one universal vertex, γ2,t(G) = 3 and γ(H) ≥ 3.

(iv) G 6∼= P2 has at least two universal vertices and γ(H) ≥ 2.

(v) γ(G) = 2 and γ2,t(G) = 3.
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(vi) γ(G) = 2, γst(G) = 3 < γ2,t(G) and γ(H) = 1.

Proof. Let S be a γst(G ◦H)-set and assume that |S| = 3. By Theorems 4 and
11 we have that 3 = γst(G ◦ H) > γt(G ◦ H) = γt(G) ≥ 2, which implies that
γt(G) = 2 and so γ(G) ∈ {1, 2}. We differentiate two cases.

Case 1. γ(G) = 1. In this case, Theorem 22 leads to γst(H) ≥ 3. Now, we
consider the following subcases.

Subcase 1.1. G ∼= P2. Notice that Theorem 22 leads to γ(H) ≥ 2. Suppose
that γ(H) ≥ 3 and let V (G) = {u,w}. By Theorem 4 we have γst(H) ≥ 4
and so S ∩ V (Hu) 6= ∅ and S ∩ V (Hw) 6= ∅. Without loss of generality, let
S ∩ V (Hu) = {(u, v1), (u, v2)} and |S ∩ V (Hw)| = 1. Since γ(H) ≥ 3, we have
that {v1, v2} is not a dominating set of H, which implies that no vertex in {u}×
(V (H) \ (N(v1) ∪N(v2)) is totally protected under S, which is a contradiction.
Hence γ(H) = 2. Therefore, (i) follows.

Subcase 1.2. G has exactly one universal vertex. If γ(H) ≤ 2, then by
Theorem 22 we deduce that either γ(H) = 2 or H has exactly one universal
vertex, and (ii) follows. Assume that γ(H) ≥ 3. As in Subcase 1.1, we conclude
that γst(H) ≥ 4 and so |S ∩ V (Hx)| ≤ 2 for every x ∈ V (G). Now, if there exist
two vertices u,w ∈ V (G) and two vertices v1, v2 ∈ V (H) such that S ∩ V (Hu) =
{(u, v1), (u, v2)} and |S ∩ V (Hw)| = 1, then we deduce that no vertex in {u} ×
(V (H) \ (N(v1) ∪N(v2)) is totally protected under S, which is a contradiction.
Therefore, AS = ∅ and BS has to be a γ2,t(G)-set, as if there exists x ∈ V (G)
such that |N(x)∩BS | ≤ 1, then V (Hx) has vertices which are no totally protected
under S. Therefore, (iii) follows.

Subcase 1.3. G 6∼= P2 has at least two universal vertices. In this case, by
Theorem 22 we deduce that γ(H) ≥ 2, and so (iv) follows.

Case 2. γ(G) = 2. In this case, Theorem 4 leads to γst(G) ≥ 3. If there
exist two vertices u,w ∈ V (G) such that AS = {u} and BS = {w}, then {u,w}
is a γt(G)-set, and so for any x ∈ N(w) \N [u] we have that no vertex in V (Hx)
is totally protected under S, which is a contradiction. Therefore, AS = ∅ and
|BS | = 3, which implies that BS is a γst(G)-set. Let 〈BS〉 be the subgraph induced
by BS . Notice that either 〈BS〉 ∼= K3 or 〈BS〉 ∼= P3. In the first case, BS is a
γ2,t(G)-set and (v) follows. Now, assume that 〈BS〉 ∼= P3. If γ(H) ≥ 2, then for
any vertex x of degree one in 〈BS〉 we have that V (Hx) has vertices which are not
totally protected under S, which is a contradiction. Therefore, γ(H) = 1 and if
γst(G) = γ2,t(G), then G satisfies (v), otherwise G satisfies (vi), by Theorem 16.

Conversely, notice that if G and H satisfy one of the six conditions above,
then Theorem 22 leads to γst(G ◦H) ≥ 3. To conclude that γst(G ◦H) = 3, we
proceed to show how to define an STDS D of G ◦H of cardinality three for each
of the six conditions.

Total protection of lexicographic product graphs 178



Total Protection of Lexicographic Product Graphs 13

(i) Let {v1, v2} be a γ(H)-set and V (G) = {u,w}. In this case, we define
D = {(u, v1), (u, v2), (w, v1)}.

(ii) Let u be a universal vertex of G and w ∈ V (G) \ {u}. If {v1, v2} is a
γ(H)-set or v1 is a universal vertex of H and v2 ∈ V (H) \ {v1}, then we set
D = {(u, v1), (u, v2), (w, v1)}.

(iii) Let X be a γ2,t(G)-set and v ∈ V (H). In this case, D = X × {v}.
(iv) Let u,w ∈ V (G) be two universal vertices, z ∈ V (G) \ {u,w} and v ∈

V (H). In this case, D = {(u, v), (w, v), (z, v)}.
(v) Let X be a γ2,t(G)-set and v ∈ V (H). In this case, D = X × {v}.
(vi) Let X be a γst(G)-set and v be a universal vertex of H. In this case,

D = X × {v}.
It is readily seen that in all cases D is an STDS of G ◦H. Therefore, γst(G ◦H)
= 3.

Theorem 24. Let G be a nontrivial connected graph and H a nontrivial graph
with at least one isolated vertex. Then γst(G ◦H) = 3 if and only if at least one
of the following conditions is satisfied.

(i) γ(G) = 1 and γ(H) = 2.

(ii) γ2,t(G) = 3.

Proof. Notice that γ(H) ≥ 2, as H is a nontrivial graph with at least one
isolated vertex. Let S be a γst(G ◦ H)-set that satisfies Lemma 18 and assume
that |S| = 3. Now, we consider two cases.

Case 1. AS 6= ∅. In this case we have that |AS | = |BS | = 1. Let u,w ∈ V (G)
such that AS = {u} and BS = {w}. Notice that {u,w} is a γt(G)-set and, if
there exists x ∈ N(w) \N [u], then no vertex in V (Hx) is totally protected under
S, which is a contradiction. Hence, γ(G) = 1. Now, since H has at least one
isolated vertex, if γ(H) > 2, then Hu has at least one vertex which is not totally
protected under S, which is a contradiction. Therefore, γ(H) = 2 and (i) follows.

Case 2. AS = ∅. In this case we have that |BS | = 3, which implies that
BS is a γst(G)-set. Let 〈BS〉 be the subgraph induced by BS . Notice that either
〈BS〉 ∼= K3 or 〈BS〉 ∼= P3. Suppose that 〈BS〉 ∼= P3 and let x be a vertex of degree
one in 〈BS〉. Since H has at least one isolated vertex, there exists at least one
vertex in V (Hx) which is not totally protected under S, which is a contradiction.
Hence, 〈BS〉 ∼= K3, which implies that BS is a γ2,t(G)-set and so (ii) follows.

Conversely, notice that if G and H satisfy one of the two conditions above,
then Theorem 22 leads to γst(G ◦H) ≥ 3. To conclude that γst(G ◦H) = 3, we
proceed to show how to define an STDS D of G ◦H of cardinality three for each
of the two conditions.

(i) Let {u} be a γ(G)-set, w ∈ V (G)\{u} and {v1, v2} be a γ(H)-set. In this
case, D = {(u, v1), (u, v2), (w, v1)}.
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(ii) Let X be a γ2,t(G)-set and v ∈ V (H). In this case, D = X × {v}.
It is readily seen that in both cases D is an STDS of G◦H. Therefore, γst(G◦H)
= 3.

The following result, which is a direct consequence of Theorems 12, 22, 23
and 24, shows the cases when G is isomorphic to a complete graph or a star
graph.

Proposition 25. For any integer n ≥ 3, the following statements hold.

(i) If H is a graph with no isolated vertex, then

γst(Kn ◦H) =

{
2, if γ(H) = 1,
3, otherwise.

and

γst(K1,n−1 ◦H) =


2, if γst(H) = 2,
3, if γst(H) ≥ 3 and γ(H) ≤ 2,
4, otherwise.

(ii) If H is a nontrivial graph with at least one isolated vertex, then

γst(Kn ◦H) = 3

and
γst(K1,n−1 ◦H) =

{
3, if γ(H) = 2,
4, otherwise.

We now consider the cases in which G is a double star graph or a complete
bipartite graph. Recall that a double star Sn1,n2 is the graph obtained by joining
the center of two stars K1,n1 and K1,n2 with an edge. The following result is a
direct consequence of Theorems 12, 22, 23 and and 24.

Proposition 26. Let H be a nontrivial graph. For any integers n2 ≥ n1 ≥ 2,
the following statements hold.

γst(Sn1,n2 ◦H) = 4

and
γst(Kn1,n2 ◦H) =

{
3, if n1 = 2 and γ(H) = 1,
4, otherwise.

5. Special Cases Where G ∼= Pn and G ∼= Cn

First, we analyse the case where G ∼= Pn and γ(H) = 1 or γ(H) ≥ 4.
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Theorem 27. Let n ≥ 2 be an integer and let H be a graph with γ(H) = 1.
If γst(H) = 2, then

γst(Pn ◦H) = 2
⌈n

3

⌉
.

Otherwise, γst(Pn ◦H ≤ 2
⌈
5(n−2)

7

⌉
+ 2.

Proof. If γst(H) = 2, then by Corollary 21 we deduce that γst(Pn◦H) = 2γ(Pn).
Now, if γst(H) ≥ 3, then by Theorem 19 we deduce γst(Pn ◦H) ≤ γtr(Pn).

As shown in [22], if γ(H) ≥ 4, then γr(Pn ◦ H) = 2γt(Pn). Hence, from
Proposition 1 and Theorems 12 and 7 we derive the following result.

Theorem 28. Let n ≥ 2 be an integer and let H be a graph. If γ(H) ≥ 4, then

γst(Pn ◦H) = γr(Pn ◦H) =


n, n ≡ 0 (mod 4),
n+ 2, n ≡ 2 (mod 4),
n+ 1, otherwise.

The following result is a direct consequence of Theorems 19 and 20.

Theorem 29. Let n ≥ 3 be an integer and let H be a graph.

• If H has exactly one universal vertex, then γst(Cn ◦H) ≤
⌈
5n
7

⌉
.

• If H has at least two universal vertices, then γst(Cn◦H) ≤ 2
⌈
n
3

⌉
, and if n ≡ 0

(mod 3), then the equality holds.

Lemma 30. Let G be a nontrivial connected graph and let H be any graph. The
following statements hold for every γst(G ◦H)-set S.

