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The mere formulation of a problem is far more essential than its solution,

which may be merely a matter of mathematical or experimental skills. To

raise new questions, new possibilities, to regard old problems from a new

angle requires creative imagination and marks real advances in science.
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We often hear that mathematics consists mainly of “proving theorems”.

Is a writer’s job mainly that of “writing sentences”?
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A mathematician is a blind man in a dark room

looking for a black cat which isn’t there.
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i Matemàtiques” y la “Universitat Rovira i Virgili” por concederme la beca

que ha posibilitado realizar este doctorado.
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por ayudarme en Gdańsk y compartir conmigo su espacio y su vida, por

estar junto a mı́ en algunos momentos dif́ıciles vividos recientemente, por

comprenderme y hacerme sentir muy feliz para poder dar término a esta
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Introduction

Alliances are present in several ways in real world. General speaking, an

alliance can be understood as a collection of elements sharing similar objec-

tives or having similar properties among all elements of the collection. In

this sense, there exist alliances like the following ones:

• Group of people united by a common friendship.

• Group of plants belonging to the same botanical family.

• Group of companies sharing the same economic interest.

• Group of Twitter users following or being followed among themselves.

• Group of Facebook users sharing a common activity.

For instance, Facebook can be seen as an enormous network (or graph)

in which each user is a vertex and two vertices are connected if they are

“friends”, in the sense of the system. With this idea, an alliance in Facebook

can be realized as a collection of users (or vertices) having more “friends”

inside the collection than outside. Analogously, Twitter can be understood

as a graph in which each user is a vertex and two vertices are adjacent if at

least one of them is “following” the other one. Hence, an alliance in Twitter

can be realized as a collection of users following (or being followed) more

users (by more users) inside the collection than outside.

1



2 Introduction

Similar ideas were used by Kristiansen, Hedetniemi and Hedetniemi in

[52] to define the concepts of alliances in graphs. In this work the authors

described different kind of alliances named defensive, offensive and powerful1.

For instance, a defensive alliance in a graph G is a set S of vertices of G with

the property that every vertex in S has at most one more neighbor outside

of S than it has in S. Similarly, an offensive alliance in a graph G is a set

S of vertices of G with the property that every vertex in the neighborhood

of S has at least one more neighbor in S than it has outside of S. The

combination of these two kind of alliances is called powerful alliance, i.e., a

powerful alliance is a set S of vertices of G, which is both, defensive and

offensive. Also, in [52], it was stated the problem of finding the minimum

cardinality of any alliance in a graph. This problem was proved to be NP-

complete in [11, 30, 31, 32, 46, 47, 48] for all the cases of alliances. The

Ph. D. Thesis [45] contains a complete study of complexity of computing

minimum cardinality of any alliance in a graph, even in the case of weighted

graphs.

A generalization of alliances was presented by Shafique and Dutton in

[64], where they defined a defensive k-alliance as a set S of vertices of G with

the property that every vertex in S has at least k more neighbors in S than

it has outside of S. Analogously, an offensive k-alliance is a set S of vertices

of G with the property that every vertex in the neighborhood of S has at

least k more neighbors in S than it has outside of S. Notice that, a defensive

alliance is a defensive (−1)-alliance and an offensive alliance is an offensive

1-alliance. Thus, a powerful k-alliance is a set S of vertices of G which is

a defensive k-alliance and an offensive (k + 2)-alliance. The authors of [64]

also defined the concepts of alliance free sets and alliance cover sets as those

set of vertices, such that they do not contain any alliance and they contain

at least one vertex from each alliance in a graph, respectively.

1Also called dual alliances.



I. G. Yero 3

Applications of alliances can be found in the Ph. D. Thesis [67] where

the authors studied problems of partitioning graphs into alliances and its

application to data clustering. On the other hand, defensive alliances repre-

sent the mathematical model of web communities, by adopting the definition

of Web Community proposed by Flake, Lawrence and Giles in [35], “a Web

Community is a set of web pages having more hyperlinks (in either direction)

to members of the set than to non-members”. Other applications of alliances

were presented in [19, 41, 50, 73].

Diverse investigations have been developed about alliances. For instance,

defensive alliances have been studied in [1, 5, 10, 12, 14, 24, 25, 36, 38, 42,

43, 59, 61, 62, 63, 70, 71], offensive alliances in [3, 4, 13, 15, 16, 17, 28, 32,

58, 59, 60, 61, 72] and powerful alliances in [6, 8, 9, 31, 59, 61]. Moreover,

the Ph. D. Thesis [23, 45, 67, 69] are important compilations of the principal

results obtained about this topic.

The principal motivation of this work is based mainly on the NP-comple-

teness of computing minimum cardinality of (defensive, offensive, powerful)

k-alliances in graphs. Another motivation is the relative increasing interest

of investigations about alliances, which can be seen throughout more than 50

published papers and four Doctoral Thesis presented in the last five years.

An interesting problem in graph theory is related to the study of graph

products, and particularly, there are many investigations about obtaining

relationships between invariants of Cartesian product graphs and the cor-

responding invariants of its factors. For instance, is well known the Vi-

zing’s conjecture2 [74] related to the domination number of Cartesian pro-

duct graphs and the domination number of the factors. In this sense, we

emphasize into obtaining relationships between alliances in Cartesian pro-

duct graphs and alliances in its factors.

2The domination number of Cartesian product graph is greater or equal than the

product of domination numbers of its factors.



4 Introduction

On the other hand, other important problem in graph theory is related

to obtaining partitions of the vertex set of a graph satisfying an specific

property. Thus, in this work we are interested into obtaining partitions of a

graph formed by alliances of diverse types.

The work is structured in the following way: the first three chapters

are centered into offensive, defensive and powerful k-alliances, respectively.

There we obtain some mathematical properties of the respective alliances, we

study the alliances in Cartesian product graphs and the partitions of a graph

into alliances of the respective type. The last chapter is about alliance free

sets and alliance cover sets. There, we obtain some bounds for the maximum

cardinality of alliance free sets and the minimum cardinality of alliance cover

sets. Moreover, we study the (defensive, offensive, powerful) alliance free sets

of Cartesian product graphs.

We begin by establishing the principal terminology and notation which

we will use throughout the thesis. We refer to Glossary to complete all the

used notation. Through the thesis, G = (V,E) represents a undirected finite

graph without loops and multiple edges with set of vertices V and set of

edges E. The order of G is |V | = n(G) and the size |E| = m(G) (If there

is no ambiguity we will use only n and m). We denote two adjacent vertices

u, v ∈ V by u ∼ v and in this case we say that uv is an edge of G or uv ∈ E.

For a nonempty set X ⊆ V , and a vertex v ∈ V , NX(v) denotes the set of

neighbors that v has in X: NX(v) := {u ∈ X : u ∼ v} and the degree of v in

X is denoted by δX(v) = |NX(v)|. In the case X = V we will use only N(v),

which is also called the open neighborhood of a vertex v ∈ V , and δ(v) to

denote the degree of v in G. The close neighborhood of a vertex v ∈ V is

N [v] = N(v) ∪ {v}. The minimum and maximum degree of G are denoted

by δ and ∆, respectively.

The subgraph induced by S ⊂ V is denoted by 〈S〉 and the complement

of the set S in V is denoted by S. Moreover, ∂(S) denotes the neighborhood
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of the set S in V , i.e., ∂(S) =
⋃
v∈S NS(v). The complement of a graph

G = (V,E) is the graph G = (V,E) in which the edge uv ∈ E if and only

uv /∈ E. The line graph of a graph G is the graph L(G), obtained from G, by

associating a vertex of L(G) with each edge of the graph G and connecting

two vertices by an edge if and only if the corresponding edges of G meet at

one endpoint. The domination number of a graph is denoted by γ(G) and

the k-domination number3 by γk(G). We recall that the Cartesian product of

two graphs G1 = (V1, E1) and G2 = (V2, E2) is the graph G1 ×G2 = (V,E),

such that V = {(a, b) : a ∈ V1, b ∈ V2} and two vertices (a, b) ∈ V and

(c, d) ∈ V are adjacent in G1 ×G2 if and only if either (a = c and bd ∈ E2)

or (b = d and ac ∈ E1).

3A set S is a k-dominating set of G if for every vertex v ∈ S, it follows δS(V ) ≥ k. If

k = 1, then S is a standard dominating set.
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Chapter 1

Offensive Alliances

Abstract

We investigate the relationship between global offensive k-alliances and some

characteristic sets of a graph including r-dependent sets, τ -dominating sets

and standard dominating sets. In addition, we discuss the close relationship

that exists between the offensive alliances in Cartesian product graph and

the offensive alliances in its factors. Also, we study the problem of estimating

the maximum number of sets belonging to a partition of the vertex set of a

graph into offensive k-alliances.

7
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1.1 Introduction

A nonempty set S ⊆ V is an offensive k-alliance in G = (V,E), k ∈ {2 −
∆, ...,∆}, if for every v ∈ ∂(S)

δS(v) ≥ δS(v) + k. (1.1)

An offensive k-alliance S is called global if it is a dominating set. Figure 1.1

shows examples of (global) offensive k-alliances. Notice that equation (1.1)

is equivalent to

δ(v) ≥ 2δS(v) + k. (1.2)

Figure 1.1: {2, 6} is an offensive 0-alliance and {2, 4, 6} is a global offensive

(−1)-alliance.

It is clear that if k > ∆, no set S satisfies (1.1) and, if k < 2 − ∆, all

the subsets of V satisfy it. The offensive k-alliance number of G, denoted by

aok(G), is defined as the minimum cardinality of an offensive k-alliance in G

and the global offensive k-alliance number of G, denoted by γok(G), is defined

as the minimum cardinality of a global offensive k-alliance in G. Notice that

γok(G) ≥ aok(G) and γok+1(G) ≥ γok(G) ≥ γ(G).

Offensive alliances have been studied in several ways. The first results

about offensive alliances were presented in [28] and after that some works

have been appearing in the literature, like those in [3, 4, 13, 14, 15, 16, 17,
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32, 58, 59, 60, 61, 69, 72]. The complexity of computing minimum cardinality

of (global) offensive k-alliances in graphs was studied in [32, 45, 46, 48], where

it was proved that this is an NP-complete problem. In [3, 4, 14, 15], [13], [58]

and [61] were studied the global offensive alliances in trees, bipartite graphs,

cubic graphs and planar graphs, respectively. Here we present some of the

principal known results about offensive alliances.

Due to the the NP-completeness of computing minimum cardinality of

(global) offensive k-alliances, several researches are centered into obtaining

lower and upper bounds for the (global) offensive k-alliance number of a

graph. In this sense, in [28] was obtained that for all graphs G of minimum

degree δ, ao1(G) ≥ δ+1
2

and ao2(G) > δ+1
2

. A generalization of that was

presented in [32].

Theorem 1. [32] For any graph G of order n and minimum degree δ, and

for every k ∈ {2− δ, ..., δ},⌈
δ + k

2

⌉
≤ aok(G) ≤ γok(G) ≤ n−

⌈
δ − k + 2

2

⌉
.

Among other interesting results, in [28] and [69] appeared some upper

bounds, like the following ones, for the offensive alliance number of a graph

in terms of its order.

Theorem 2. [28] For every graph G of order n ≥ 2, ao1(G) ≤ 2n
3

.

Theorem 3. [69] For every graph G of order n, ao0(G) ≤ n
2
.

We recall that the above result was first presented in [28] restricted to

those graphs having every vertex with odd degree.

Theorem 4. [28] If G has n vertices and domination number γ(G), then

ao1(G) ≤ n+ γ(G)

2
.
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As a kind of generalization of the above result, it was proved in [32] the

following result for the case of global offensive k-alliances.

Theorem 5. [32] For any graph G of order n and k-domination number

γk(G),

γok(G) ≤ n+ γk(G)

2
.