(i) If γ(H) ≥ 2 and x ∈ BS, then
∑

u∈N(x) |S ∩ V (Hu)| ≥ 2.

(ii) If γt(H) ≥ 3 and x ∈ AS, then
∑

u∈N(x) |S ∩ V (Hu)| ≥ 2.

Proof. If γ(H) ≥ 2 and there exists a vertex x ∈ BS such that
∑

u∈N(x) |S ∩
V (Hu)| ≤ 1, then there exists a vertex in V (Hx)\S which is not totally protected
under S. Therefore, (i) follows.

Now, assume that γt(H) ≥ 3, and notice that Theorem 4 leads to γst(H) ≥ 4.
Suppose that there exists x ∈ AS such that

∑
u∈N(x) |S ∩ V (Hu)| ≤ 1. Notice

that, in such a case, either 2 ≤ |S ∩V (Hx)| ≤ 3 and S ∩
(⋃

u∈N(x) V (Hu)
)

= ∅ or

|S ∩ V (Hx)| = 2 and
∣∣S ∩ (⋃u∈N(x) V (Hu)

)∣∣ = 1, which implies that there exists
a vertex in V (Hx) \S which is not totally protected under S, as γst(Hx) ≥ 4 and
γt(Hx) ≥ 3. Therefore, (ii) follows.

Theorem 31. Let n ≥ 3 be an integer and let H be a graph. If γt(H) ≥ 3, then

γst(Cn ◦H) = n.
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Proof. From Theorem 16 we know that γst(Cn ◦H) ≤ n. We only need to prove
that γst(Cn ◦ H) ≥ n. Let S be a γst(G ◦ H)-set that satisfies Lemma 18. If
CS = ∅, then γst(Cn ◦H) = |S| ≥ n. Thus we assume that CS 6= ∅.

Let V (Cn) = {ui, . . . , un}, where the subscripts are taken modulo n and
consecutive vertices are adjacent. We differentiate two cases for ui ∈ CS .

Case 1. ui is not adjacent to any vertex in CS . In this case, by Lemma
30 we have that ui+2 ∈ AS and ui+1 ∈ AS ∪ BS . Analogously, ui−2 ∈ AS and
ui−1 ∈ AS ∪ BS .

Case 2. ui+1 ∈ CS . Since every vertex in V (Hui) has to be totally protected
under S, we have that ui−1, ui+2 ∈ AS and so Lemma 30(ii) leads to ui−2, ui+3

∈ AS .

According to the two cases above, |AS | ≥ |CS |, which implies that γst(Cn ◦
H) ≥ 2|AS |+ |BS | ≥ n. Therefore, the result follows.
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Abstract

Let w = (w0,w1, . . . ,wl) be a vector of nonnegative integers such that w0 ≥ 1. Let
G be a graph and N(v) the open neighbourhood of v ∈ V (G). We say that a function
f : V (G) −→ {0,1, . . . , l} is a w-dominating function if f (N(v)) = ∑u∈N(v) f (u) ≥ wi for
every vertex v with f (v) = i. The weight of f is defined to be ω( f ) = ∑v∈V (G) f (v). Given
a w-dominating function f and any pair of adjacent vertices v,u ∈ V (G) with f (v) =
0 and f (u) > 0, the function fu→v is defined by fu→v(v) = 1, fu→v(u) = f (u)− 1 and
fu→v(x) = f (x) for every x ∈ V (G) \ {u,v}. We say that a w-dominating function f is
a secure w-dominating function if for every v with f (v) = 0, there exists u ∈ N(v) such
that f (u) > 0 and fu→v is a w-dominating function as well. The (secure) w-domination
number of G, denoted by (γs

w(G)) γw(G), is defined as the minimum weight among all
(secure) w-dominating functions.
In this paper, we show how the secure (total) domination number and the (total) weak
Roman domination number of lexicographic product graphs G◦H are related to γs

w(G) or
γw(G). For the case of the secure domination number and the weak Roman domination
number, the decision on whether w takes specific components will depend on the value
of γs

(1,0)(H), while in the case of the total version of these parameters, the decision will
depend on the value of γs

(1,1)(H).

Keywords: Secure w-domination, w-domination, weak Roman domination, secure domina-
tion, lexicographic product.

MSC2020: 05C69, 05C76

1 Introduction
As usual, Z+ = {1,2,3, . . .} and N = Z+ ∪{0} denote the sets of positive and nonnegative
integers, respectively. Let G be a graph, l ∈ Z+ an integer, and f : V (G) −→ {0, . . . , l} a
function. Let Vi = {v ∈V (G) : f (v) = i} for every i ∈ {0, . . . , l}. We will identify f with the

1
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subsets V0, . . . ,Vl associated with it, and so we will use the unified notation f (V0, . . . ,Vl) for
the function and these associated subsets. The weight of f is defined as

ω( f ) = f (V (G)) =
l

∑
i=1

i|Vi|.

Let w=(w0, . . . ,wl)∈Z+×Nl such that w0 ≥ 1. As defined in [4], a function f (V0, . . . ,Vl)
is a w-dominating function if f (N(v))≥ wi for every v ∈Vi. The w-domination number of G,
denoted by γw(G), is the minimum weight among all w-dominating functions. For simplic-
ity, a w-dominating function f of weight ω( f ) = γw(G) will be called a γw(G)-function. For
fundamental results on the w-domination number of a graph, we refer the interested readers to
[4]; the paper where the theory of w-domination in graphs was introduced.

For any function f (V0, . . . ,Vl) and any pair of adjacent vertices v ∈V0 and u ∈V (G)\V0,
the function fu→v is defined by fu→v(v) = 1, fu→v(u) = f (u)−1 and fu→v(x) = f (x) whenever
x ∈V (G)\{u,v}.

The authors of this paper [5] introduced the approach of secure w-domination as follows.
A w-dominating function f (V0, . . . ,Vl) is a secure w-dominating function if for every v ∈ V0
there exists u ∈ N(v) \V0 such that fu→v is a w-dominating function as well. The secure
w-domination number of G, denoted by γs

w(G), is the minimum weight among all secure w-
dominating functions. For simplicity, a secure w-dominating function f of weight ω( f ) =
γs

w(G) will be called a γs
w(G)-function. This approach to the theory of secure domination

covers the different versions of secure domination known so far. For instance, we would
emphasize the following cases of known parameters that we define here in terms of secure
w-domination.

• The secure domination number of G is defined to be γs(G) = γs
(1,0)(G). In this case,

for any secure (1,0)-dominating function f (V0,V1), the set V1 is known as a secure
dominating set. This concept was introduced by Cockayne et al. in [12] and studied
further in several papers, including among others, [2, 3, 10, 11, 19, 21].

• The secure total domination number of a graph G of minimum degree at least one is
defined to be γst(G) = γs

(1,1)(G). In this case, for any secure (1,1)-dominating function
f (V0,V1), the set V1 is known as a secure total dominating set of G. This concept was in-
troduced by Benecke et al. in [1] and studied further in several papers, including among
others, [7, 8, 14, 19, 20].

• The weak Roman domination number of a graph G is defined to be γr(G) = γs
(1,0,0)(G).

This concept was introduced by Henning and Hedetniemi [17] and studied further in
several papers, including among others, [6, 10, 11, 22].

• The total weak Roman domination number of a graph G of minimum degree at least one
is defined to be γtr(G) = γs

(1,1,1)(G). This concept was introduced by Cabrera et al. in
[8] and studied further in [9].

• The secure Italian domination number of G is defined to be γs
I
(G) = γs

(2,0,0)(G). This
parameter was introduced by Dettlaff et al. in [13].

2
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In this paper we show how the secure (total) domination number and the (total) weak Ro-
man domination number of lexicographic product graphs G◦H are related to γs

w(G) or γw(G).
For the case of the secure domination number and the weak Roman domination number, the
decision on whether w takes specific components will depend on the value of γs

(1,0)(H), while
in the case of the total version of these parameters, the decision will depend on the value of
γs
(1,1)(H).

We assume that the reader is familiar with the basic concepts, notation and terminology
of domination in graph. If this is not the case, we suggest the textbooks [15, 16]. For the
remainder of the paper, definitions will be introduced whenever a concept is needed.

2 Some tools
Given a w-dominating function f (V0, . . . ,Vl) and v ∈V0, we define

M f (v) = {u ∈V (G)\V0 : fu→v is a w-dominating function}.

Obviously, if f is a secure w-dominating function, then M f (v) 6=∅ for every v ∈V0.

Theorem 2.1. [5] Let G be a graph of minimum degree δ , and let w = (w0, . . . ,wl) ∈ Z+×Nl

such that wi ≥ wi+1 for every i ∈ {0, . . . , l−1}. If lδ ≥ wl , then following statements hold.

(i) γw(G)≤ γs
w(G).

(ii) If k ∈ Z+, then γ(k+1,k=w1,...,wl)(G)≤ γs
(k,k=w1,...,wl)

(G).

Theorem 2.2. [5] Let G be a graph of minimum degree δ , and let w = (w0, . . . ,wl),w′ =
(w′

0, . . . ,w
′
l)∈Z+×Nl such that lδ ≥ wl , wi ≥ wi+1 and w′

i ≥ w′
i+1 for every i ∈ {0, . . . , l−1}.

If wi ≥ w′
i−1−1 for every i ∈ {1, . . . , l}, and max{w j −1,0} ≥w′

j for every j ∈ {0, . . . , l}, then

γs
w′(G)≤ γw(G).

The following result is a particular case of Theorem 2.2.

Corollary 2.3. [5] Let G be a graph of minimum degree δ , and let w = (w0, . . . ,wl) ∈Z+×Nl

and 1 = (1, . . . ,1). If 0 ≤ w j−1 −w j ≤ 2 for every j ∈ {1, . . . , i}, where 1 ≤ i ≤ l and lδ ≥
wl +1, then

γs
(w0,...,wi,0,...,0)(G)≤ γ(w0+1,...,wi+1,0,...,0)(G)≤ γw+1(G).

Proposition 2.4. [5] Let G be a graph of order n. Let w = (w0, . . . ,wl) ∈ Z+×Nl such that
w0 ≥ ·· · ≥ wl . If G′ is a spanning subgraph of G with minimum degree δ ′ ≥ wl

l , then

γs
w(G)≤ γs

w(G
′).