There are also some other results about the general case of global of-

fensive k-alliances. As an examples we have the following lower bound and

upper bound, obtained in [69] and [32], respectively.

Theorem 6. [69] For every graph G of order n, size m and maximum degree

∆,

γok(G) ≥
⌈

2m+ kn

3∆ + k

⌉
.

Theorem 7. [32] For any simple graph G of order n, minimum degree δ,

and for every k ∈ {1, ..., δ},

γok(G) ≤
⌊
n(2k + 1)

2k + 2

⌋
.

Moreover, in [16] was obtained the following result which improves the

above bound for the cases k ∈ {2, ..., δ − 2}.

Theorem 8. [16] Let G be a graph of order n and minimum degree δ. Then,

for every k ∈ {2, ..., δ − 2}

γok(G) ≤ nk

k + 1
.

Also, in [16] was obtained the following relationship between the global

offensive (k + 1)-alliance number and the global offensive k-alliance number

of a graph and there were characterized the extremal graphs satisfying such

a relation.
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Theorem 9. [16] Let G be a graph of order n and minimum degree δ. Then,

for every k ∈ {1, ..., δ − 1}

γok+1(G) ≤ γok(G) + n

2
.

On the other hand, offensive alliances have been also related with other

parameters of the graph. For instance, in [59] were obtained the following

bounds in terms of the order, minimum degree and Laplacian spectral radius1.

Theorem 10. [59] Let G be a simple graph of order n and minimum degree δ.

Let µ∗ be the Laplacian spectral radius of G. The global offensive 1-alliance

number of G is bounded by

γo1(G) ≥
⌈
n

µ∗

⌈
δ + 1

2

⌉⌉
and the global offensive 2-alliance number of G is bounded by

γo2(G) ≥
⌈
n

µ∗

(⌈
δ

2

⌉
+ 1

)⌉
.

Some other investigations have been centered into studying global offen-

sive alliances in particular classes of graph. In this sense, in [58], [3, 4, 14, 15],

[13, 17] and [61] were studied the (global) offensive alliances in cubic graphs,

trees, bipartite graphs and planar graphs, respectively, where the authors

obtained several tight bounds for the (global) offensive alliance number and

some relationships between offensive alliance numbers and invariants of the

graph like domination number, γ(G), independence number, β0(T ), or inde-

pendence domination number, i(G).

Theorem 11. [58] Let G be a connected cubic graph of order n.

(i) n
2
≤ γo2(G) ≤ 3n

4
.

1The largest eigenvalue of the Laplacian matrix is called the Laplacian spectral radius

of G.
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(ii) γo2(G) = n
2

if and only if G is a bipartite graph.

(iii) γo2(G) = 3n
4

if and only if G is isomorphic to the complete graph K4.

Also, in [58] was obtained the following interesting chain of inequalities

for cubic graphs, where γio1 (G) represents the minimum cardinality of a global

offensive 1-alliance which is an independent set.

2n

5
≤ γio1 (G) ≤ n

2
≤ γo2(G) ≤ 3n

4
≤ γo2(L(G)) = γo1(L(G)) ≤ n.

For the case of trees we emphasize the following results.

Theorem 12. [3] For every tree T of order n ≥ 3, s support vertices and

domination number γ(T ),

γo1(T ) ≤ 3

2
γ(T ) +

s− 2

2
.

Let F be the family of trees of order at least three which is obtained

from r disjoint stars by adding r − 1 edges between the centers of the stars

in such a way that the resulting graph is connected, and then by subdividing

the new added edges exactly once.

Theorem 13. [4] Let T be a tree of order n ≥ 3 with l leaves and s support

vertices. Then γo1(T ) ≥ n−l+s+1
3

with equality if and only if T ∈ F .

Theorem 14. [14] For any tree T , γo1(T ) ≤ β0(T ) ≤ γo2(T ), and these bounds

are sharp.

Theorem 15. [15] For every nontrivial tree T ,

(i) γo2(G) ≥ γ(T ) + 1, with equality if and only if T is a subdivided star, a

corona of a star, or a subdivided double star.

(ii) γo2(G) ≥ i(T ) + 1, with equality if and only if γo2(G) ≥ γ(T ) + 1.
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(iii) If G has order n ≥ 3, s support vertices and l leaves, then γo2(G) ≥
γo1(T ) + l − s

Some results on bipartite graphs are the following ones.

Theorem 16. [13] For every bipartite graph G without isolated vertices, l

vertices of degree one and s support vertices,

γo1(G) ≤ n− l + s

2
.

Theorem 17. [13] For every bipartite graph G without isolated vertices and

l vertices of degree one,

γo2(G) ≤ n+ l

2
.

Theorem 18. [17] If G is a connected bipartite graph of order at least three,

then

γo2(G) ≤ 3β0(G)

2
.

Moreover, equality holds if and only if G is a corona graph of a connected

bipartite graph H with a bipartition (X, Y ) such that |X| = |Y | and γo1(H) =

|H|/2.

In the case of planar graphs we emphasize the following results.

Theorem 19. [61] Let G = (V,E) be a planar graph of order n > 2. If

S is a global offensive 1-alliance in G such that the subgraph 〈V \ S〉 has c

connected components, then

(i) |S| ≥
⌈
n+4−2c

3

⌉
.

(ii) If S is a global offensive 2-alliance, then |S| ≥
⌈
n−c+2

2

⌉
.

We refer to the Ph. D. Thesis [67] and [69] to have a more complete idea

about the principal results related to offensive alliances.
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1.2 On global offensive k-alliances

As it was mentioned in the above section, the problem of finding the global

offensive k-alliance number is NP-complete [32, 48]. Even so, for some graphs

it is possible to obtain this number. For instance, it is satisfied that for the

family of complete graphs, Kn, of order n, γok(Kn) =
⌈
n+k−1

2

⌉
, for any cycle,

Cn, of order n

γok(Cn) =


⌈
n
3

⌉
, for k = 0,⌈

n
2

⌉
, for k = 1, 2,

and for any path, Pn, of order n

γok(Pn) =


⌈
n
3

⌉
, for k = 0,⌊

n
2

⌋
+ k − 1, for k = 1, 2.

Now, for bipartite graphs we obtain the following result.

Remark 1.1. Let G = Kr,t be a complete bipartite graph with t ≤ r. For

every k ∈ {2− r, ..., r},

(i) if k ≥ t+ 1, then γok(G) = r,

(ii) if k ≤ t and
⌈
r+k

2

⌉
+
⌈
t+k

2

⌉
≥ t, then γok(G) = t,

(iii) if −t < k ≤ t and
⌈
r+k

2

⌉
+
⌈
t+k

2

⌉
< t, then γok(G) =

⌈
r+k

2

⌉
+
⌈
t+k

2

⌉
,

(iv) if k ≤ −t and
⌈
r+k

2

⌉
+
⌈
t+k

2

⌉
< t, then γok(G) = min{t, 1 +

⌈
r+k

2

⌉
}.

Proof. (i) Let {Vt, Vr} be the bi-partition of the vertex set of G. Since Vr

is a global offensive k-alliance, we only need to show that for every global

offensive k-alliance S, Vr ⊆ S. If v ∈ S, then we have δS(v) ≥ δS(v) + k > t,

in consequence v ∈ Vt. Thus, S ⊆ Vt or, equivalently, Vr ⊆ S. Therefore, we

conclude that γok(G) = r.
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(ii) If k ≤ t, it is clear that Vt is a global offensive k-alliance, then

γok(G) ≤ t. We suppose that
⌈
r+k

2

⌉
+
⌈
t+k

2

⌉
≥ t and there exists a global

offensive k-alliance S = A∪B such that A ⊆ Vr, B ⊆ Vt and |S| < t. In such

a case, as S is a dominating set, B 6= ∅. Since S is a global offensive k-alliance,

2|B| ≥ t + k and 2|A| ≥ r + k. Then we have, t > |S| ≥
⌈
r+k

2

⌉
+
⌈
t+k

2

⌉
≥ t,

a contradiction. Therefore, γok(G) = t.

(iii) In the proof of (ii) we have shown that if there exists a global of-

fensive k-alliance S of cardinality |S| < t, then |S| ≥
⌈
r+k

2

⌉
+
⌈
t+k

2

⌉
. Taking

A ⊂ Vr of cardinality
⌈
r+k

2

⌉
and B ⊂ Vt of cardinality

⌈
t+k

2

⌉
we obtain a

global offensive k-alliance S = A ∪B of cardinality |S| =
⌈
r+k

2

⌉
+
⌈
t+k

2

⌉
.

(iv) Finally, if S = A ∪ B where A ⊆ Vr, B ⊆ Vt, |A| =
⌈
r+k

2

⌉
and

|B| = 1, then S is a global offensive k-alliance. Moreover, S is a minimum

global offensive k-alliance if and only if |S| = 1 +
⌈
r+k

2

⌉
≤ t.

1.2.1 Global offensive k-alliances and r-dependent sets

A set S ⊆ V is an r-dependent set in G if the maximum degree of a vertex

in the subgraph 〈S〉 is at most r, i.e., δS(v) ≤ r, ∀v ∈ S [29]. We denote

by αr(G) the maximum cardinality of an r-dependent set in G.

Theorem 1.2. Let G be a graph of order n, minimum degree δ and maximum

degree ∆.

(i) If S is an r-dependent set in G, r ∈
{

0, ..., b δ−1
2
c
}

, then S is a global

offensive (δ − 2r)-alliance.

(ii) If S is a global offensive k-alliance in G, k ∈ {2−∆, ...,∆}, then S is

a
⌊

∆−k
2

⌋
-dependent set.

(iii) Let G be a δ-regular graph (δ > 0). S is an r-dependent set in G,

r ∈
{

0, ..., b δ−1
2
c
}

, if and only if S is a global offensive (δ−2r)-alliance.
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Proof. (i) Let S be an r-dependent set in G, then δS(v) ≤ r for every v ∈ S.

Therefore, δS(v) + δ ≤ 2δS(v) + δS(v) ≤ 2r + δS(v). As a consequence,

δS(v) ≥ δS(v) + δ − 2r, for every v ∈ S. That is, S is a global offensive

(δ − 2r)-alliance in G.

(ii) If S is a global offensive k-alliance in G, then δ(v) ≥ 2δS(v) + k for

every v ∈ S. As a consequence, δS(v) ≤ δ(v)−k
2
≤ ∆−k

2
for every v ∈ S, that

is, S is a
⌊

∆−k
2

⌋
-dependent set in G.

(iii) The result follows immediately from (i) and (ii).

Corollary 1.3. Let G be a graph of order n, minimum degree δ and maxi-

mum degree ∆.

(i) For every k ∈ {2−∆, ...,∆},

n− αb∆−k
2 c(G) ≤ γok(G).

(ii) For every k ∈ {1, ..., δ},

γok(G) ≤ n− αb δ−k2 c(G).

(iii) If G is a δ-regular graph (δ > 0), for every k ∈ {1, ..., δ},

γok(G) = n− αb δ−k2 c(G).

1.2.2 Global offensive k-alliances and τ-dominating sets

Let G be a graph without isolated vertices. For a given τ ∈ (0, 1], a set

S ⊆ V is called τ -dominating set in G if δS(v) ≥ τδ(v) for every v ∈ S [20].

We denote by γτ (G) the minimum cardinality of a τ -dominating set in G.

Theorem 1.4. Let G be a graph of minimum degree δ > 0 and maximum

degree ∆.
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(i) If 0 < τ ≤ min{k+δ
2δ
, k+∆

2∆
}, then every global offensive k-alliance in G

is a τ -dominating set.

(ii) If max{k+δ
2δ
, k+∆

2∆
} ≤ τ ≤ 1, then every τ -dominating set in G is a global

offensive k-alliance.