3
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3 The case of lexicographic product graphs
The lexicographic product of two graphs G and H is the graph G ◦ H whose vertex set is
V (G ◦H) = V (G)×V (H) and (u,v)(x,y) ∈ E(G ◦H) if and only if ux ∈ E(G) or u = x and
vy ∈ E(H).

Notice that for any u ∈V (G) the subgraph of G◦H induced by {u}×V (H) is isomorphic
to H. For simplicity, we will denote this subgraph by Hu. Moreover, the neighbourhood of
(x,y) ∈ V (G)×V (H) will be denoted by N(x,y) instead of N((x,y)). Analogously, for any
function f on G◦H, the image of (x,y) will be denoted by f (x,y) instead of f ((x,y)).

The next subsections are devoted to show how the secure (total) domination number and
the (total) weak Roman domination number of lexicographic product graphs G◦H are related
to γs

w(G) or γw(G), for certain vectors w of three components.

3.1 Secure domination
Lemma 3.1. For any graph G with no isolated vertex and any nontrivial graph H, there exists
a γs

(1,0)(G◦H)-function f such that f (V (Hu))≤ 2 for every u ∈V (G).

Proof. Given a secure (1,0)-dominating function f on G◦H, we define

R f = {x ∈V (G) : f (V (Hx))≥ 3}.

Let f be a γs
(1,0)(G◦H)-function such that |R f | is minimum among all γs

(1,0)(G◦H)-functions.
Suppose that |R f | ≥ 1. Let u ∈ R f , u′ ∈ N(u) and v1,v2 ∈ V (H) such that f (u,v1) =

f (u,v2) = 1. Now, let f ′ : V (G)×V (H)−→ {0,1} be a function defined as follows.

• f ′(u,v1) = f ′(u,v2) = 1 and f ′(u,y) = 0 for every y ∈V (H)\{v1,v2};

• f ′(V (Hu′)) = min{2, f (V(Hu′))+ f (V (Hu))−2};

• f ′(x,y) = f (x,y) for every x ∈V (G)\{u,u′} and y ∈V (H).

It is not difficult to check that f ′ is a secure (1,0)-dominating function on G◦H with ω( f ′)≤
ω( f ) and |R f ′|< |R f |, which is a contradiction. Therefore, R f =∅, and the result follows.

We shall need the following two results.

Theorem 3.2. [18] For any graph G with no isolated vertex and any nontrivial graph H with
γs
(1,0)(H)≤ 2 or γs

(1,0,0)(H)≥ 3,

γs
(1,0)(G◦H) = γs

(1,0,0)(G◦H).

Proposition 3.3. [22] For any graph G and any integer n ≥ 1,

γs
(1,0,0)(G◦Kn) = γs

(1,0,0)(G)

The following result shows how the secure domination number of G◦H is related to γs
w(G)

or γw(G) for certain vectors w of three components. The decision on whether the components
of w take specific values will depend on the value of γs

(1,0)(H) and γ(H).

4
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Theorem 3.4. For a graph G with no isolated vertex and a nontrivial graph H, the following
statements hold.

(i) If γs
(1,0)(H) = 1, i.e., H is a complete graph, then γs

(1,0)(G◦H) = γs
(1,0,0)(G).

(ii) If γs
(1,0)(H) = 2 and γ(H) = 1, then γs

(1,0)(G◦H) = γ(2,1,0)(G).

(iii) If γs
(1,0)(H)≥ 3 and γ(H) = 1, then γs

(1,0)(G◦H) = γ(2,1,1)(G).

(iv) If γs
(1,0)(H) = γ(H) = 2, then γs

(1,1,0)(G)≤ γs
(1,0)(G◦H)≤ γ(2,2,0)(G).

(v) If γs
(1,0)(H)> γ(H) = 2, then γs

(1,0)(G◦H) = γ(2,2,1)(G).

(vi) If γs
(1,0)(H) = γ(H) = 3, then γ(2,2,1)(G)≤ γs

(1,0)(G◦H)≤ γ(2,2,2)(G).

(vii) If γs
(1,0)(H)≥ 4 and γ(H)≥ 3, then γs

(1,0)(G◦H) = γ(2,2,2)(G).

Proof. Let f (V0,V1) be a γs
(1,0)(G◦H)-function which satisfies Lemma 3.1. Let f ′(X0,X1,X2)

be the function defined on G by X1 = {x ∈ V (G) : f (V (Hx)) = 1} and X2 = {x ∈ V (G) :
f (V (Hx)) = 2}. Notice that γs

(1,0)(G ◦H) = ω( f ) = ω( f ′). With this notation in mind, we
differentiate the following cases.

Case 1. γs
(1,0)(H) = 1. In this case, H is a complete graph. Hence, by Theorem 3.2 and

Proposition 3.3 we deduce that γs
(1,0)(G◦H) = γs

(1,0,0)(G◦H) = γs
(1,0,0)(G).

Case 2. γs
(1,0)(H) = 2 and γ(H) = 1. In this case, if x ∈ X0, then f ′(N(x)) = f (N(V (Hx)) \

V (Hx)) ≥ 2. Now, since γs
(1,0)(H) = 2, if x ∈ X1, then f ′(N(x)) = f (N(V (Hx)) \V (Hx)) ≥

1. Therefore, f ′ is a (2,1,0)-dominating function on G, which implies that γs
(1,0)(G ◦H) =

ω( f ) = ω( f ′)≥ γ(2,1,0)(G).
On the other side, for any γ(2,1,0)(G)-function g(W0,W1,W2) and any universal vertex v of

H, the function g′(W ′
0,W

′
1,W

′
2), defined by W ′

1 = W1 ×{v} and W ′
2 = W2 ×{v}, is a (2,1,0)-

dominating function on G◦H. Hence, γ(2,1,0)(G◦H)≤ω(g′) =ω(g) = γ(2,1,0)(G). Therefore,
by Theorem 3.2 and Corollary 2.3 we conclude that γs

(1,0)(G◦H)= γs
(1,0,0)(G◦H)≤ γ(2,0,0)(G◦

H)≤ γ(2,1,0)(G◦H)≤ γ(2,1,0)(G).

Case 3. γs
(1,0)(H) ≥ 3 and γ(H) = 1. As above, if x ∈ X0, then f ′(N(x)) = f (N(V (Hx)) \

V (Hx))≥ 2 and, since γs
(1,0)(H)≥ 3, if x ∈ X1∪X2, then f ′(N(x)) = f (N(V (Hx))\V (Hx))≥ 1.

Hence, f ′ is a (2,1,1)-dominating function on G. Therefore, γs
(1,0)(G◦H) = ω( f ) = ω( f ′)≥

γ(2,1,1)(G).
On the other side, for any γ(2,1,1)(G)-function g(W0,W1,W2), any universal vertex v of H

and any v′ ∈V (H) \ {v}, the function g′(W ′
0,W

′
1), defined by W ′

1 =W1 ×{v}∪W2 ×{v,v′}, is

5
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a (1,0)-dominating function on G◦H. Now, for any (x,y) ∈W ′
0 with x ∈W1 ∪W2, we can see

that g′(x,v)→(x,y) is a (1,0)-dominating function on G◦H, while for any (x,y)∈W0×V (H) there
exists x′ ∈W2 ∩N(x) or x′,x′′ ∈W1 ∩N(x), and so g′(x′,v)→(x,y) is a (1,0)-dominating function
on G◦H. Therefore, g′ is a secure (1,0)-dominating function on G◦H and, as a consequence,
γ(1,0)(G◦H)≤ ω(g′) = ω(g) = γ(2,1,1)(G).

Case 4. γs
(1,0)(H)= γ(H)= 2. If x∈X0∪X1, then f ′(N(x))= f (N(V (Hx))\V (Hx))≥ 1, which

implies that f ′ is a (1,1,0)-dominating function on G. Now, for any (x,y) ∈ X0 ×V (H), there
exists (x′,y′) ∈ M f (x,y) with x′ ∈ N(x)∩ (X1 ∪X2). Hence, for any u ∈ X0 ∪{x′} we have that
f ′x′→x(N(u)) = f(x′,y′)→(x,y)(N(V (Hu))\V (Hu))≥ 1. Now, if u ∈ X1, then as γs

(1,0)(Hu) = 2 we
have that f ′x′→x(N(u)) = f(x′,y′)→(x,y)(N(V (Hu)) \V (Hu)) ≥ 1. Hence, f ′ is a secure (1,1,0)-
dominating function on G. Therefore, γs

(1,0)(G◦H) = ω( f ) = ω( f ′)≥ γs
(1,1,0)(G).

On the other side, for any γ(2,2,0)(G)-function g(W0,W1,W2) and any γs
(1,0)(H)-function

h(Y0,Y1) with Y1 = {v1,v2}, the function g′(W ′
0,W

′
1), defined by W ′

1 =W1 ×{v1}∪W2 ×Y1, is
a (1,0)-dominating function on G◦H. Now, for any (x,y) ∈W ′

0 \W2 ×V (H) and x′ ∈ N(x)∩
(W1∪W2), we can see that g′(x′,v1)→(x,y) is a (1,0)-dominating function on G◦H. Furthermore,
for every (x,y) ∈ W ′

0 ∩W2 ×V (H) there exists vi ∈ {Y1} ∩Mh(y) such that g′(x,vi)→(x,y) is a
(1,0)-dominating function on G◦H. Therefore, γs

(1,0)(G◦H)≤ ω(g′) = ω(g) = γ(2,2,0)(G).

Case 5. γs
(1,0)(H)> γ(H)= 2. Since γs

(1,0)(H)≥ 3, if x∈X0∪X1, then f ′(N(x))= f (N(V (Hx))\
V (Hx))≥ 2, while if x∈X2, then f ′(N(x))= f (N(V (Hx))\V(Hx))≥ 1. Hence, f ′ is a (2,2,1)-
dominating function on G. Therefore, γs

(1,0)(G◦H) = ω( f ) = ω( f ′)≥ γ(2,2,1)(G).
In order to prove that γs

(1,0)(G◦H)≤ γ(2,2,1)(G), let g(W0,W1,W2) be a γ(2,2,1)(G)-function.
If γs

(1,0)(H)> γ(H)= 2, then for any dominating set S = {v1,v2} of H, the function g′(W ′
0,W

′
1),

defined by W ′
1 =W1×{v1}∪W2×S, is a (2,1)-dominating function on G◦H. Hence, γ(2,1)(G◦

H)≤ ω(g′) = ω(g) = γ(2,2,1)(G), and so Corollary 2.3 leads to γs
(1,0)(G◦H)≤ γ(2,1)(G◦H)≤

γ(2,2,1)(G).

Case 6. γs
(1,0)(H) = γ(H) = 3. As in Case 5, we deduce that γs

(1,0)(G◦H)≥ γ(2,2,1)(G).
In order to prove that γs

(1,0)(G◦H)≤ γ(2,2,2)(G), let g(W0,W1,W2) be a γ(2,2,2)(G)-function
and S = {v1,v2} ⊆ V (H). The function g′(W ′

0,W
′
1), defined by W ′

1 = W1 ×{v1}∪W2 × S, is
a (2,2)-dominating function on G ◦H. Hence, γ(2,2)(G ◦H) ≤ ω(g′) = ω(g) = γ(2,2,2)(G).
Therefore, Corollary 2.3 leads to γs

(1,0)(G◦H)≤ γs
(1,1)(G◦H)≤ γ(2,2)(G◦H)≤ γ(2,2,2)(G).

Case 7. γs
(1,0)(H)≥ 4 and γ(H)≥ 3. In this case, it is easy to check that f ′(N(x))= f (N(V (Hx))\

V (Hx)) ≥ 2 for every x ∈ V (G). Therefore, f ′ is a (2,2,2)-dominating function on G, which
implies that γs

(1,0)(G◦H) = ω( f ) = ω( f ′)≥ γ(2,2,2)(G).
Finally, as in Case 6, we can deduce that γ(2,2)(G◦H)≤ γ(2,2,2)(G), and so γs

(1,0)(G◦H)≤
γs
(1,1)(G◦H)≤ γ(2,2)(G◦H)≤ γ(2,2,2)(G).

In order to show the behaviour of γs
(1,0)(G ◦H) when γs

(1,0)(H) = γ(H) = 2, we consider
the following examples. For the graph G shown in Figure 1, γs

(1,0)(G◦H) = γs
(1,1,0)(G) = 6 <

8 = γ(2,2,0)(G), while γs
(1,1,0)(G∪C4) = 9 < 10 = γs

(1,0)((G∪C4) ◦H)< 12 = γ(2,2,0)(G∪C4)

and γs
(1,0)(C4 ◦H) = γ(2,2,0)(C4) = 4 > 3 = γs

(1,1,0)(C4).
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11

1

1 1

1

Figure 1: A graph G, where the labels asigned to the vertices correspond to the positive weights
assigned by a γs

(1,1,0)(G)-function.

2 22

G1

1 212

G2

2 22 1 212

G3

Figure 2: For any i∈ {1,2,3}, the labels asigned to the vertices of Gi correspond to the positive
weights assigned by a γs

(1,0)(Gi ◦H)-function to the different copies of H in Gi ◦H, where H
is any graph with γs

(1,0)(H) = γ(H) = 3.

Analogously, for the case γs
(1,0)(H) = γ(H) = 3, we consider the graphs G1, G2 and G3

illustrated in Figure 2. The weights shown in Figure 2 correspond to the weights assigned by
a γs

(1,0)(Gi ◦H)-function to the different copies of H in Gi ◦H. In particular, γs
(1,0)(G1 ◦H) =

γ(2,2,2)(G1) = 6, γs
(1,0)(G2◦H)= γ(2,2,1)(G2) = 6 and γ(2,2,1)(G3) = 11< 12= γs

(1,0)(G3◦H)<

14 = γ(2,2,2)(G3).
We now discuss some particular cases of Theorem 3.4.

Corollary 3.5. The following statements hold for any integers n,r ≥ 4 and a nontrivial graph
H.

• γs
(1,0)(Kn ◦H) =





1 if H is a complete graph,

2 if γs
(1,0)(H)> γ(H) = 1 or γs

(1,0)(H) = γ(H) = 2,

3 otherwise.

• γs
(1,0)(K1,n−1 ◦H) =





2 if γs
(1,0)(H)≤ 2,

4 if γs
(1,0)(H)≥ 4 and γ(H)≥ 3,

3 otherwise.
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• γs
(1,0)(K2,n ◦H) =





2 if H is a complete graph,

4 if γs
(1,0)(H)≥ 2 and γ(H)≥ 2,

3 otherwise.

• γs
(1,0)(K3,n ◦H) =

{
3 if H is a complete graph,

4 otherwise.

• γs
(1,0)(Kn,r ◦H) = 4.

Proof. It is not difficult to see that if γs
(1,0)(H)= γ(H)= 2, then γs

(1,0)(K2,n◦H)= γ(2,2,0)(K2,n)=

4. For the remaining cases, the result follows from Theorem 3.4 by considering the following
facts.

• γs
(1,0,0)(Kn)= 1, γ(2,1,0)(Kn)= γ(2,1,1)(Kn)= γs

(1,1,0)(Kn)= γ(2,2,0)(Kn)= 2 and γ(2,2,1)(Kn)=

γ(2,2,2)(Kn) = 3.

• γs
(1,0,0)(K1,n−1)= γ(2,1,0)(K1,n−1)= γs

(1,1,0)(K1,n−1)= γ(2,2,0)(K1,n−1)= 2, γ(2,1,1)(K1,n−1)=

γ(2,2,1)(K1,n−1) = 3 and γ(2,2,2)(K1,n−1) = 4.

• γs
(1,0,0)(K2,n) = 2, γ(2,1,0)(K2,n) = γ(2,1,1)(K2,n) = 3 and γ(2,2,1)(K2,n) = γ(2,2,2)(K2,n) = 4.

• γs
(1,0,0)(K3,n)= 3 and γ(2,1,0)(K3,n)= γ(2,1,1)(K3,n)= γs

(1,1,0)(K3,n)= γ(2,2,0)(K3,n)= γ(2,2,1)(K3,n)=

γ(2,2,2)(K3,n) = 4.

• γs
(1,0,0)(Kn,r)= γ(2,1,0)(Kn,r)= γs

(1,1,0)(Kn,r)= γ(2,2,0)(Kn,r)= γ(2,1,1)(Kn,r)= γ(2,2,1)(Kn,r)=

γ(2,2,2)(Kn,r) = 4.

Next we consider the particular case when G is a path. As we will see, this case has been
partially studied in previous works.
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Theorem 3.6. For any integer n ≥ 6 and any nontrivial graph H, the following statements
hold.

(i) [17] If γs
(1,0)(H)= 1, i.e., H is a complete graph, then γs

(1,0)(Pn◦H)= γs
(1,0,0)(Pn) =

⌈3n
7

⌉
.

(ii) [18] If γs
(1,0)(H) = 2 and γ(H) = 1, then γs

(1,0)(Pn ◦H) = 2
⌈n

3

⌉
.

(iii) [18] If γs
(1,0)(H)≥ 3 and γ(H) = 1, then γs

(1,0)(Pn ◦H) =

{
2n
3 +1 if n ≡ 0 (mod 3),

2⌈n
3⌉ otherwise.

(iv) [18] If γs
(1,0)(H) = γ(H) = 2, then γs

(1,0)(Pn ◦H) = 2
⌊n+2

3

⌋
.

(v) If γs
(1,0)(H)> γ(H) = 2, then

γs
(1,0)(Pn ◦H) = γ(2,2,1)(Pn) =

{
n−⌊n

7⌋+1 if n ≡ 1,2 (mod 7),

n−⌊n
7⌋ otherwise.

(vi) If γs
(1,0)(H) = γ(H) = 3, then

γs
(1,0)(Pn ◦H) =

{
n−

⌊ n
11

⌋
+1 if n ≡ 1,2,5 (mod 11),

n−
⌊ n

11

⌋
otherwise.

(vii) If γs
(1,0)(H)≥ 4 and γ(H)≥ 3, then

γs
(1,0)(Pn ◦H) = γ(2,2,2)(Pn) =





n i f n ≡ 0 (mod 4),

n+1 i f n ≡ 1,3 (mod 4),

n+2 i f n ≡ 2 (mod 4).

Proof. The proofs of (v) and (vii) are derived by combining Theorem 3.4 with the values of
γ(2,2,1)(Pn) and γ(2,2,2)(Pn) obtained in [4]. It remains to prove (vi).

Assume that γs
(1,0)(H) = γ(H) = 3 and let f (V0,V1) be a γs

(1,0)(Pn ◦H)-function which
satisfies Lemma 3.1. Let f ′(X0,X1,X2) be the function defined on Pn by X1 = {x ∈ V (Pn) :
f (V (Hx)) = 1} and X2 = {x ∈ V (Pn) : f (V (Hx)) = 2}. Notice that γs

(1,0)(Pn ◦H) = ω( f ) =
ω( f ′). Let n = 11q+ r with r ∈ {0, . . . ,10}. With this notation in mind, we proceed by
induction on q.

It is not difficult to check that the result follows for q = 0 and r ∈ {6, . . . ,10}. For these
cases, possible sequences of weights assigned by f ′ to consecutive vertices of Pr are 021120,
1200220, 02200220, 021012120 and 0210121012, respectively. The result also follows for
q = 1 and r = 0, i.e., n = 11. In this case, the only possible sequence of weights assigned
by f ′ to consecutive vertices of P11 is 02101210120. The certainty that the result holds for
q = 1 and r ∈ {3,4,6, . . . ,10} comes from a computer search. For these cases, since P11+r
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can be obtained by connecting a leaf of P11 with a leaf Pr, possible sequences of weights as-
signed by f ′ to consecutive vertices of P11+r are obtained by concatenating the sequences of
weights associated to P11 and Pr, where the sequences for r = 3 and r = 4 are 120, 0220, re-
spectively. In summary, for any r ∈ {0,3,4,6, . . .,10}, we have that γs

(1,0)(P11+r ◦H) = 10+r.
Analogously, among the possible sequences of weights assigned by f ′ to consecutive vertices
of P12, P13 and P16, a computer search gives, for instance, 022101200220, 0210210220120
and 0211200220021120, respectively. Thus, γs

(1,0)(P12 ◦H) = 12, γs
(1,0)(P13 ◦H) = 13 and

γs
(1,0)(P16 ◦H) = 16, which completes the base case.

Assume that q≥ 2 and the statement holds for any q′ such that 1≤ q′ ≤ q. We differentiate
two cases.

Case 1. r 6∈ {1,2,5}. In this case,

γs
(1,0)(P11q+r ◦H) = 10q+ r.