Proof. (i) If S is a global offensive k-alliance in G, then 2δS(v) ≥ δ(v) + k

for every v ∈ S. Therefore, if 0 < τ ≤ min{1
2
, k+δ

2δ
}, then

δS(v) ≥ δ(v) + k

2
≥ δ(v) + δ(2τ − 1)

2
≥ τδ(v).

Moreover, if 1
2
≤ τ ≤ k+∆

2∆
, then

δS(v) ≥ δ(v) + k

2
≥ δ(v) + ∆(2τ − 1)

2
≥ τδ(v).

(ii) Since δ > 0, it is clear that every τ -dominating set is a dominating

set. If τ ≥ 1
2
, then δ(2τ−1) ≤ δ(v)(2τ−1), for every vertex v inG. Hence, if S

is a τ -dominating set and k+δ
2δ
≤ τ , we have k ≤ (2τ−1)δ(v) ≤ 2δS(v)−δ(v),

for every v ∈ S. Thus, S is a global offensive k-alliance in G.

On the other hand, if τ ≤ 1
2
, then ∆(2τ − 1) ≤ δ(v)(2τ − 1), for every

vertex v in G. Hence, if S is a τ -dominating set and k+∆
2∆
≤ τ , we have

k ≤ (2τ − 1)δ(v) ≤ 2δS(v) − δ(v), for every v ∈ S. Thus, S is a global

offensive k-alliance in G.

Corollary 1.5. S is a global offensive 0-alliance in G if, and only if, S is a

(1
2
)-dominating set.

Corollary 1.6. S is a global offensive k-alliance in a δ-regular graph G if,

and only if, S is a (k+δ
2δ

)-dominating set in G.

Theorem 1.7. Let G be a graph of order n, minimum degree δ > 0 and

maximum degree ∆ ≥ 2. For every j ∈ {2 − ∆, ..., 0} and k ≤ − jδ
∆

it is

satisfied

γok(G) + γoj (G) ≤ n.
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Proof. If j ∈ {2 − ∆, ..., 0}, then there exists τ ∈
[

1
∆
, 1

2

]
such that j =

∆(2τ − 1). Therefore, if S is a τ -dominating set, then (by Theorem 1.4 (ii))

S is a global offensive j-alliance. In consequence, γoj (G) ≤ γτ (G). Moreover,

if k ≤ − jδ
∆

= δ(1 − 2τ), then 1 − τ ≥ max{1
2
, k+δ

2δ
}. Hence, by Theorem 1.4

(ii) we have that every (1− τ)-dominating set is a global offensive k-alliance.

Thus, γok(G) ≤ γ1−τ (G). Using that γτ (G) + γ1−τ (G) ≤ n for 0 < τ < 1 (see

Theorem 9, [20]), we obtain the required result.

Notice that from Theorem 1.7 we have the following result.

Corollary 1.8. If G is a graph of order n and minimum degree δ > 0, then

γo0(G) ≤ n
2
.

1.2.3 Global offensive k-alliances and dominating sets

We say that a global offensive k-alliance S is minimal if no proper subset

S ′ ⊂ S is a global offensive k-alliance.

Theorem 1.9. Let G be a graph without isolated vertices and let k ≤ 1. If

S is a minimal global offensive k-alliance in G, then S is a dominating set

in G.

Proof. We suppose there exists u ∈ S such that δS(u) = 0 and let S ′ =

S \ {u}. Since S is a minimal global offensive k-alliance, and G has no

isolated vertices, there exists v ∈ S ′ such that δS′(v) < δS′(v) + k. If v = u,

we have δS(u) = δS′(u) < δS′(u) + k = k, a contradiction. If v 6= u, we have

δS(v) = δS′(v) < δS′(v) + k = δS(v) + k, which is a contradiction too. Thus,

δS(u) > 0 for every u ∈ S.

Lemma 1.10. Let G be a graph of order n. A dominating set S in G is a

global offensive k-alliance in G if and only if δS(v)− δS(v) +n+k−1 ≤ 2|S|
for every v ∈ S in G.
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Proof. We know that a dominating set S in G is a global offensive k-alliance

in G if and only if δS(v) ≥ δS(v) + k for every v ∈ S, where δS(v) and δS(v)

denote the number of vertices that v has in S and S, respectively, in G. Now,

using that δS(v) = |S|−δS(v) and δS(v) = |S|−1−δS(v) = n−|S|−1−δS(v),

we get that S is a global offensive k-alliance in G if and only if |S| − δS(v) ≥
n − |S| − 1 + k − δS(v) or, equivalently, if δS(v) − δS(v) + n + k − 1 ≤ 2|S|
for every v ∈ S.

Theorem 1.11. Let G be a graph of order n, minimum degree δ and maxi-

mum degree ∆.

(i) Every dominating set in G = (V,E), S ⊆ V , of cardinality |S| ≥⌈
n+k+∆−1

2

⌉
is a global offensive k-alliance in G.

(ii) Every dominating set in G = (V,E), S ⊆ V , of cardinality |S| ≥⌈
2n+k−δ−2

2

⌉
is a global offensive k-alliance in G.

Proof. If S is a dominating set in G and it satisfies |S| ≥
⌈
n+k+∆−1

2

⌉
, then

|S| ≥ n+ k + ∆− 1

2
≥ δS(v)− δS(v) + n+ k − 1

2

for every vertex v. Therefore, by Lemma 1.10 we have that S is a global

offensive k-alliance in G. Thus, (i) follows.

Analogously, by replacing G by G and by taking into account that the

maximum degree in G is n− 1− δ, we obtain (ii).

1.3 Cartesian product of offensive k-alliances

In this section we discuss the relationship that exist between the (global)

offensive ki-alliance number of Gi, i ∈ {1, 2} and the (global) offensive k-

alliance number of G1 ×G2, for some specific values of k.
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Theorem 1.12. Let Gi = (Vi, Ei) be a graph of minimum degree δi and

maximum degree ∆i, i ∈ {1, 2}.

(i) If Si is an offensive ki-alliance in Gi, i ∈ {1, 2}, then, for k = min{k2−
∆1, k1 −∆2}, S1 × S2 is an offensive k-alliance in G1 ×G2.

(ii) Let Si ⊂ Vi, i ∈ {1, 2}. If S1×S2 is an offensive k-alliance in G1×G2,

then S1 is an offensive (k + δ2)-alliance in G1 and S2 is an offensive

(k + δ1)-alliance in G2, moreover, k ≤ min{∆1 − δ2,∆2 − δ1}.

Proof. If X = S1 × S2, then (u, v) ∈ ∂(X) if and only if, either u ∈ ∂(S1)

and v ∈ S2 or u ∈ S1 and v ∈ ∂(S2). We differentiate two cases:

Case 1: If u ∈ ∂(S1) and v ∈ S2, then δX(u, v) = δS1(u) and δX(u, v) =

δS1
(u) + δ(v).

Case 2: If u ∈ S1 and v ∈ ∂(S2), then δX(u, v) = δS2(v) and δX(u, v) =

δ(u) + δS2
(v).

(i) In Case 1 we have δX(u, v) = δS1(u) ≥ δS1
(u) + k1 = δX(u, v) −

δ(v) + k1 ≥ δX(u, v)−∆2 + k1 and in Case 2 we obtain δX(u, v) = δS2(v) ≥
δS2

(v) + k2 = δX(u, v) − δ(u) + k2 ≥ δX(u, v) − ∆1 + k2. Hence, for every

(u, v) ∈ ∂(X), δX(u, v) ≥ δX(u, v) + k, with k ≤ min{∆1 − δ2,∆2 − δ1}. So,

the result follows.

(ii) In Case 1 we have δS1(u) = δX(u, v) ≥ δX(u, v) + k = δS1
(u) +

δ(v) + k ≥ δS1
(u) + δ2 + k and in Case 2 we deduce δS2(v) = δX(u, v) ≥

δX(u, v)+k = δS2
(v)+δ(u)+k ≥ δS2

(v)+δ1 +k. Hence, for every u ∈ ∂(S1),

δS1(u) ≥ δS1
(u) + δ2 + k and for every v ∈ ∂(S2), δS2(v) ≥ δS2

(v) + δ1 + k.

So, the result follows.

Corollary 1.13. Let Gi be a graph of maximum degree ∆i, i ∈ {1, 2}. Then

for every k ≤ min{k1 −∆2, k2 −∆1},

aok(G1 ×G2) ≤ aok1
(G1)aok2

(G2).
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For the particular case of the graph C4 ×K4, we have ao−3(C4 ×K4) =

2 = ao0(C4)ao1(K4).

Theorem 1.14. Let G2 = (V2, E2) be a graph of maximum degree ∆2 and

minimum degree δ2.

(i) If S is a global offensive k-alliance in G1, then S×V2 is a global offensive

(k −∆2)-alliance in G1 ×G2.

(ii) If S × V2 is a global offensive k-alliance in G1 ×G2, then S is a global

offensive (k + δ2)-alliance in G1, moreover, k ≤ ∆1 − δ2, where ∆1

denotes the maximum degree of G1.

Proof. (i) We first note that, as S is a dominating set in G1, X = S × V2

is a dominating set in G1 × G2. In addition, for every xij = (ui, vj) ∈ X

we have δX(xij) = δS(ui) and δS(ui) + ∆2 ≥ δS(ui) + δ(vj) = δX(xij), so

δX(xij) = δS(ui) ≥ δS(ui) + k ≥ δX(xij) − ∆2 + k. Thus, X is a global

offensive (k −∆2)-alliance in G1 ×G2.

(ii) From Theorem 1.12 (ii) we obtain that S is an offensive (k + δ2)-

alliance in G1 and k ≤ ∆1−δ2. We only need to show that S is a dominating

set. As S × V2 is a dominating set in G1 ×G2, we have that for every u ∈ S
and v ∈ V2 there exists (a, b) ∈ S × V2 such that (a, b) is adjacent to (u, v),

hence, b = v and a is adjacent to u, so the result follows.

It is easy to see the following result on domination,

γ(G1 ×G2) ≤ n2γ(G1),

where n2 is the order of G2. An “analogous” result on global offensive k-

alliances can be deduced from Theorem 1.14 (i).

Corollary 1.15. For any graph G1 and any graph G2 of order n2 and max-

imum degree ∆2,

γok−∆2
(G1 ×G2) ≤ n2γ

o
k(G1).
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We emphasize the following particular cases of Corollary 1.15.

Remark 1.16. For any graph G,

(i) γok−2(G× Ct) ≤ tγok(G),

(ii) γok−2(G× Pt) ≤ tγok(G).

(iii) γok−t+1(G×Kt) ≤ tγok(G).

Notice also that if G2 is a regular graph, Theorem 1.14 (i) can be sim-

plified as follow.

Corollary 1.17. Let G2 = (V2, E2) be a δ-regular graph. A set S is a global

offensive k-alliance in G1 if and only if S × V2 is a global offensive (k − δ)-

alliance in G1 ×G2.

1.4 Partitions into offensive k-alliances

For any graph G = (V,E), the (global) offensive k-alliance partition number

of G, (ψgok (G)) ψok(G), k ∈ {2 − ∆, ...,∆}, is defined to be the maximum

number of sets in a partition of V such that each set is (a global offensive)

an offensive k-alliance.

If V can be partitioned into global offensive k-alliances, then there exist

a global offensive k-alliance S and a vertex of minimum degree v such that

v /∈ S and δ = δ(v) ≥ 2δS(v) + k. Therefore, if k > δ, then V can not

be partitioned into global offensive k-alliances. Hereafter we will say that

(Πgo
r (G)) Πo

r(G) is a partition of G into r (global) offensive k-alliances. Now

on we will say that a graph G is partitionable into (global) offensive k-

alliances if (ψgok (G) ≥ 2) ψok(G) ≥ 2.