Let n = 11(q+1)+ r, k1 = γs
(1,0)(Pn ◦H), Pn = x1x2 . . .xn and k2 = f ′({x1, . . . ,x11}). Suppose

that k1 < 10(q+1)+ r. Since 02101210120 is the only possible sequence of weights assigned
by f ′ to consecutive vertices of P11, we have that k2 ≥ 10, and

(k2 −10)+ f ′({x12, . . . ,xn}) = k1 −10 < 10q+ r.

Since the function g, defined as g(V (Hx13))= f (V (Hx13))+k2−10 and g(V (Hxi))= f (V (Hxi))
for every i ∈ {12} ∪ {14, . . . ,n}, is a secure (1,0)-dominating function on the subgraph of
Pn ◦H induced by {x12, . . . ,xn}×V (H), we can conclude that γs

(1,0)(P11q+r ◦H) ≤ ω(g) =
k1 −10 < 10q+ r, which contradicts the hypothesis. Thus, γs

(1,0)(Pn ◦H)≥ 10(q+1)+ r. To
conclude the proof, we only need to observe that Pn is obtained by connecting a leaf of P11q+r
with a leaf of P11, and so, by hypothesis, γs

(1,0)(Pn ◦H)≤ γs
(1,0)(P11q+r ◦H)+ γs

(1,0)(P11 ◦H) =

10(q+1)+ r. Therefore, the proof of this case is complete.

Case 2. r ∈ {1,2,5}. This case is completely analogous to Case 1. The only difference is
the induction hypothesis, which states that γs

(1,0)(P11q+r ◦H) = 10q+ r + 1. Hence, we take
n= 11(q+1)+r and following the procedure described above, we deduce that γs

(1,0)(Pn◦H) =

10(q+1)+ r+1, which completes the proof.

The next result concerns the case when G is a cycle.

Theorem 3.7. For any integer n ≥ 6 and a nontrivial graph H, the following statements hold.

(i) [17] If γs
(1,0)(H)= 1, i.e., H is a complete graph, then γs

(1,0)(Cn◦H)= γs
(1,0,0)(Cn)=

⌈3n
7

⌉
.

(ii) [18] If γs
(1,0)(H)≥ 2 and γ(H) = 1, then γs

(1,0)(Cn ◦H) =
⌈2n

3

⌉
.

(iii) [18] If γs
(1,0)(H) = γ(H) = 2, then γs

(1,0)(Cn ◦H) = 2
⌊n+2

3

⌋
.
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(iv) If γs
(1,0)(H)> γ(H) = 2, then

γs
(1,0)(Cn ◦H) = γ(2,2,1)(Cn) =

{
n−⌊n

7⌋+1 if n ≡ 1,2 (mod 7),

n−⌊n
7⌋ otherwise.

(v) If γs
(1,0)(H) = γ(H) = 3, then

γs
(1,0)(Cn ◦H) =

{
n−

⌊ n
11

⌋
+1 if n ≡ 1,2,5 (mod 11),

n−
⌊ n

11

⌋
otherwise.

(vi) If γs
(1,0)(H)≥ 4 and γ(H)≥ 3, then γs

(1,0)(Cn ◦H) = γ(2,2,2)(Cn) = n.

Proof. The proofs of (iv) and (vi) are derived by combining Theorem 3.4 with the values of
γ(2,2,1)(Cn) and γ(2,2,2)(Cn) obtained in [4]. It remains to prove (v).

Assume that γs
(1,0)(H) = γ(H) = 3 and let f (V0,V1) be a γs

(1,0)(Cn ◦H)-function which
satisfies Lemma 3.1. Let f ′(X0,X1,X2) be the function defined on Cn by X1 = {x ∈ V (Cn) :
f (V (Hx)) = 1} and X2 = {x ∈ V (Cn) : f (V (Hx)) = 2}. Notice that γs

(1,0)(Cn ◦H) = ω( f ) =
ω( f ′).

Let V (Cn) = {x0, . . . ,xn−1}, where consecutive vertices are adjacent and the addition
of subscripts is taken modulo n. If there exists xi ∈ V (Cn) such that f (xi) = f (xi+1) = 0,
then γs

(1,0)(Cn ◦ H) = γs
(1,0)(Pn ◦ H) and we derive the result by Theorem 3.6. From now

on, we assume that for any xi ∈ X0 we have that f ′(xi−1) > 0 and f ′(xi+1) > 0, which im-
plies that f ′(xi−2)+ f (xi−1) ≥ 3 and f ′(xi+1)+ f (xi+2) ≥ 3. Now, for any xi ∈ X0 we define
Si = {xi,xi+1,xi+2} and S =V (Cn)\ (∪xi∈X0Si). Notice that f (Si)≥ 3 = |Si| for every xi ∈ X0
and f (x j)> 0 for every x j ∈ S. Hence, by Proposition 2.4,

γs
(1,0)(Pn ◦H)≥ γs

(1,0)(Cn ◦H) = ω( f ′) = ∑
xi∈X0

f ′(Si)+ f ′(S)≥ n.

This implies that n ∈ {6, . . . ,10,12,13,15} and γs
(1,0)(Cn ◦H) = n. Therefore, the result fol-

lows.

As a direct consequence of Theorems 3.4, 3.6 and 3.7 we derive the following result.

Proposition 3.8. The following statements hold for any integer n ≥ 4.

• γ(2,1,1)(Pn) =

{
2n
3 +1 if n ≡ 0 (mod 3),

2⌈n
3⌉ otherwise.

• γ(2,1,1)(Cn) = ⌈2n
3 ⌉.
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3.2 Weak Roman domination
This subsection is devoted to study the weak Roman domination of lexicographic product
graphs. To this end, we need the following tools.

Remark 3.9. [22] Given a noncomplete graph G, the following statements are equivalent.

• γs
(1,0,0)(G) = 2.

• γ(G) = 1 or γs
(1,0)(G) = 2.

Lemma 3.10. For any graph G with no isolated vertex and any nontrivial graph H with
γ(H) = 1, there exists a γs

(1,0,0)(G◦H)-function f such that f (V (Hu))≤ 2, for every u ∈V (G).

Proof. Given a secure (1,0,0)-dominating function f on G ◦H, we define R f = {x ∈ V (G) :
f (V (Hx)) ≥ 3}. Let f (V0,V1,V2) be a γs

(1,0,0)(G ◦ H)-function such that |R f | is minimum
among all γs

(1,0,0)(G◦H)-functions.
Suppose that |R f | ≥ 1. Let u ∈ R f , u′ ∈ N(u) and v be a universal vertex of H. Notice that

the function f ′ on G◦H, defined by f ′(u,v)= f ′(V (Hu))= 2, f ′(V (Hu′))=min{2, f (V (Hu′))+
1}, and f ′(x,y) = f (x,y) for every x ∈ V (G) \ {u,u′} and y ∈ V (H), is a secure (1,0,0)-
dominating function on G ◦H with ω( f ′) ≤ ω( f ) and |R f ′| < |R f |, which is a contradiction.
Therefore, R f =∅, and so the result follows.

Our goal is to show how the weak Roman domination number of G ◦H is related to
γs

w(G) or γw(G) for certain vectors w of three components. By Theorems 3.2 and 3.4, the
outstanding case is when γs

(1,0)(H) ≥ 3 and γs
(1,0,0)(H) = 2, which is equivalent to γ(H) = 1

and γs
(1,0)(H)≥ 3, by Remark 3.9. In fact, we will present the result with the only assumption

on H of being a noncomplete graph with γ(H) = 1.

Theorem 3.11. For any graph G with no isolated vertex and any noncomplete graph H with
γ(H) = 1,

γs
(1,0,0)(G◦H) = γ(2,1,0)(G).

Proof. Let H be a noncomplete graph with γ(H) = 1 and f (V0,V1,V2) a γs
(1,0,0)(G ◦ H)-

function which satisfies Lemma 3.10. Let f ′(X0,X1,X2) be the function defined on G by
X1 = {x∈V (G) : f (V (Hx))= 1} and X2 = {x∈V (G) : f (V (Hx))= 2}. Since γs

(1,0,0)(H)= 2, if
x∈X0, then f ′(N(x))= f (N(V (Hx))\V(Hx))≥ 2 and if x∈X1, then f ′(N(x))= f (N(V (Hx))\
V (Hx)) ≥ 1. Hence, f ′ is a (2,1,0)-dominating function on G, which implies that γs

(1,0,0)(G◦
H) = ω( f ) = ω( f ′)≥ γ(2,1,0)(G).

Now, we show that γs
(1,0,0)(G◦H)≤ γ(2,1,0)(G). Let v be a universal vertex of H. For any

γ(2,1,0)(G)-function g(W0,W1,W2), the function g′(W ′
0,W

′
1,W

′
2), defined by W ′

1 =W1 ×{v} and
W ′

2 = W2 ×{v}, is a (1,0,0)-dominating function on G ◦H. Now, for any (x,y) ∈ W ′
0 \W0 ×

V (H), we can see that g′(x,v)→(x,y) is a (1,0,0)-dominating function on G◦H. Furthermore, for
every x ∈W0 there exists x′ ∈W2 ∩N(x) or two vertices x′,x′′ ∈W1 ∩N(x), and so g′(x′,v)→(x,y)
is a (1,0,0)-dominating function on G ◦H for every (x,y) ∈ W0 ×V (H). Therefore, g′ is a
secure (1,0,0)-dominating function on G◦H, and as a consequence, γs

(1,0,0)(G◦H)≤ ω(g′) =
ω(g) = γ(2,1,0)(G).
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We next present some particular cases of Theorem 3.11.

Corollary 3.12. Let n and r be two integers such that n ≥ r ≥ 2. If H is a noncomplete graph
with γ(H) = 1, then the following statements hold.

• γs
(1,0,0)(Kn ◦H) = 2.

• γs
(1,0,0)(K1,n−1 ◦H) = 2.

• γs
(1,0,0)(Kn,r ◦H) =

{
3 if r = 2,

4 otherwise.

Proof. Theorem 3.11 leads to the result, as γ(2,1,0)(Kn) = γ(2,1,0)(K1,n−1) = 2, γ(2,1,0)(Kn,2) = 3
and γ(2,1,0)(Kn,r) = 4 whenever r ≥ 3.

To conclude this section, we would present the following result which shows that the study
of the cases G ∼= Pn and G ∼=Cn is complete.

Theorem 3.13. [18] For any integer n ≥ 3 and any noncomplete graph with γ(H) = 1,

γs
(1,0,0)(Pn ◦H) = 2

⌈n
3

⌉
and γs

(1,0,0)(Cn ◦H) =

⌈
2n
3

⌉
.