Notice that if every vertex of G has even degree and k is odd, or every

vertex of G has odd degree and k is even, then every (global) offensive k-
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Figure 1.2: {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}} is a partition of the graph into three

offensive (−2)-alliances.

alliance in G is an offensive (a global offensive) (k+1)-alliance and vice versa.

Hence, in such a case, ψok(G) = ψok+1(G) and ψgok (G) = ψgok+1(G).

1.4.1 Partitioning CR(n,2)

We now introduce an important class of graphs that will provide useful exam-

ples in the later sections. Let Zn be the additive group of integers modulo n

and let M ⊂ Zn, such that, i ∈M if and only if −i ∈M . We can construct a

graph G = (V,E) as follows, the vertices of V are the elements of Zn and (i, j)

is an edge in E if and only if j−i ∈M . This graph is called a circulant of order

n and we will denote it by CR(n,M). The setM is called the set of generators

of the circulant graph. With this notation, a cycle graph is CR(n, {−1, 1})
and the complete graph is CR(n,Zn). To simplify the notation we will use

CR(n, t), 0 < t ≤ n
2
, instead of CR(n, {−t,−t + 1, ...,−1, 1, 2, ..., t}). We

emphasize that CR(n, t) is a (2t)-regular graph.

Note that, if n is even, Πgo
2 (CR(n, 2)) = {{1, 3, 5, ..., n−1}, {2, 4, 6, ..., n}}

is a partition of CR(n, 2) into global offensive 0-alliances, moreover, if n = 4j,

Πgo
4 (CR(n, 2)) = {{1, 5, ..., n−3}, {2, 6, ..., n−2}, {3, 7, ..., n−1}, {4, 8, ..., n}}

is a partition of CR(n, 2) into global offensive (−2)-alliances. At next we

compute the global offensive k-alliance partition number of CR(n, 2), for
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k ∈ {−2, .., 4}.

Claim 1.18. For the circulant graph G = CR(n, 2), γ(G) = dn
5
e.

Claim 1.19. Any dominating set in G = CR(n, 2) is a global offensive (−2)-

alliance.

Proof. As S is a dominating set in G, then for every v ∈ S, we have δS(v) ≥
1 = 3− 2 ≥ δS(v)− 2. So, S is a global offensive (−2)-alliance in G.

Remark 1.20. In the case of the circulant graph G = CR(n, 2) we have the

following:

(i) G is not partitionable into global offensive 3-alliances or global offensive

4-alliances.

(ii) ψgo1 (G) = ψgo2 (G) = 2 if and only if n = 4j.

(iii) ψgo−1(G) = ψgo0 (G) = 3 if and only if n = 3j.

(iv) ψgo−2(G) =

⌊
n

dn5 e

⌋
.

Proof. We first emphasize that, since G is a 4-regular graph, ψgo−1(G) =

ψgo0 (G), ψgo1 (G) = ψgo2 (G) and ψgo3 (G) = ψgo4 (G). So, we will only consider

the study of ψgok (G) for k = 4, 2, 0,−2. Let us denote the vertices of G by

{v1, v2, . . . , vn} such that vi is adjacent to vi−2, vi−1, vi+1, vi+2.

(i) By Corollary 1.24 we know that if G is partitionable into global

offensive k-alliances, for k ≥ 1, then ψgok (G) = 2. So, suppose {S1, S2} is a

partition of the graph into two global offensive 4-alliances. If vi 6∈ Sj, then

δSj(vi) = 4 = δ(vi), so CR(n, 2) is a bipartite graph, a contradiction.

(ii) As above, let us suppose {S1, S2} is a partition of the graph into

two global offensive 2-alliances. If vi 6∈ S1, then δS1(vi) ≥ 3. If δS1(vi) = 4,

then δS1(vi+1) ≥ 2, so δS2(vi+1) ≤ 2 < δS2
(vi+1) + 2, a contradiction. Thus

δS1(vi) = 3. Analogously for S2, if vi 6∈ S2, then δS2(vi) = 3.
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Now, let vi ∈ S2, if vi−2, vi−1, vi+1 ∈ S1 (or vi−1, vi+1, vi+2 ∈ S1), we

obtain that δS2(vi−1) ≤ 2 (or δS2(vi+1) ≤ 2), which is a contradiction. There-

fore, if vl, vl+1 ∈ S1, then necessarily, vl+2, vl+3 ∈ S2 and this is possible if

and only if n = 4j.

(iii) Let us suppose n = 3j. So, the sets {v1, v4, ..., vn−2}, {v2, v5, ..., vn−1}
and {v3, v6, ..., vn} form a partition of G into three global offensive 0-alliances,

therefore ψgo0 (G) ≥ 3. From Corollary 1.25 we have that ψgo0 (G) ≤ 3, so

ψgo0 (G) = 3. On the contrary, let us suppose ψgo0 (G) = 3, then by Theorem

1.27 and Remark 1.29 each alliance in the partition is a maximal independent

set and the chromatic number of G is 3, so there exist three color classes

among the vertices of G, v̇1, v̇2 and v̇3, which contain those vertices with

subindexes congruent to 1, 2 and 3, respectively, hence vn belongs to the

class v̇3.

(iv) We have that ψgo−2(G)γgo−2(G) ≤ n, now, by using Claims 1.18 and

1.19 we obtain ψgo−2(G) ≤
⌊

n
dn

5
e

⌋
. By taking q =

⌊
n
dn

5
e

⌋
, let us form a partition

of the graph into q dominating sets. Note that 2 < q ≤ 5. Hence, we have

the following cases:

Case 1: q = 5 if and only if n = 5j, j ∈ Z+. The sets {v1, v6, ..., vn−4},
{v2, v7, ..., vn−3}, {v3, v8, ..., vn−2}, {v4, v9, ..., vn−1} and {v5, v10, ..., vn} form

a partition of G into five dominating sets.

Case 2: q = 4 if and only if n 6= 6, 7, 11, 5j, j ∈ Z+. So, if n = 4j + r,

r ∈ {0, 1, 2, 3}, then Pr is a partition of G into dominating sets:

P0 = {{v1, v5, ..., vn−3}, {v2, v6, ..., vn−2},

{v3, v7, ..., vn−1}, {v4, v8, ..., vn}},

P1 = {{v1, v6, v10, v14..., vn−3}, {v2, v7, v11, v15, ..., vn−2},

{v3, v8, v12, v16, ..., vn−1}, {v4, v5, v9, v13, ..., vn}},
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P2 = {{v1, v6, v11, v15, v19, ..., vn−3}, {v2, v7, v12, v16, v20, ..., vn−2},

{v3, v8, v13, v17, v21, ..., vn−1}, {v4, v5, v9, v10, v14, v18, ..., vn}},

P3 = {{v1, v6, v11, v16, v20, v24, ..., vn−3}, {v2, v7, v12, v17, v21, v25, ..., vn−2},

{v3, v8, v13, v18, v22, v26, ..., vn−1}, {v4, v5, v9, v10, v14, v15, v19, v23, ..., vn}}.

Case 3: q = 3 if and only if n = 6, 7, 11. In these cases we have P6 =

{{v1, v2}, {v3, v4}, {v5, v6}}, P7 = {{v1, v4}, {v2, v5}, {v3, v6, v7}} and P11 =

{{v1, v4, v7, v11}, {v2, v5, v8, v10}, {v3, v6, v9}} form partitions into three dom-

inating sets. Therefore, by using Claim 1.19 we conclude the proof.

1.4.2 Relations between ψgok (G) and k

Proposition 1.21. For any graph G without isolated vertices, there exists

k ∈ {0, ..., δ} such that G is partitionable into global offensive k-alliances.

Proof. If δ ≥ 1 and {X, Y } is a partition of V such that the edge cut-set

between X and Y has maximum cardinality, then X and Y are dominating

sets. Moreover, for every xi ∈ X there exists ti ∈ Z, ti ≥ 0, such that,

δY (xi) = δX(xi) + ti. Taking t = min
xi∈X
{ti}, then we have that Y is a global

offensive t-alliance in G. Analogously we obtain that there exists r ∈ Z,

r ≥ 0, such that X is a global offensive r-alliance in G. Therefore, taking

k = min{t, r} we conclude that {X, Y } is a partition of V into two global

offensive k-alliances in G.

Corollary 1.22. Any graph without isolated vertices is partitionable into

global offensive 0-alliances.

Theorem 1.23. If a graph is partitionable into r ≥ 3 global offensive k-

alliances, then k ≤ 3− r.

Proof. We suppose that Πgo
r (G) = {S1, ...Sr} is a partition of G into r ≥ 3
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global offensive k-alliances. For every v ∈ Sr we have

δS1(v) ≥ δS1
(v) + k ≥

r−1∑
j=2

δSj(v) + k

≥
r−1∑
j=2

(δSj(v) + k) + k

≥
r−1∑
j=2

r−1∑
i=1;i 6=j

δSi(v) +
r−1∑
j=2

k + k

=
r−1∑
j=2

δS1(v) +
r−1∑
j=2

r−1∑
i=2;i 6=j

δSi(v) + k(r − 1)

≥ (r − 2)δS1(v) +
r−1∑
j=2

r−1∑
i=2;i 6=j

1 + k(r − 1)

= (r − 2)δS1(v) + (r − 2)(r − 3) + k(r − 1).

Therefore,

0 ≥ (r − 3)δS1(v) + (r − 2)(r − 3) + k(r − 1)

≥ (r − 3) + (r − 2)(r − 3) + k(r − 1)

= (r − 1)(r − 3 + k),

that is, k ≤ 3− r.

From Theorem 1.23 we have that if a graph is partitionable into r ≥ 3

global offensive k-alliances, then k ≤ 0, so we obtain the following interesting

consequence.

Corollary 1.24. If G is partitionable into global offensive k-alliances for

k ≥ 1, then ψgok (G) = 2.

From Corollary 1.22 we have that any graph without isolated vertices is

partitionable into global offensive 0-alliances. In consequence, from Theorem

1.23 we obtain the following result.
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Corollary 1.25. Let G be a graph without isolated vertices. If k ∈ {2 −
∆, ..., 0}, then 2 ≤ ψgok (G) ≤ 3− k.

An example of graph where ψgo0 (G) = 2 is the complete graph G = Kn

and an example of graph where ψgo0 (G) = 3 is the cycle graph C3t, t ≥ 1.

Theorem 1.26. Let G be a graph of order n such that ψgok (G) > 2. Then,

for every l ∈ {1, ..., ψgok (G) − 2}, there exists a subgraph, Gl, of G of order

n(Gl) ≤ n− lγok(G) such that ψgol+k(Gl) + l ≥ ψgok (G).

Proof. Let Πgo
r (G) = {S1, S2, ..., Sr} be a partition of V into r > 2 global

offensive k-alliances and let t ∈ {2, ..., r − 1}. We take l = r − t and Gl =

〈
⋃t

1 Si〉. For every i ≤ t, Si is a dominating set in Gl, in addition, for every

v ∈ Si ∩ (
⋃t

1 Si), we have

δSi(v) ≥ δSi(v) + k =
t∑

j=1,j 6=i

δSj(v) +
r∑

j=t+1

δSj(v) + k

≥
t∑

j=1,j 6=i

δSj(v) + r − t+ k,

that is, Si is a global offensive (l + k)-alliance in Gl. Moreover, the order of

G and Gl are related as follow,

n =
r∑
i=1

|Si| = n(Gl) +
r∑

i=t+1

|Si| ≥ n(Gl) + lγok(G).

1.4.3 Partition number and chromatic number

In this section, motivated by Corollary 1.25, we will study the cases ψgo0 (G) =

2 and ψgo0 (G) = 3. As a consequence of the study, we will show the relation-

ship that exists between the chromatic number of G, χ(G), and ψgo0 (G).
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We recall that, given a positive integer t, a t-dependent set in G is a set

of vertices of G such that no vertex in the set is adjacent to more than t

vertices of the set. A 0-dependent set in G is simply an independent set of

vertices in G.

Theorem 1.27. Any set belonging to a partition of a graph into r ≥ 3 global

offensive k-alliances, is a (−k)-dependent2 set.

Proof. Let Πgo
r (G) = {S1, S2, ..., Sr} be a partition of G into r ≥ 3 global

offensive k-alliances. For every v ∈ Sr,

δS1(v) ≥ δS1
(v) + k ≥ δS2(v) + δSr(v) + k

≥ δS2
(v) + δSr(v) + 2k ≥ δS1(v) + 2δSr(v) + 2k.

Therefore, δSr(v) ≤ −k and, as a consequence, Sr is a (−k)-dependent set.

Analogously we obtain that Si, 1 ≤ i ≤ r−1 is a (−k)-dependent set too.

Notice that, if k = 0 in the above result, then r = 3 and as a consequence,

every set in a partition into three global offensive 0-alliances is an independent

set, so it leads to the following result.

Corollary 1.28. If ψgo0 (G) = 3, then χ(G) ≤ 3.

A trivial example of graph where ψgo0 (G) = 3 and χ(G) = 3 is the cycle

graph C3, and a graph where ψgo0 (G) = 3 and χ(G) = 2 is the cycle graph

G = C6.

Remark 1.29. If G is a non bipartite graph and ψgo0 (G) = 3, then χ(G) = 3.

An example of graph where χ(G) > 3 and ψgo0 (G) = 2 is the complete

graph G = Kn with n ≥ 4.

2We recall that, by Theorem 1.23, if r ≥ 3, then k ≤ 0.
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Corollary 1.30. For any graph G without isolated vertices and chromatic

number greater than 3, ψgo0 (G) = 2.

Let us see another sufficient condition for the global offensive 0-alliance

number to be 2.

Theorem 1.31. For any graph G without isolated vertices containing a ver-

tex of odd degree, it is satisfied ψgo0 (G) = 2.

Proof. By Corollary 1.22 and Corollary 1.25 we have that 2 ≤ ψgo0 (G) ≤ 3.

Let us suppose {S1, S2, S3} is a partition of G into global offensive 0-alliances.

Without loss of generality, let us suppose S1 contains a vertex v of odd

degree. From Theorem 1.27 we have δS1(v) = 0. As S2 and S3 are global

offensive 0-alliances, we obtain δS2(v) ≥ δS2
(v) = δS3(v) ≥ δS3

(v) = δS2(v),

in consequence, δ(v) = δS2(v) + δS3(v) = 2δS2(v), a contradiction.

Note that Theorem 1.31 is equivalent to saying that if ψgo0 (G) = 3, then

every vertex in G has even degree. As a consequence, for k odd, every par-

tition of G into (global) offensive k-alliances is a partition of G into (global)

offensive (k + 1)-alliances and vice versa.

Corollary 1.32. If ψgo0 (G) = 3 and k is odd, then aok(G) = aok+1(G), γok(G) =

γok+1(G), ψok(G) = ψok+1(G) and ψgok (G) = ψgok+1(G).

1.4.4 Bounds on ψok(G) and ψgok (G)

From the following relation between the offensive k-alliance number and the

offensive k-alliance partition number, we obtain that lower bounds on aok(G)

lead to upper bounds on ψok(G):

aok(G)ψok(G) ≤ n.
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From Theorem 1 we have that aok(G) ≥
⌈
δ+k

2

⌉
, hence

ψok(G) ≤


⌊

2n
δ+k

⌋
, δ + k even

⌊
2n

δ+k+1

⌋
, δ + k odd.

This bound is attained, for instance, for every δ-regular graph, δ ≥ 1, by

taking k = 2− δ. In such a case, each vertex is an offensive (2− δ)-alliance

and ψok(G) = n. Another example is G = CR(8, 2) where {1, 2, 5, 6} and

{3, 4, 7, 8} are (global) offensive 2-alliances and the above bound leads to

ψo2(G) ≤ 2.

Analogously, lower bounds on γok(G) lead to upper bounds on ψgok (G):

γok(G)ψgok (G) ≤ n.

Now, from Theorem 6 we have that γok(G) ≥ d2m+kn
3∆+k

e, hence

ψgok (G) ≤

⌊
n⌈

2m+kn
3∆+k

⌉⌋ .
This bound is attained, for instance, for the circulant graph CR(n, 2) for

k = −2 and, if n = 3j, it is also attained for k ∈ {−1, 0}.

Theorem 1.33. If a graph G is partitionable into global offensive k-alliances,

then

(i) ψgok (G) ≤
⌊

2m−n(k−4)
2n

⌋
,

(ii) ψgok (G) ≤
⌊
δ−k+4

2

⌋
,

(iii) ψgok (G) ≤
⌊

4−k+
√
k2+2(δ−k)

2

⌋
.

Proof. Let Πgo
r (G) = {S1, S2, ..., Sr} be a partition of G into global offensive

k-alliances. Since Si is a dominating set for every i ∈ {1, ..., r}, we have that

for every v ∈ Si, δSi(v) ≥ r − 2. Thus, the bounds are obtained as follow.
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(i) δ(v)− (r−2) ≥ δSi(v) ≥ δSi(v)+k ≥ r−2+k, so 2m =
∑

v∈V δ(v) ≥
n(2r − 4 + k). Hence, the bound follows.

(ii) If v is a vertex of minimum degree δ, there exists Si ∈ Πgo
r (G) such

that v /∈ Si, thus, δ = δ(v) ≥ 2δSi(v) + k ≥ 2(r − 2) + k.

(iii) As above, if v is a vertex of minimum degree δ, there exists Si ∈
Πgo
r (G) such that v ∈ Si, thus, for every j 6= i, δ = δ(v) ≥ 2δSj(v) + k ≥

2
∑
l 6=i,j

δSl(v) + k. Also, as each offensive k-alliance belonging to Πgo
r (G) is

a dominating set, δSl(v) ≥ δSl(v) + k ≥ r − 2 + k. So, we obtain δ ≥
2(r − 2)(r − 2 + k) + k = 2r2 + 2(k − 4)r − 3k + 8 and, as a consequence,

2r2 + 2(k − 4)r − 3k + 8− δ ≤ 0. Therefore r ≤ 4−k+
√
k2+2(δ−k)

2
.

In order to compare (ii) and (iii) for δ ≥ 1, we note that

δ − k + 4

2
<

4− k +
√
k2 + 2(δ − k)

2

if and only if, k < 2−δ. Examples of equality in above theorem are the follow-

ing ones. Bound (i) is attained for the cycle graph C3t, where ψgo0 (C3t) = 3

and (ii) is attained in the case of the circulant graph G = CR(5n, 2) and

k = −2, where ψgo−2(G) = 5. For the case of the cube graph Q3 bound (ii)

is attained for k = 2, 3 where ψgo2 (Q3) = ψgo3 (Q3) = 2 and bound (iii) is

attained for k ∈ {−2,−1}, where ψgo−2(Q3) = ψgo−1(Q3) = 4.

1.4.5 On the cardinality of sets belonging to a partition

In this subsection we obtain bounds for the cardinality of the sets belonging

to a partition of a graph into global offensive k-alliances.

Theorem 1.34. If S belongs to a partition of G into global offensive k-

alliances, then ⌈
n(2δ −∆ + k)

∆ + 2δ + k

⌉
≤ |S| ≤

⌊
2n∆

∆ + 2δ + k

⌋
.
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Proof. If X is a t-dependent set in G, then for every v ∈ X we have δX(v) ≤ t.

So, δ(v)− δX(v) ≤ t. Hence,

∆(n− |X|) ≥
∑
v∈X

δX(v) =
∑
v∈X

δX(v) ≥
∑
v∈X

(δ − t) = |X|(δ − t),

which leads to,

|X| ≤ n∆

∆ + δ − t
. (1.3)

Now, since the union of offensive k-alliances is an offensive k-alliance too, if

S belongs to a partition of V into global offensive k-alliances, then {S, S}
is a partition of V into two global offensive k-alliances and, by Theorem 1.2

(ii) it is also a partition of V into two
⌊

∆−k
2

⌋
-dependent sets. Therefore, by

taking t =
⌊

∆−k
2

⌋
≤ ∆−k

2
in (1.3) we obtain the upper bound on |S|. The

lower bound on |S| is deduced from the upper bound on |S| = n− |S|.

The circulant graph CR(n, 2) contains a partition into two global offen-

sive 0-alliances S and S, such that |S| = dn
3
e and |S| = b2n

3
c, where the

bounds of the above theorem are attained.

The Laplacian spectral radius contains important information about the

graph. This eigenvalue is related to several important graph invariants and

it imposes reasonably good bounds on the values of several parameters of

graphs which are very hard to compute.

The Laplacian spectral radius, µ∗, satisfy the following equality shown

by Fiedler [33]:

µ∗ = 2nmax

{ ∑
vi∼vj(wi − wj)

2∑
vi∈V

∑
vj∈V (wi − wj)2

}
, (1.4)

where not all the components of the vector (w1, w2, ..., wn) ∈ Rn are equal.

The following theorem shows the relationship between the Laplacian

spectral radius of a graph and the cardinality of sets belonging to a partition

into global offensive k-alliances.
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Theorem 1.35. Let G = (V,E) be a graph with Laplacian spectral radius

µ∗. If S belongs to a partition of G into global offensive k-alliances, −δ ≤
k ≤ µ∗ − δ, then⌈

n

2
−

√
n2(µ∗ − k)− 2nm

4µ∗

⌉
≤ |S| ≤

⌊
n

2
+

√
n2(µ∗ − k)− 2nm

4µ∗

⌋
.

Proof. If S belongs to a partition of G into global offensive k-alliances, we

know that S and S are global offensive k-alliances in G, then∑
v∈S

δ(v) ≤ 2
∑
v∈S

δS(v)− k|S|

and ∑
v∈S

δ(v) ≤ 2
∑
v∈S

δS(v)− k|S|.

Therefore

2m ≤ 4
∑
v∈S

δS(v)− kn. (1.5)

On the other hand, by equation (1.4), taking w ∈ Rn defined as

wi =

{
1 if vi ∈ S;

0 otherwise,
(1.6)

we have

µ∗ ≥
n
∑

v∈S δS(v)

|S||S|
. (1.7)

Therefore, by using the expression (1.5) in (1.7) we obtain

2m+ nk

4
≤ |S|(n− |S|)µ∗

n
.

By solving the above inequality for |S| and by considering that it is an integer

we obtain the bounds on |S|.

The above bounds are attained for the complete graph Kn for n even

and k = 1. In this case Kn is partitioned into two global offensive 1-alliances

of cardinality n
2
.
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1.4.6 On the edge cut-set

Theorem 1.36. Let G be a graph of order n and size m. If Cgo
(r,k)(G) is the

minimum number of edges having its endpoints in different sets of a partition

of G into r ≥ 2 global offensive k-alliances, then

(i) Cgo
(r,k)(G) ≥

⌈
(r−1)(2m+nk)

4

⌉
,

(ii) if r ≥ 3, then Cgo
(r,k)(G) ≤

⌊
(r−1)(2m−nk)

4(r−2)

⌋
,

(iii) if r > 3, then Cgo
(r,k)(G) ≤

⌊
−nk(r−1)

2r−6

⌋
.