3.3 Secure total domination and total weak Roman domination
It was shown in [9] that for any graph G with no isolated vertex and any nontrivial graph H the
secure total domination number of G◦H equals the total weak Roman domination number.

Theorem 3.14. [9] For any graph G with no isolated vertex and any nontrivial graph H,

γs
(1,1,1)(G◦H) = γs

(1,1)(G◦H).

According to Theorem 3.14, we can restrict ourselves to study the secure total domination
number of G◦H. To this end, we shall need the following lemma.

Lemma 3.15. [9] For any graph G with no isolated vertex and any nontrivial graph H, there
exists a γs

(1,1)(G◦H)-function f satisfying that f (V (Hu))≤ 2 for every u ∈V (G).

The following result shows that the secure total domination number of G◦H equals γs
w(G)

or γw(G) for certain vectors w of three components. As we can expect, the decision on whether
the components of w take specific values will depend on the value of γs

(1,1)(H) and/or γ(H).

Theorem 3.16. For a graph G with no isolated vertex and a nontrivial graph H, the following
statements hold.

(i) If γs
(1,1)(H) = 2, then γs

(1,1)(G◦H) = γs
(1,1,0)(G).
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(ii) If γ(H) = 1 and γs
(1,1)(H)≥ 3, then γs

(1,1)(G◦H) = γs
(1,1,1)(G).

(iii) If γ(H) = 2 < γs
(1,1)(H), then γs

(1,1)(G◦H) = γ(2,2,1)(G).

(iv) If γ(H)≥ 3, then γs
(1,1)(G◦H) = γ(2,2,2)(G).

Proof. Let f (V0,V1) be a γs
(1,1)(G◦H)-function which satisfies Lemma 3.15. Let f ′(X0,X1,X2)

be the function defined on G by X1 = {x ∈ V (G) : f (V (Hx)) = 1} and X2 = {x ∈ V (G) :
f (V (Hx)) = 2}. With this notation in mind, we differentiate the following four cases.

Case 1. γs
(1,1)(H)= 2. If x∈X0∪X1, then f ′(N(x))= f (N(V (Hx))\V (Hx))≥ 1, which implies

that f ′ is a (1,1,0)-dominating function on G. Now, for any (x,y) ∈ X0 ×V (H), there exists
(x′,y′) ∈ M f (x,y) with x′ ∈ N(x)∩ (X1 ∪X2). Hence, for any u ∈ X0 ∪X1 ∪{x′} we have that
f ′x′→x(N(u)) = f(x′,y′)→(x,y)(N(V (Hu))\V(Hu))≥ 1, which implies that f ′ is a secure (1,1,0)-
dominating function on G. Therefore, γs

(1,1)(G◦H) = ω( f ) = ω( f ′)≥ γs
(1,1,0)(G).

On the other side, for any γs
(1,1,0)(G)-function g(W0,W1,W2) and any two universal ver-

tices v1,v2 of H, the function g′(W ′
0,W

′
1), defined by W ′

1 = (W1 ×{v1})∪ (W2 ×{v1,v2}), is
a (1,1)-dominating function on G ◦H. Now, for any (x,y) ∈ W ′

0 \W0 ×V (H), we can see
that g′(x,v1)→(x,y) is a (1,1)-dominating function on G ◦ H. Furthermore, for every x ∈ W0

there exists x′ ∈ Mg(x), and so g′(x′,v1)→(x,y) is a (1,1)-dominating function on G◦H for every
(x,y) ∈W0 ×V (H). Therefore, γs

(1,1)(G◦H)≤ ω(g′) = ω(g) = γs
(1,1,0)(G).

Case 2. γ(H) = 1 and γs
(1,1)(H)≥ 3. Since f (V (Hx)≤ 2 and γs

(1,1)(Hx)≥ 3 for any x ∈V (G),
we have that f ′(N(x)) = f (N(V (Hx))\V(Hx))≥ 1. Thus, f ′ is a (1,1,1)-dominating function
on G. Now, for any (x,y) ∈ X0 ×V (H), there exists (x′,y′) ∈ M f (x,y) with x′ ∈ N(x)∩ (X1 ∪
X2). Hence, for any u∈V (G) we have that f ′x′→x(N(u))= f(x′,y′)→(x,y)(N(V (Hu))\V (Hu))≥ 1,
which implies that f ′ is a secure (1,1,1)-dominating function on G. Therefore, γs

(1,1)(G◦H)=

ω( f ) = ω( f ′)≥ γs
(1,1,1)(G).

Now we show that γs
(1,1)(G◦H)≤ γs

(1,1,1)(G). Let v be the universal vertex of H, which is
unique, as γs

(1,1)(H)≥ 3. For any γs
(1,1,1)(G)-function g(W0,W1,W2), the function g′(W ′

0,W
′
1,W

′
2),

defined by W ′
1 = W1 ×{v} and W ′

2 = W2 ×{v}, is a (1,1,1)-dominating function on G ◦H.
Now, for any (x,y) ∈ W ′

0 \W0 ×V (H), we can see that g′(x,v)→(x,y) is a (1,1,1)-dominating
function on G◦H. Furthermore, for every x ∈W0 there exists x′ ∈ Mg(x), and so g′(x′,v)→(x,y) is
a (1,1,1)-dominating function on G◦H for every (x,y)∈W0×V (H). Therefore, g′ is a secure
(1,1,1)-dominating function on G ◦H, and by Theorem 3.14 we deduce that γs

(1,1)(G ◦H) =

γs
(1,1,1)(G◦H)≤ ω(g′) = ω(g) = γs

(1,1,1)(G).

Case 3. γ(H) = 2 < γs
(1,1)(H). Assume first that x ∈ X0∪X1. Since γs

(1,1)(Hx)≥ 3, we have that
f ′(N(x)) = f (N(V (Hx))\V (Hx))≥ 2. Analogously, for any x ∈ X2 we deduce that f ′(N(x)) =
f (N(V (Hx)) \V (Hx)) ≥ 1. Therefore, f ′ is a (2,2,1)-dominating function on G and, as a
consequence, γs

(1,1)(G◦H) = ω( f ) = ω( f ′)≥ γ(2,2,1)(G).
On the other side, for any γ(2,2,1)(G)-function g(W0,W1,W2) and any γ(H)-set {v1,v2},

the function g′(W ′
0,W

′
1), defined by W ′

1 = (W1×{v1})∪ (W2×{v1,v2}), is a (1,1)-dominating

14
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function on G◦H. Now, for any (x,y)∈W ′
0\W2×V (H) and x′ ∈N(x)∩(W1∪W2) we have that

g′(x′,v1)→(x,y)(N(u,v)) ≥ 1 for every (u,v) ∈ V (G ◦H). Moreover, for any (x,y) ∈W ′
0 ∩ (W2 ×

V (H)) we have that g′(x,v1)→(x,y)(N(u,v)) ≥ 1 or g′(x,v2)→(x,y)(N(u,v)) ≥ 1 for every (u,v) ∈
V (G ◦H). Therefore, g′ is a secure (1,1)-dominating function on G ◦H, which implies that
γs
(1,1)(G◦H)≤ ω(g′) = ω(g) = γ(2,2,1)(G).

Case 4. γ(H)≥ 3. In this case, for every x∈V (G), there exists y∈V (H) such that f (N[(x,y)]∩
V (Hx)) = 0. Hence, f ′(N(x)) = f (N(x,y)\V (Hx))≥ 2 for every x ∈V (G). Therefore, f ′ is a
(2,2,2)-dominating function on G, and so γs

(1,1)(G◦H) = ω( f ) = ω( f ′)≥ γ(2,2,2)(G).
Now, for any γ(2,2,2)(G)-function g(W0,W1,W2) and any v∈V (H), the function g′(W ′

0,W
′
1,W

′
2),

defined by W ′
2 = W2 ×{v} and W ′

1 = W1 ×{v}, is a secure (2,2,2)-dominating function on
G ◦H. Therefore, γ(2,2,2)(G ◦ H) ≤ ω(g′), and by Theorems 2.2 and 3.14 we deduce that
γs
(1,1)(G ◦H) = γs

(1,1,1)(G ◦H) ≤ γ(2,2,2)(G ◦H) ≤ ω(g′) = ω(g) = γ(2,2,2)(G). According to
the cases above, the result follows.

The following result is a particular case of Theorem 3.16.

Corollary 3.17. The following statements hold for a nontrivial graph H and any integers n,r
such that n ≥ r ≥ 2.

• γs
(1,1)(Kn ◦H) =

{
2 if γ(H) = 1,

3 otherwise.

• γs
(1,1)(K1,n−1 ◦H) =





2 if γs
(1,1)(H) = 2,

4 if γ(H)≥ 3,

3 otherwise.

• γs
(1,1)(Kn,r ◦H) =

{
3 if γ(H) = 1 and r = 2,

4 otherwise.

Proof. The result follows from Theorem 3.16 by considering the following facts.

• γs
(1,1,0)(Kn) = γs

(1,1,1)(Kn) = 2 and γ(2,2,1)(Kn) = γ(2,2,2)(Kn) = 3.

• γs
(1,1,0)(K1,n−1) = 2, γs

(1,1,1)(K1,n−1) = γ(2,2,1)(K1,n−1) = 3 and γ(2,2,2)(K1,n−1) = 4.

• If r = 2, then γs
(1,1,0)(Kn,r) = γs

(1,1,1)(Kn,r) = 3, while if r ≥ 3, then γs
(1,1,0)(Kn,r) =

γs
(1,1,1)(Kn,r) = γ(2,2,1)(Kn,r) = γ(2,2,2)(Kn,r) = 4.

By combining Theorem 3.16 and some known results we derive the following results.

15
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Theorem 3.18. The following statements hold for any integer n ≥ 4 and any nontrivial graph
H.

(i) If γs
(1,1)(H) = 2, then γs

(1,1)(Pn ◦H) = 2
⌈n

3

⌉
.

(ii) If γ(H) = 1 and γs
(1,1)(H)≥ 3, then γs

(1,1)(Pn ◦H) = γs
(1,1,1)(Pn)

[8]
=

⌈
5(n−2)

7

⌉
+2.

(iii) If γ(H)= 2< γs
(1,1)(H), then γs

(1,1)(Pn◦H)= γ(2,2,1)(Pn)
[4]
=

{
n−⌊n

7⌋+1 if n ≡ 1,2 (mod 7),

n−⌊n
7⌋ otherwise.