Proof. Let Πgo
r = {S1, S2, ..., Sr} be a partition of G into r global offensive

k-alliances. The number of edges in G with one endpoint in Si and the other

endpoint in Sj is C(Si, Sj) =
∑
v∈Si

δSj(v) =
∑
v∈Sj

δSi(v). Hence, taking into

account that for every v ∈ Si, δ(v) ≤ 2δSi(v)− k, we have that

2(r − 1)m =
r∑
i=1

∑
v∈Si

δ(v) ≤ 2
r∑
i=1

∑
v∈Si

δSi(v)− k
r∑
i=1

(n− |Si|)

= 2
r∑
i=1

r∑
j=1;j 6=i

∑
v∈Sj

δSi(v)− nk(r − 1)

= 2
r∑
i=1

r∑
j=1;j 6=i

C(Si, Sj)− nk(r − 1)

= 4Cgo
(r,k)(G)− nk(r − 1).

So, (i) follows. On the other hand if r ≥ 3, then for every v ∈ Si, δ(v) ≥
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2δSi(v) + k, we have

2(r − 1)m =
r∑
i=1

∑
v∈Si

δ(v) ≥ 2
r∑
i=1

∑
v∈Si

δSi(v) + k
r∑
i=1

(n− |Si|)

= 2
r∑
i=1

r∑
j=1;j 6=i

∑
v∈Sj

δSi(v) + nk(r − 1)

= 2
r∑
i=1

r∑
j=1;j 6=i

∑
v∈Sj

r∑
l=1;l 6=i

δSl(v) + nk(r − 1)

≥ 2
r∑
i=1

r∑
j=1;j 6=i

r∑
l=1;l 6=i,j

∑
v∈Sj

δSl(v) + nk(r − 1)

= 2
r∑
i=1

r∑
j=1;j 6=i

r∑
l=1;l 6=i,j

C(Sl, Sj) + nk(r − 1)

= 4(r − 2)Cgo
(r,k)(G) + nk(r − 1).

Therefore, (ii) follows. Finally, as each Si is a global offensive k-alliance, we

have
r∑
i=1

∑
v∈Si

δSi(v) ≥
r∑
i=1

∑
v∈Si

δSi(v) + kn(r − 1).

Hence, from the proof of (i) we have 2Cgo
(r,k)(G) =

r∑
i=1

∑
v∈Si

δSi(v) and, from

the proof of (ii), we have
r∑
i=1

∑
v∈Si

δSi(v) ≥ 2(r − 2)Cgo
(r,k)(G). Therefore, we

obtain 2Cgo
(r,k)(G) ≥ 2(r − 2)Cgo

(r,k)(G) + nk(r − 1) and (iii) follows.

From the above result we have that if ψgok (G) ≥ 3 then ψgok (G) ≤⌊
6m+nk
2m+nk

⌋
. Also, notice that, for k ≤ δ, 2 ≤

⌊
6m+nk
2m+nk

⌋
, so we obtain the

following bound on ψgok (G).

Corollary 1.37. For any graph G of order n and size m,

ψgok (G) ≤
⌊

6m+ nk

2m+ nk

⌋
.
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The above bound is attained, for instance, for the circulant graph CR(5n, 2),

where ψgo−2(G) = 5.

1.4.7 Partitioning G1 ×G2 into offensive k-alliances

From Theorem 1.12, if Gi = (Vi, Ei) is a graph of minimum degree δi and

maximum degree ∆i, i ∈ {1, 2} and Si is an offensive ki-alliance in Gi,

i ∈ {1, 2}, then, for k = min{k2 − ∆1, k1 − ∆2}, S1 × S2 is an offensive

k-alliance in G1 ×G2. Thus, we deduce that, a partition

Πo
ri

(Gi) = {S(i)
1 , S

(i)
2 , ..., S(i)

ri
}

of Gi into ri offensive ki-alliances, i ∈ {1, 2}, induces a partition of G1 ×G2

into r1r2 offensive k-alliances, with k = min{k2 −∆1, k1 −∆2}:

Πo
r1r2

(G1 ×G2) =


S

(1)
1 × S

(2)
1 · · · S

(1)
1 × S

(2)
r2

S
(1)
2 × S

(2)
1 · · · S

(1)
2 × S

(2)
r2

...
...

...

S
(1)
r1 × S

(2)
1 · · · S

(1)
r1 × S

(2)
r2


.

So, we obtain the following result.

Corollary 1.38. For any graph Gi of maximum degree ∆i, i ∈ {1, 2}, and

for every k ≤ min{k1 −∆2, k2 −∆1}, ψok(G1 ×G2) ≥ ψok1
(G1)ψok2

(G2).

For the particular case of the graph C4 ×K4, we have ψo−3(C4 ×K4) =

8 = 4 · 2 = ψo0(C4)ψo1(K4).

Theorem 1.39. Let Gi = (Vi, Ei) be a graph of order ni and let Πgo
ri

(Gi)

be a partition of Gi into ri global offensive ki-alliances, i ∈ {1, 2}. If xi =

min
S∈Πgori (Gi)

{|S|} and k ≤ min{k1, k2}, then

(i) γok(G1 ×G2) ≤ min{n2x1, n1x2},
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(ii) ψgok (G1 ×G2) ≥ max{ψgok1
(G1), ψgok2

(G2)}.

Proof. If we consider the set Mj = S
(1)
j × V2 where S

(1)
j ∈ Πgo

r1
(G1), then for

every (u, v) /∈Mj it is satisfied that

δ
S

(1)
j ×V2

(u, v) = δ
S

(1)
j

(u) ≥ δ
S

(1)
j

(u) + k1 = δ
S

(1)
j ×V2

(u, v) + k1.

Thus, Mj is a global offensive k1-alliance in G1 × G2. The same argu-

ment shows that Nl = V1 × S
(2)
l is a global offensive k2-alliance for every

S
(2)
l ∈ Πgo

r2
(G2). Thus, by taking S

(1)
j and S

(2)
l of cardinality x1 and x2,

respectively, we obtain |Mj| = x1n2 and |Nl| = x2n1, so (i) follows. More-

over, as {M1, ...,Mr1} and {N1, ..., Nr2} are partitions of G1×G2 into global

offensive k-alliances, (ii) follows.

Suppose Gj is partitionable into global offensive kj-alliances, for kj ≥ 1

and j ∈ {1, 2}. Bound (ii) is attained for 1 ≤ k ≤ min{k1, k2}, where

ψgok (G1 × G2) = 2 = max{2, 2} = max{ψgok1
(G1), ψgok2

(G2)}. From (ii) we

deduce the following result.

Corollary 1.40. If a graph Gi of order ni is partitionable into global offensive

ki-alliances, i ∈ {1, 2}, then for k ≤ min{k1, k2},

γok(G1 ×G2) ≤ n1n2

max{ψgok1
(G1), ψgok2

(G2)}
.

Example of equality is γo1(C4 ×K2) =
4 · 2

max{ψgo1 (C4), ψgo1 (K2)}
= 4.



Chapter 2

Defensive Alliances

Abstract

We introduce the concept of boundary defensive k-alliance and we inves-

tigate some of its mathematical properties. Also, we discuss the relationships

that exist between the defensive k-alliances in Cartesian product graphs and

the defensive k-alliances in its factors. We study the problem of estimating

the maximum number of sets belonging to a partition of the vertex set of

a graph into defensive k-alliances. Moreover, we obtain some relationships

between this maximum number of sets and other invariants of a graph like

isoperimetric number, bisection and bipartition width.
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40 Defensive alliances

2.1 Introduction

A nonempty set S ⊆ V is a defensive k-alliance in G = (V,E), k ∈
{−∆, . . . ,∆}, if for every v ∈ S,

δS(v) ≥ δS(v) + k. (2.1)

A defensive k-alliance S is called global if it forms a dominating set. Fig-

ure 2.1 shows examples of (global) defensive k-alliances. Notice that equation

(2.1) is equivalent to

δ(v) ≥ 2δS(v) + k. (2.2)

Figure 2.1: {2, 5, 6} is a defensive 0-alliance and {3, 4, 5} is a global defensive

(−1)-alliance.

If k > 1, the star graph K1,t has no defensive k-alliances and every

set composed by two adjacent vertices in a cubic graph is a defensive (−1)-

alliance. For graphs having defensive k-alliances, the defensive k-alliance

number of G, denoted by adk(G), is defined as the minimum cardinality of a

defensive k-alliance in G. For graphs having global defensive k-alliances, the

global defensive k-alliance number of G, denoted by γdk(G), is the minimum

cardinality of a global defensive k-alliance in G.

Notice that adk+1(G) ≥ adk(G), γdk+1(G) ≥ γdk(G) ≥ γ(G) and γdk(G) ≥ adk(G).
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Defensive alliances have been studied in different ways. The first results

about defensive alliances were presented in [36, 52] and after that some results

have been appearing in the literature, like those in [1, 5, 10, 12, 14, 24, 25,

27, 37, 38, 42, 43, 59, 61, 62, 63, 69, 70, 71]. The complexity of computing

minimum cardinality of defensive k-alliances in graphs was studied in [11,

30, 45, 46, 48, 70], where it was proved that this is an NP-complete problem.

An spectral study of alliances in graphs was presented in [59, 63], where the

authors obtained some bounds for the defensive alliance number in terms

of the algebraic connectivity, the Laplacian spectral radius and the spectral

radius1 of the graph. In [5, 37] and [61] were studied the global defensive

alliances in trees and planar graphs, respectively. In [1] were studied the

defensive alliances in regular graphs and circulant graphs. Moreover, the

alliances in complement graphs, line graphs and weighted graphs were studied

in [70], [63, 71] and [47], respectively. In [14, 27] were obtained some relations

between the independence number and the defensive alliances number of a

graph. Also, in [24, 25, 42] were investigated the partitions of a graph into

defensive (−1)-alliances. Here we present some of the principal known results

about defensive alliances.

The first results about alliances appeared in [36, 52]. For instance, there

were obtained the following bounds

ad−1(G) ≤ min

{
n−

⌈
δ

2

⌉
,
⌈n

2

⌉}
,

and also

ad0(G) ≤ n−
⌊
δ

2

⌋
.

After that, in [63] were presented generalizations of the above results for the

case of defensive k-alliances.

1The second smallest eigenvalue of the Laplacian matrix of a graph G is called the

algebraic connectivity of G. The largest eigenvalue of the adjacency matrix of G is the

spectral radius of G.
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Theorem 20. [63] For every k ∈ {−δ, . . . ,∆},⌈
δ + k + 2

2

⌉
≤ adk(G) ≤ n−

⌊
δ − k

2

⌋
.

Theorem 21. [63] For every k ∈ {−δ, . . . , 0}, adk(G) ≤
⌈
n+ k + 1

2

⌉
.

Moreover, the global defensive k-alliances in graphs have been studied

in [62] where the authors presented the following interesting results.

Theorem 22. [62] Let S be a global defensive k-alliance of minimum car-

dinality in a graph G. If W ⊂ S is a dominating set in G, then for every

r ∈ Z such that 0 ≤ r ≤ γdk(G)− |W |,

γdk−2r(G) + r ≤ γdk(G).

Theorem 23. [62] For any graph G of order n and maximum degree ∆ and

for every k ∈ {−∆, ...,∆},

γdk(G) ≥

⌈
n⌊

∆−k
2

⌋
+ 1

⌉
.

It is well-known that the algebraic connectivity of a graph is probably

the most important information contained in the Laplacian spectrum. This

eigenvalue is related to several important graph invariants and it imposes

reasonably good bounds on the values of several parameters of graphs which

are very hard to compute. Now we present a result about defensive alliances,

obtained in [63].

Theorem 24. [63] For any connected graph G and for every k ∈ {−δ, . . . ,∆},

adk(G) ≥
⌈
n(µ+ k + 1)

n+ µ

⌉
.

The cases k = −1 and k = 0 in the above theorem were studied previ-

ously in [59]. Other relations between defensive alliances and the eigenvalues

of a graph appeared in [69], in this case related to the spectral radius.
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Theorem 25. [69] For every graph G of order n and spectral radius λ,

γdk(G) ≥
⌈

n

λ− k + 1

⌉
.

The particular cases of the above theorem k = −1 and k = 0 were

studied previously in [59]. Now, as a special cases of graphs in which have

been investigated their defensive alliances we find the complement graph and

the line graph. In [70] and [63, 71], respectively, were proved the following

results about defensive alliances in complement graphs and line graphs.

Theorem 26. [70] If G is a graph of order n with maximum degree ∆, then⌈
n−∆ + k + 1

2

⌉
≤ adk(G) ≤

⌈
n+ ∆ + k + 1

2

⌉
.

Theorem 27. [70] Let G be a graph of order n such that γ(G) > 3 and

k ∈ {−δ, ..., 0}. If the minimum defensive k-alliance in G is not global, then

adk(G) ≤


⌊

3n+ k + 5

4
− γ(G) + γ(G)

2

⌋
, if n+ k is odd⌊

3n+ k + 6

4
− γ(G) + γ(G)

2

⌋
, if n+ k is even.

Theorem 28. [63] For any simple graph G of maximum degree ∆, and for

every k ∈ {2(1−∆), ..., 0},

adk(L(G)) ≤ ∆ +

⌈
k

2

⌉
.

Theorem 29. [63] Let G = (V,E) be a simple graph of maximum degree

∆. Let v ∈ V such that δ(v) = ∆, let δv = max{δ(u) : u ∼ v} and let

δ∗ = min{δv : δ(v) = ∆}. For every k ∈ {2− δ∗ −∆, ...,∆− δ∗},

adk(L(G)) ≤
⌈

∆ + δ∗ + k

2

⌉
.

Moreover, if δ1 ≥ δ2 ≥ ... ≥ δn is the degree sequence of G, then for every

k ∈ {2− δ1 − δ2, ..., δ1 + δ2 − 2},

adk(L(G)) ≥
⌈
δn + δn−1 + k

2

⌉
.
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As a consequence of the above results, in [63] was obtained the following

interesting result.

Corollary 30. [63] For any δ-regular graph G, δ > 0, and for every k ∈
{2(1− δ), ..., 0},

adk(L(G)) = δ +

⌈
k

2

⌉
.

The cases k = −1 and k = 0 in the above results were studied previously

in [71]. On the other hand, several researches about defensive alliances have

been centered into specific classes of graphs. As an example, in [1] were stud-

ied the defensive alliances in regular graphs and circulant graphs. In order

to present some results from [1] it is necessary to introduce some notation.

The (k, δ)-induced alliances set is the set of graphs H of order t, minimum

degree δH ≥
⌊
δ
2

⌋
, and maximum degree ∆H ≤ δ, with no proper subgraph of

minimum degree greater than
⌊
δ
2

⌋
. This set is denoted by S(t,δ).

Theorem 31. [1] If G is a δ-regular graph, then S is a critical alliance2 of

G of cardinality t if and only if 〈S〉 ∈ S(t,δ).

Also, in [1] were characterized the (6)-regular graphs G satisfying that

ad−1(G) ∈ {4, 5, 6, 7}. For the case of circulant graphs3 in [1] were obtained

the following results.

Theorem 32. [1] Let G = CR(n,M) be a circulant graph with |M | genera-

tors.

(i) If δ = 2|M |, then |M |+ 1 ≤ ad−1(G) ≤ 2|M |.

(ii) If δ = 2|M | − 1, then |M | ≤ ad−1(G) ≤ 2|M |−1.

2A critical alliance is an alliance such that it does not contain other alliance as a proper

subset.
3See page 23 for the definition of circulant graphs.
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As a consequence, in [1] was obtained that for the case of |M | = 3,

it is satisfied that 4 ≤ ad−1(G) ≤ 8. Moreover, the authors of that article

characterized the circulant graphs G such that ad−1(G) ∈ {4, 5, 6, 7}.
Other class of graphs in which have been studied its defensive alliances is

the case of planar graphs. For instance, [61] was dedicated to study defensive

alliances in planar graphs, where are some results like the following ones.

Theorem 33. [61] Let G be a planar graph of order n.

(i) If n > 6, then γd−1(G) ≥
⌈
n+12

8

⌉
.

(ii) If n > 6 and G is a triangle-free graph, then γd−1(G) ≥
⌈
n+8

6

⌉
.

(iii) If n > 4, then γd0(G) ≥
⌈
n+12

7

⌉
.

(iv) If n > 4 and G is a triangle-free graph, then γd0(G) ≥
⌈
n+8

5

⌉
.

Theorem 34. [61] For any tree T of order n,

γd−1(G) ≥
⌈
n+ 2

4

⌉
and γd0(G) ≥

⌈
n+ 2

3

⌉
.

Global defensive alliances in trees have been also studied separately, for

instance, [37] is an example of that. A t-ary tree is a rooted tree where each

node has at most t children. A complete t-ary tree is a t-ary tree in which

all the leaves have the same depth and all the nodes except the leaves have

t children. We let Tt,d be the complete t-ary tree with depth/height d. With

the above notation we present the following results obtained in [37].

Theorem 35. [37] Let n be the order of T2,d. Then for any d,

γd−1(T2,d) =

⌈
2n

5

⌉
.

Theorem 36. [37] Let d be an integer greater than three,

(i) If d is odd, then γd−1(T3,d) =
⌊

19n
36

⌋
.
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(ii) If d is even, then γd−1(T3,d) =
⌈

19n
36

⌉
.

Theorem 37. [37] For d ≥ 2 and t ≥ 2,

td−1

⌈
t− 1

2

⌉
+ td−1 + td−2 ≤ γd−1(Tt,d) ≤ td−1

⌈
t− 1

2

⌉
+ td−1 + td−2 + td−3.

Defensive alliances in trees have been also studied in [5] where it was

obtained the following bound in terms of the number of leaves and support

vertices of a tree. Also, in this paper were characterized the extremal graphs

satisfying this bound.

Theorem 38. [5] Let T be a tree of order n ≥ 2 with l leaves and s support

vertices. Then

γd0(T ) ≥ 3n− l − s+ 4

6
.

In [14, 27] were investigated some relationships between the indepen-

dence number (independent domination number) and the global defensive

alliance number of a graph. For instance, there were obtained the following

results.

Theorem 39. [14] For any tree T , γd−1(T ) ≤ β0(T ), and this bound is sharp.

Theorem 40. [14] If T is a tree of order n ≥ 3 with s support vertices, then

(i) γd0(G) ≤ 3β0(T )−1
2

,

(ii) γd0(G) ≤ β0(T ) + s− 1.

In order to present some results from [27] we introduce some notation

defined in the mentioned article.

F1 is the family of graphs obtained from a clique S isomorphic to Kt by

attaching t = δS(u) + 1 leaves at each vertex u ∈ S.

F2 is the family of bipartite graphs obtained from a balanced complete

bipartite graph S isomorphic to Kt,t by attaching t+ 1 leaves at each vertex

u ∈ S.
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F3 is the family of trees obtained from a tree S by attaching a set Lu of

δS(u) + 1 leaves at each vertex u ∈ S.

Theorem 41. [27]

(i) Every graph G satisfies i(G) ≤ (γd−1(G))2 − γd−1(G) + 1 with equality if

and only if G ∈ F1.

(ii) Every bipartite graph G satisfies i(G) ≤ (γd−1(G))2

4
+γd−1(G) with equality

if and only if G ∈ F2.

(iii) Every tree G satisfies i(G) ≤ 2γd−1(G) − 1 with equality if and only if

G ∈ F3.

Similarly to the above result, in [27] were obtained some relationships

between the independent domination number and the global defensive 0-

alliance number of a graph.

On the other hand, defensive alliances in Cartesian product graphs were

studied in [52], where the authors obtained the following result.

Theorem 42. [52] For any Cartesian product graph G1 ×G2,

(i) ad−1(G1 ×G2) ≤ min{ad−1(G1)ad0(G2), ad0(G1)ad−1(G2)}.

(ii) ad0(G1 ×G2) ≤ ad0(G1)ad0(G2).

Other topic of interest into investigating defensive alliances is related

to graph partitions in which each set is formed by a defensive alliance. In

[24, 25] were studied the partitions of a graph into defensive (−1)-alliances. In

these articles was defined the concept of (global) defensive alliance partition

number, (ψgd−1(G)) ψd−1(G), as the maximum number of sets in a partition of a

graph such that every set of the partition is a (global) defensive (−1)-alliance.
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Theorem 43. [25] Let G be a connected graph of order n ≥ 3. Then

1 ≤ ψd−1(G) ≤
⌊
n+

3

2
−
√

1 + 4n

2

⌋
.

Theorem 44. [25] Let G be a graph with minimum degree δ. Then

ψd−1(G) ≤

⌊
n⌈
δ+1

2

⌉⌋ .
Moreover, in [24] and [42] were studied the partitions into (global) de-

fensive (−1)-alliances in trees and grid graphs, respectively.

Theorem 45. [24] Let G be a connected graph with minimum degree δ. Then

ψgd−1(G) ≤ 1 +

⌊
δ

2

⌋
.

As a consequence of the above result, in [24] was obtained the following

interesting result.

Corollary 46. [24] Let T be a tree of order n ≥ 3. Then 1 ≤ ψgd−1(T ) ≤ 2.

Moreover, in [24] were characterized some families of trees satisfying that

ψgd−1(T ) = 1 or ψgd−1(T ) = 2. From [42] is known the following results for the

class of grid graphs Pr × Pc.

Theorem 47. [42] For 4 ≤ r ≤ c,

ψd−1(Pr × Pc) =

⌊
r − 2

2

⌉⌊
c− 2

2

⌉
+ r + c− 2.

Theorem 48. [42] For 2 ≤ r ≤ c, ψgd−1(Pr × Pc) = 2.

We refer to the Ph. D. Thesis [67] and [69] to have a more complete idea

about the principal results related to defensive alliances.
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2.2 Boundary defensive k-alliances

Defensive k-alliances are formed by vertices of a graphs that satisfy equation

(2.1), i.e., each vertex belonging to a defensive k-alliance has at least k-

more neighbors inside of the alliance than outside of the alliance. Figure 2.2

shows an example in which every vertex of the set S = {1, 2} has exactly one

vertex more outside of S than inside of S. In this sense, we are interested into

study the limit case of equation (2.1). A set S ⊂ V is a boundary defensive

k-alliance in G, k ∈ {−∆, . . . ,∆}, if

δS(v) = δS(v) + k, ∀v ∈ S. (2.3)

A boundary defensive k-alliance in G is called global if it forms a dom-

inating set in G. Figure 2.2 shows examples of (global) boundary defensive

k-alliances. Notice that equation (2.3) is equivalent to

δ(v) = 2δS(v)− k ∀v ∈ S. (2.4)

Figure 2.2: {1, 2} is a boundary defensive (−1)-alliance and {5, 6, 7, 8} is a

global boundary defensive 1-alliance.

Note that there are graphs which does not contain any boundary defen-

sive k-alliance for some values of k. For instance, the cube graph of Figure

2.2 has no boundary defensive 0-alliances.
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Remark 2.1. Let G be a simple graph and let k ∈ {−∆, . . . ,∆}. If for every

v ∈ V , δ(v) − k is an odd number, then G does not contain any boundary

defensive k-alliance.

Corollary 2.2. Let G be a δ-regular graph and let k ∈ {−δ, . . . , δ}. If δ − k
is odd, then G does not contain any boundary defensive k-alliance.

Corollary 2.3. If every vertex of a graph G has odd degree, then G does not

contain any boundary defensive 0-alliance.

Remark 2.4. If S is a defensive k-alliance in G and S̄ is a global offensive

(−k)-alliance in G, then S is a boundary defensive k-alliance in G.