(iv) If γ(H)≥ 3, then γs
(1,1)(Pn ◦H) = γ(2,2,2)(Pn)

[4]
=





n i f n ≡ 0 (mod 4),

n+1 i f n ≡ 1,3 (mod 4),

n+2 i f n ≡ 2 (mod 4).

Proof. As indicated in the statements, we only need to prove (i). In this case, by Theorem
3.16 we know that γs

(1,1)(Pn◦H) = γs
(1,1,0)(Pn). Now, by Theorem 2.1 (ii) and Corollary 2.3 we

deduce that γ(2,1,0)(Pn) ≤ γs
(1,1,0)(Pn) ≤ γ(2,2,0)(Pn). Moreover, as shown in [4], γ(2,1,0)(Pn) =

γ(2,2,0)(Pn) = 2
⌈n

3

⌉
, which completes the proof.

By the result above and Theorem 3.16 we deduce the following result.

Proposition 3.19. For any integer n ≥ 4,

γs
(1,1,0)(Pn) = 2

⌈n
3

⌉
.

The following result concerns the case when G is a cycle.

Theorem 3.20. The following statements hold for any integer n ≥ 4 and any nontrivial graph
H.

(i) If γs
(1,1)(H) = 2, then γs

(1,1)(Cn ◦H) = γs
(1,1,0)(Cn) =

{ ⌈2n
3

⌉
i f n = 4,7,

2
⌈n

3

⌉
otherwise.

(ii) If γ(H) = 1 and γs
(1,1)(H)≥ 3, then γs

(1,1)(Cn ◦H) = γs
(1,1,1)(Cn)

[8]
=

⌈5n
7

⌉
.

(iii) If γ(H) = 2 < γs
(1,1)(H), then

γs
(1,1)(Cn ◦H) = γ(2,2,1)(Cn)

[4]
=

{
n−⌊n

7⌋+1 if n ≡ 1,2 (mod 7),

n−⌊n
7⌋ otherwise.

(iv) If γ(H)≥ 3, then γs
(1,1)(Cn ◦H) = γ(2,2,2)(Cn)

[4]
= n.

16
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Proof. As indicated in the statements, we only need to prove (i). In this case, by Theo-
rem 3.16 we know that γs

(1,1)(Cn ◦ H) = γs
(1,1,0)(Cn). As shown in [4], γ(2,1,0)(Cn) =

⌈2n
3

⌉

and γ(2,2,0)(Cn) = 2
⌈n

3

⌉
. Moreover, by Theorem 2.1 (ii) and Corollary 2.3 we deduce that

γ(2,1,0)(Cn)≤ γs
(1,1,0)(Cn)≤ γ(2,2,0)(Cn). Therefore, γs

(1,1,0)(Cn)≤ 2
⌈n

3

⌉
and, if n≡ 0,2 (mod 3),

then γs
(1,1,0)(Cn) = 2

⌈n
3

⌉
.

From now on, we consider that n ≡ 1 (mod 3) with n ≥ 10, as the cases n = 4 and
n = 7 are very easy to check. Let f (V0,V1,V2) be a γs

(1,1,0)(Cn)-function and let V (Cn) =

{x0, . . . ,xn−1}, where consecutive vertices are adjacent and the addition of subscripts is taken
modulo n. If there exists xi ∈V (Cn) such that f (xi)= f (xi+1)= 0, then γs

(1,1,0)(Cn)= γs
(1,1,0)(Pn)

and we derived the result by Proposition 3.19. Hence, we assume that for any xi ∈V0 we have
that f (xi−1) > 0 and f (xi+1) > 0. From this fact, and considering that f is a secure (1,1,0)-
dominating function, we deduce that f ({x j,x j+1,x j+2}) ≥ 2 for any x j ∈ V (Cn). Now, we
consider the following two cases.

Case 1. V2 6= /0. Without loss of generality, we suppose that x0 ∈V2 and let Si = {x3i+1,x3i+2,x3i+3}
for i ∈ {0, . . . , n−4

3 }. Notice that f (Si)≥ 2 for every i ∈ {0, . . . , n−4
3 }, which implies that

γs
(1,1,0)(Cn) = ω( f )≥

n−4
3

∑
i=0

f (Si)+ f (x0)≥
2(n−1)

3
+2 = 2

⌈n
3

⌉
.

This implies that γs
(1,1,0)(Cn) = 2

⌈n
3

⌉
.

Case 2. V2 = /0. In this case, if there exist four consecutive vertices with weight one, namely
without loss of generality x1,x2,x3,x4, then we deduce that

γs
(1,1,0)(Cn) = ω( f )≥

n

∑
i=5

f (xi)+ f ({x1,x2,x3,x4})≥
2(n−4)

3
+4 = 2

⌈n
3

⌉
.

From now on we assume that for any group of four consecutive vertices, at least one vertex
has weight equal to zero. Moreover, notice that |V0| ≥ 2 as n ≥ 10 and γs

(1,1,0)(Cn) ≤ 2
⌈n

3

⌉
.

Without loss of generality, let x0 ∈V0. and suppose that x1 ∈M f (x0). This implies that f (x1) =
f (x2) = f (x3) = 1 and f (x4) = 0, and so f (x5) = f (x6) = 1.

If f (x7) = 1, then we have that

γs
(1,1,0)(Cn) = ω( f )≥

n

∑
i=8

f (xi)+ f ({x1,x2, . . . ,x7})≥
2(n−7)

3
+6 = 2

⌈n
3

⌉
,

Now, assume that f (x7) = 0. Thus, n ≥ 13 and x8 ∈ M f (x7), which implies that f (x8) =
f (x9) = f (x10) = 1. Hence,

γs
(1,1,0)(Cn) = ω( f )≥

n

∑
i=11

f (xi)+ f ({x1,x2, . . . ,x10})≥
2(n−10)

3
+8 = 2

⌈n
3

⌉
,

which completes the proof.
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Conclusions

This doctoral thesis is a part of a wide project which investigates several
parameters related to the notion of protection of graphs. Our principal con-
tributions are summarized in 10 papers, which are included in the thesis,
and 3 (under review or accepted) papers which are not included. Next, we
highlight the main contributions of the thesis.

Chapter 1: “From Italian domination in lexicographic product graphs
to w-domination in graphs”

In this chapter we introduce a unified approach to the idea of protection of
graphs, namely w-domination. Moreover, we show that the Italian domina-
tion number of every lexicographic product graph G◦H can be expressed
in terms of five different domination parameters of G, which can be defined
under this approach. In particular,

• If γ(H) = 1, then γI(G◦H) = γ(2,1,0)(G).

• If γ2(H) = γ(H) = 2, then γI(G◦H) = γ(2,2,0)(G).

• If γ2(H)> γ(H) = 2, then γI(G◦H) = γ(2,2,1)(G).

• If γI(H) 6= 3 and γ(H)≥ 3, then γI(G◦H) = γ(2,2,2)(G).

• If γI(H) = γ(H) = 3, then γI(G◦H) = γ(2,2,2,0)(G).
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This chapter also provides preliminary results on w-domination and
raises the challenge of conducting a detailed study of the topic. Among the
main results we emphasize the following.

• If k, l ∈ Z+ and G is a graph with minimum degree δ ≥ 1, maximum
degree ∆ and order n, then the following statements hold.

(i) If k ≤ lδ +1 and w = (k+ l−1,k+ l−2, . . . ,k−1︸ ︷︷ ︸
l+1

), then

γw(G)≥
⌈
(k+ l−1)n

∆+1

⌉
.

(ii) Let w = (w0, . . . ,wl) with w0 ≥ ·· · ≥ wl . If lδ ≥ wl , then

γw(G)≥
⌈

w0n
∆+w0

⌉
.

(iii) If k ≤ lδ and w = (k, . . . ,k︸ ︷︷ ︸
l+1

), then γw(G)≥
⌈kn

∆
⌉
.

(iv) If k ≤ lδ +1 and w = (k,k−1, . . . ,k−1︸ ︷︷ ︸
l+1

), then γw(G)≥
⌈ kn

∆+1

⌉
.

• If G is a graph of minimum degree δ , then the following statements
hold for any (w0, . . . ,wl) ∈ Z+×Nl with w0 ≥ ·· · ≥ wl .

(i) If there exists i ∈ {1, . . . , l−1} such that iδ ≥ wi, then

γ(w0,...,wl)(G)≤ γ(w0,...,wi)(G).

(ii) If l ≥ i+1≥ w0, then

γ(w0,...,wi,0,...,0)(G)≤ (i+1)γ(G).

(iii) Let k, i∈Z+ such that l≥ ki, and let (w′0,w
′
1, . . . ,w

′
i)∈Z+×Nl .

If iδ ≥ w′i and wk j = kw′j for every j ∈ {0,1, . . . , i}, then

γ(w0,...,wl)(G)≤ kγ(w′0,...,w
′
i)
(G).
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(iv) If lδ ≥ wl ≥ l ≥ 2, then

γ(w0,...,wl)(G)≤ lγ(w0−l+1,wl−l+1)(G).

(v) If δ ≥ 1, w0 ≤ l−1 and wl−1 ≥ 1, then

γ(w0,...,wl−2,1)(G)≤ γ(w0,...,wl−1,0)(G).

Chapter 2: “Total domination in rooted product graphs”

In this chapter we obtain closed formulas for the total domination number
of rooted product graphs. Among the main contributions we highlight the
following.

• We show that for any graphs G and H with no isolated vertex and
any vertex v ∈V (H),

γt(G◦v H) ∈





n(G)(γt(H)−1), γ(G)+n(G)(γt(H)−1),

γt(G)+n(G)(γt(H)−1), n(G)γt(H)



 .

• We characterize the graphs with γt(G◦v H) equal to each of the four
expressions above.

• We show that for any nontrivial graphs G and H and any v ∈V (H),

γ(G◦v H)=





γ(G)+n(G)(γ(H)−1), if γ(H−{v}) = γ(H)−1,

n(G)γ(H), otherwise.

Chapter 3: “Total Roman {2}-domination in graphs”

In this chapter we introduce the study of the total Italian domination num-
ber of a graph. Among the main contributions we emphasize the following.
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• We study the relationship that exists between the total Italian domina-
tion number and other domination parameters in graphs with no iso-
lated vertex. In particular, we highlight the following.

(a) max{γt(G),γI(G)} ≤ γtI(G)≤min{γt(G),γI(G)}+ γ(G).

(b) γtI(G) = γt(G) if and only if γ×2(G) = γt(G).

(c) γtI(G)≤min{γtR(G),γ×2(G)} ≤ 2γt(G).

(d) γtI(G) = 2γt(G) if and only if γtI(G) = γtR(G) and γt(G) =

γ(G).

• We obtain general bounds and characterize some extreme cases.

• We characterize the trees with γtI(T ) = γtR(T ).

• We show that the problem of computing γtI(G) is NP-hard, even
when restricted to bipartite or chordal graphs.

Chapter 4: “Double domination in lexicographic product graphs”

This chapter develops the theory of double domination and total Italian
domination numbers for the class of lexicographic product graph. We show
that the values of these two parameters coincide, i.e, γtI(G◦H) = γ×2(G◦
H). Furthermore, we obtain tight bounds and closed formulas for γ×2(G◦
H) in terms of invariants of the factor graphs G and H. Among the main
contributions we emphasize the following.

• max{γt(G),2ρ(G)} ≤ γ×2(G◦H)≤ 2γt(G).

• If γ(H) = 1, then γ×2(G◦H)≤ γtI(G).

• If H has at least two universal vertices, then γ×2(G◦H)≤ 2γ(G).

• If H has exactly one universal vertex, then γ×2(G◦H) = γtI(G).
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• If γ(H)≥ 2, then γ×2(G◦H)≥ γtI(G).

• We characterize the graphs with γ×2(G◦H) = 2 and γ×2(G◦H) = 3.

Chapter 5: “Secure w-domination in graphs”

In this chapter we introduce a general approach to the idea of protection
of graphs, namely secure w-domination, which encompasses the known
variants of secure domination and introduces new ones. In such a sense,
we provide fundamental results on this novel parameter. Among the main
results we emphasize the following.

• If lδ (G) ≥ wl for any graph G and any w = (w0, . . . ,wl) ∈ Z+×Nl

such that wi ≥ wi+1 for every i ∈ {0, . . . , l− 1}, then the following
hold.

(i) γw(G)≤ γs
w(G).

(ii) If k ∈ Z+, then γ(k+1,k=w1,...,wl)(G)≤ γs
(k,k=w1,...,wl)

(G).

• If G is a graph and l ≥ 2 an integer, then for any (w0, . . . ,wl−1) ∈
Z+×Nl−1 with w0 ≥ ·· · ≥ wl−1 and lδ (G)≥ wl−1,

γ
s
(w0,...,wl−1,wl=wl−1)

(G)≤ γ(w0,...,wl−1)(G)+ γ(G).

• If G is a graph and (w0, . . . ,wl) ∈ Z+×Nl with w0 ≥ ·· · ≥ wl , then
the following statements hold.

(i) If there exists i ∈ {1, . . . , l − 1} such that iδ (G) ≥ wi, then
γs
(w0,...,wl)

(G)≤ γs
(w0,...,wi)

(G).

(ii) If l ≥ i+1 > w0, then γs
(w0,...,wi,0,...,0)

(G)≤ (i+1)γ(G).

• If G is a graph of order n, maximum degree ∆ with no isolated vertex
and w = (w0, . . . ,wl)∈Z+×Nl such that w0 ≥ ·· · ≥wl and lδ ≥wl ,
then the following statements hold.
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(i) If w0 = w1 and w0 − wi ≤ i for every integer i ∈ {2, ..., l},
then γs

w(G)≥
⌈
(w0+1)n

∆+1

⌉
.

(ii) If w0 = w1, then γs
w(G)≥

⌈
(w0+1)n

∆+w0

⌉
.

(iii) If w0 =w1+1 and w0−wi≤ i for every i∈{2, ..., l}, then γs
w(G)≥⌈ w0n

∆+1

⌉
.

(iv) γs
w(G)≥

⌈
w0n

∆+w0

⌉
.

Chapter 6: “Total weak Roman domination in graphs”

In this chapter we introduce the study of the total weak Roman domination
number of a graph. We study the properties of this novel parameter in order
to obtain its exact value or general bounds. Among the main contributions
we emphasize the following.

• We show the relationship that exists between the total weak Roman
domination number and other domination parameters in graphs with
no isolated vertex. In particular, we highlight the following.

(a) max{γt(G),γr(G)} ≤ γtr(G)≤ γtR(G)≤ 2γt(G).

(b) γtr(G) = γr(G) if and only if γr(G) = 2γt(G).

(c) γ(G)+1≤ γtr(G)≤ γst(G).

(d) γtr(G) = γ(G)+1 if and only if γst(G) = γ(G)+1.

(e) 2ρ(G)≤ γtr(G)≤min{γt(G),γr(G)}+ γ(G).

• We obtain general bounds and discuss some extreme cases.

• In a specific section of the paper, we focus on the case of rooted
product graphs and we obtain closed formulas and tight bounds for
the total weak Roman domination number of these graphs.

• Through the results obtained on rooted product graphs, we show that
the problem of computing the total weak Roman domination number
of a graph is NP-hard.
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Chapter 7: “On the secure total domination number of graphs”

This chapter is devoted to the study of the secure total domination number
of a graph. We study the properties of this parameter in order to obtain its
exact value or to provide general bounds. Almost all the results obtained
in this chapter have been included in the book “Topics in Domination in
Graphs” [25] published recently by Springer. Among our main contribu-
tions we highlight the following.

• We show that γst(G)≤ α(G)+γ(G). Since γ(G)≤ α(G), this result
improves the bound γst(G)≤ 2α(G) obtained in [21].

• We characterize the graphs with γst(G) = 3.

• We show that if G is a {K1,3,K1,3 + e}-free graph with no isolated
vertex, then γst(G)≤min{γt(G),γr(G)}+ γ(G)≤ γs(G)+ γ(G).

• We study the relationship that exists between the secure total domina-
tion number and the matching number of a graph. In particular, we
obtain the following results.

(a) γst(G) ≤ 2α ′(G) + |L(G)| − |S(G)|+ |IG| for any graph G of
minimum degree one.

(b) γst(G) ≤ 2α ′(G)− δ (G) + 2 for every graph G of minimum
degree δ (G)≥ 2.

(c) γst(G) ≤ α ′(G)+ γ(G) for every {K1,3,K1,3 + e}-free graph G
of minimum degree δ (G)≥ 3.

Chapter 8: “Secure total domination in rooted product graphs”

This chapter develops the theory of secure total domination for the class
of rooted product graphs. Among our main contributions we highlight the
following.
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• We show that if the root vertex v of H is a strong leaf, a support, or a
universal vertex, then there exists a formula for γst(G◦v H), i.e.,

(a) If v is a support vertex, then γst(G◦v H) = n(G)γst(H).

(b) If v is a universal vertex, then γst(G◦v H) = n(G)γst(H).

(c) If v is a strong leaf, then γst(G◦v H)= γ(G)+n(G)(γst(H)−1).

• In the remaining cases, two different behaviours are observed de-
pending on whether the root vertex is a weak leaf or not. Although
in a different way, in both cases we were able to give the intervals
to which the parameter belongs. The endpoints of these intervals
are expressed in terms of other domination parameters of the graphs
involved in the product, which allows us to obtain closed formulas
when certain conditions are imposed on the factor graphs.

Chapter 9: “Total protection of lexicographic product graphs”

This chapter is devoted to the study of the secure total domination number
and total weak Roman domination number for the class of lexicographic
product graphs. We show that the values of these two parameters coincide,
i.e., γtr(G ◦H) = γst(G ◦H). Furthermore, we obtain tight bounds and
closed formulas for γst(G◦H) in terms of invariants of the factor graphs G
and H. For instance, we deduce the following results.

• max{γr(G),γt(G),2ρ(G)} ≤ γst(G◦H)≤ 2γt(G).

• If γ(H) = 1, then γst(G◦H)≤ γtr(G).

• If H has at least two universal vertices, then γst(G◦H)≤ 2γ(G).

• If γ(H)> 2, then γst(G◦H)≥ γtr(G).

• We characterize the graphs with γst(G◦H) ∈ {2,3}.
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Chapter 10: “From (secure) w-domination in graphs to protection of
lexicographic product graphs”

In this chapter we show how the secure (total) domination number and the
(total) weak Roman domination number of lexicographic product graphs
G ◦H are related to γw(G) or γs

w(G). Among our main contributions we
highlight the following.

• If G is a graph with no isolated vertex and H a nontrivial graph, then
the following statements hold.

(i) If γs
(1,1)(H) = 2, then γs

(1,1)(G◦H) = γs
(1,1,0)(G).

(ii) If γ(H) = 1 and γs
(1,1)(H)≥ 3, then γs

(1,1)(G◦H) = γs
(1,1,1)(G).

(iii) If γ(H) = 2 < γs
(1,1)(H), then γs

(1,1)(G◦H) = γ(2,2,1)(G).

(iv) If γ(H)≥ 3, then γs
(1,1)(G◦H) = γ(2,2,2)(G).

Other contributions

Apart from the contributions included in this thesis, we want to highlight
the next papers.

• A. Cabrera Martı́nez, J.A. Rodrı́guez-Velázquez. From the strong
differential to Italian domination in graphs, Mediterr. J. Math. To
appear (2020 JCR Impact factor: 1.400, Q2 (88/330), Mathematics).

• A. Cabrera Martı́nez, J.A. Rodrı́guez-Velázquez. A note on double
domination in graphs, Discrete Appl. Math. (2021) 300, 107–111
(2020 JCR Impact factor: 1.139, Q3 (165/265), Mathematics, Ap-
plied).
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• A. Cabrera Martı́nez, A. Estrada-Moreno, J.A. Rodrı́guez-Velázquez.
From the quasi-total strong differential to quasi-total Italian domina-
tion in graphs, Symmetry (2021) 13, 1036 (2020 JCR Impact factor:
2.713, Q2 (33/73), Multidisciplinary, Sciences).

Future works

• Facing the open problems that are exposed in the papers included in
this thesis.

• Develop the theory of (secure) w-domination in graphs, and use the
advantages of this approach to study other domination parameters in
graphs.

• Develop a new theoretical framework on differentials in graphs. As
we have seen, the protection strategies can be defined from functions,
and some of them assign a weight greater than 1 to some vertices of
the graph. Our challenge is to introduce new structures that allow us
to investigate these types of domination without the use of functions.

• Some of the contributions of this thesis improve known results concer-
ning the relationships that exist between some domination parame-
ters and other invariants. We consider that such improvement will
occur for several of the known domination parameters. This is an
interesting challenge in which we intend to improve known results
on domination theory.
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