Theorem 2.5. Let G = (V,E) be a graph and let S ⊂ V . Let m(〈S〉) be the

size of 〈S〉 and let c be the number of edges of G with one endpoint in S and

the other endpoint outside of S. If S is a boundary defensive k-alliance in

G, then

(i) m(〈S〉) =
c+ |S|k

2
.

(ii) If G is a δ-regular graph, then m(〈S〉) =
|S|(δ + k)

4
and c =

|S|(δ − k)

2
.

Proof. If S is a boundary defensive k-alliance in G, then

2m(〈S〉) =
∑
v∈S

δS(v) =
∑
v∈S

δS(v) + |S|k = c+ |S|k.

Thus, (i) follows. Moreover,

δ(v) = 2δS(v) + k, ∀v ∈ S.

Hence, ∑
v∈S

δ(v) = 2
∑
v∈S

δS(v) + |S|k = 2c+ |S|k.

Therefore, if G is δ-regular, δ|S| = 2c+ |S|k. Thus, (ii) follows.
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Notice that if S is a boundary defensive k-alliance in a graph G, then

adk(G) ≤ |S|. So, lower bounds for defensive k-alliance number are also lower

bounds for the cardinality of any boundary defensive k-alliance. Moreover,

upper bounds for the cardinality of any boundary defensive k-alliance are

upper bounds for the defensive k-alliance number. For instance, the lower

bound shown in Theorem 20 leads to a lower bound for the cardinality of any

boundary defensive k-alliance. In the next result we obtain an upper bound

for the cardinality of any boundary defensive k-alliance, which is the same

obtained in Theorem 20 for the defensive k-alliance number. By completeness

we add also the lower bound from Theorem 20 and its proof.

Remark 2.6. If S is a boundary defensive k-alliance in a graph G, then⌈
δ + k + 2

2

⌉
≤ |S| ≤

⌊
2n− δ + k

2

⌋
.

Proof. Since S ⊆ V is a boundary defensive k-alliance in G, by equation

(2.4) we have
δ(v) + k

2
= δS(v) ≤ |S| − 1, ∀v ∈ S.

δ + k + 2

2
≤ |S|.

Hence, the lower bound follows. On the other hand, if S is a boundary

defensive k-alliance in G, then

δ − k
2
≤ δ(v)− k

2
= δS(v) ≤ n− |S|, ∀v ∈ S.

Thus, the upper bound follows.

As the following corollary shows, the above bounds are tight.

Corollary 2.7. The cardinality of every boundary defensive k-alliance S in

the complete graph of order n is |S| = n+k+1
2

.
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As a consequence of the above corollary we conclude that the complete

graph G = Kn has boundary defensive k-alliances if and only if n+ k + 1 is

even. The next equality about the algebraic connectivity of G, µ, shown by

Fiedler in [33] is useful to obtain the following results:

µ = 2nmin

{ ∑
vi∼vj(wi − wj)

2∑
vi∈V

∑
vj∈V (wi − wj)2

}
, (2.5)

where not all the components of the vector (w1, w2, ..., wn) ∈ Rn are equal.

The following theorems show the relationship between the algebraic con-

nectivity (and the Laplacian spectral radius) of a graph and the cardinality

of its boundary defensive k-alliances.

Theorem 2.8. Let G be a connected graph. If S is a boundary defensive

k-alliance in G, then⌈
n(µ−

⌊
∆−k

2

⌋
)

µ

⌉
≤ |S| ≤

⌊
n(µ∗ −

⌈
δ−k

2

⌉
)

µ∗

⌋
.

Proof. Since S is a boundary defensive k-alliance in G,

δS(v) =
δ(v)− k

2
≥
⌈
δ − k

2

⌉
, ∀v ∈ S. (2.6)

Now, from the proof of Theorem 1.35, equation (1.7) we have

µ∗ ≥
n
∑
v∈S

δS(v)

|S|(n− |S|)
. (2.7)

Then, by using (2.6) the above relation leads to

µ∗ ≥
n
⌈
δ−k

2

⌉
n− |S|

. (2.8)

Therefore, by solving (2.8) for |S| and by considering that it is an integer,

we obtain the upper bound.
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On the other hand,

δS(v) =
δ(v)− k

2
≤
⌊

∆− k
2

⌋
, ∀v ∈ S. (2.9)

Then, the lower bound is obtained as above by using (2.9) and (2.5) instead

of (2.6) and (1.4), respectively.

If G = Kn, then µ = µ∗ = n and ∆ = δ = n − 1. Therefore, the above

theorem leads to the same result as Corollary 2.7.

The following result, given by Fiedler in [34], gives another relationship

between the algebraic connectivity µ and the minimum and maximum de-

grees of the graph, which we will use to obtain bounds on the cardinality of

boundary defensive k-alliances.

Lemma 2.9. [34] If G is a graph of order n, then µ ≤ n
n−1

δ.

Theorem 2.10. Let G be a connected graph. If S is a boundary defensive

k-alliance in G, then⌈
n(µ+ k + 2)− µ

2n

⌉
≤ |S| ≤ n−

⌈
n(µ− k)− µ

2n

⌉
.

Proof. Since S is a boundary defensive k-alliance in G,

δ ≤ δ(v) = 2δS(v)− k ≤ 2(|S| − 1)− k, ∀v ∈ S, (2.10)

and

δ ≤ δ(v) = 2δS(v) + k ≤ 2(n− |S|) + k, ∀v ∈ S. (2.11)

By Lemma 2.9, we have

µ ≤ n

n− 1
δ. (2.12)

Therefore, by using (2.10) and (2.11) in (2.12) we obtain both bounds.

Notice that in the case of the complete graph G = Kn, the above theorem

leads to Corollary 2.7.
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2.2.1 Boundary defensive k-alliances and planar sub-

graphs

The Euler formula states that for a connected planar graph of order n, size

m and f faces, n−m+ f = 2.

As a direct consequence of Theorem 2.5 and the Euler formula we obtain

the following result.

Corollary 2.11. Let G = (V,E) be a graph and let S ⊂ V . Let c be the

number of edges of G with one endpoint in S and the other endpoint outside

of S. If S is a boundary defensive k-alliance in G such that 〈S〉 is planar

connected with f faces, then

(i) |S| = c+ 4− 2f

2− k
, for k 6= 2.

(ii) If G is a δ-regular graph, then |S| = 4f − 8

δ + k − 4
and c =

2(δ − k)(f − 2)

δ + k − 4
,

for k ∈ {5− δ, ..., δ}.

Theorem 2.12. Let G be a graph and let S be a boundary defensive k-

alliance in G such that 〈S〉 is planar connected with f faces; then

|S| ≤

⌊√
16− 8f + (n+ k − 2)2 + n+ k − 2

2

⌋
.

Proof. If S denotes a boundary defensive k-alliance in G, then∑
v∈S

δS(v) =
∑
v∈S

δS(v) + k|S| ≤ |S|(n− |S|) + k|S|.

By the Euler formula on 〈S〉 we have
∑
v∈S

δS(v) = 2(|S|+f −2), so the result

follows.

The above bound is tight. For instance, the bound is attained for the

complete graph G = K5 where any set of cardinality four forms a boundary
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Figure 2.3: (a) The complete graph G = (V,E) ∼= K5 is an example of a

4-regular graph where the set S = {2, 3, 4, 5} ⊂ V is a boundary defensive

2-alliance. (b) 〈S〉 ∼= K4 is planar with four faces. In this case |S| = 4f−8
δ+k−4

.

defensive 2-alliance and 〈S〉 ∼= K4 is planar with f = 4 faces (See Figure

2.3).

Theorem 2.13. Let G be a graph and let S be a boundary defensive k-

alliance in G such that 〈S〉 is planar connected with f > 2 faces.

(i) If k ∈ {5−∆, . . . ,∆}, then |S| ≥
⌈

4f − 8

∆ + k − 4

⌉
,

(ii) If k ∈ {5− δ, . . . ,∆}, then |S| ≤
⌊

4f − 8

δ + k − 4

⌋
.

Proof. Since S is a boundary defensive k-alliance in G,∑
v∈S

δS(v) =
∑
v∈S

δS(v) + k|S|.

Hence,

|S|δ − k
2

+ k|S| ≤
∑
v∈S

δS(v) ≤ |S|∆− k
2

+ k|S|. (2.13)

Therefore, by the Euler formula on 〈S〉 and the above inequalities, the bounds

on |S| follow.

By Corollary 2.11 the above bounds are tight.
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2.3 Defensive k-alliances in Cartesian product

graphs

Let S ⊂ V1 × V2 be a set of vertices of G1 × G2. Let PGi(S) the projection

of the set S over Gi. Then for every u ∈ PG1(S), we define Xu = {(x, v) ∈
S : x = u} and Yv = {(u, y) ∈ S : y = v}.

Figure 2.4: Xu, Yv and the projections of S over G1 and G2.

Theorem 2.14. If S ⊂ V1 × V2 is a defensive k-alliance in G1 × G2, then

for every u ∈ PG1(S) and for every v ∈ PG2(S), PG2(Xu) and PG1(Yv) are a

defensive (k − ∆1)-alliance in G2 and a defensive (k − ∆2)-alliance in G1,

respectively.

Proof. Let S ⊂ V1 × V2. Now, for u ∈ PG1(S) and v ∈ PG2(S) we have

δPG2
(Xu)(u) + ∆1 ≥ δPG2

(Xu)(u) + δPG1
(Yv)(v)

= δXu(u, v) + δYv(u, v)

= δS(u, v)

≥ δS(u, v) + k

= δXa(u, v) + δYv(u, v) + k

= δPG2
(Xu)(u) + δPG2

(Yv)(v) + k

≥ δPG2
(Xu)(u) + k.
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So, PG2(Xu) is a defensive (k −∆1)-alliance in G2. To prove that PG1(Yv) is

a defensive (k −∆2)-alliance in G1 we develop an analogous procedure.

Notice that

PG2(S) =
⋃

u∈PG1
(S)

PG2(Xu) and PG1(S) =
⋃

v∈PG2
(S)

PG1(Yv).

Also, as the union of defensive k-alliances in a graph is a defensive k-alliance

in the graph, we obtain the following consequence of the above result.

Corollary 2.15. Let Gi = (Vi, Ei) be a graph of maximum degree ∆i, i ∈
{1, 2}. If S ⊂ V1×V2 is a defensive k-alliance in G1×G2, then the projections

PG1(S) and PG2(S) of S over the graphs G1 and G2 are a defensive (k−∆2)-

alliance and a defensive (k −∆1)-alliance in G1 and G2, respectively.

Corollary 2.16. Let Gi be a graph of maximum degree ∆i, i ∈ {1, 2}. If

G1×G2 contains defensive k-alliances, then Gi contains defensive (k−∆j)-

alliances, with i, j ∈ {1, 2}, i 6= j and, as a consequence,

adk(G1 ×G2) ≥ max{adk−∆2
(G1), adk−∆1

(G2)}.

Now we continue with the study of relationships between adk1+k2
(G1×G2)

and adki(Gi), i ∈ {1, 2}.

Theorem 2.17. For any graph Gi, if Si is a defensive ki-alliance in Gi,

i ∈ {1, 2}, then S1 × S2 is a defensive (k1 + k2)-alliance in G1 ×G2 and

adk1+k2
(G1 ×G2) ≤ adk1

(G1)adk2
(G2).

Proof. Let X = S1 × S2. Then for every x = (u, v) ∈ X,

δX(x) = δS1(u) + δS2(v)

≥
(
δS1

(u) + k1

)
+
(
δS2

(v) + k2

)
= δX(x) + k1 + k2.

Thus, X is a defensive (k1 + k2)-alliance in G1 ×G2.
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Notice that the bound of the above theorem is a general case of the

results obtained in Theorem 42. In the particular case of the Petersen graph,

P , and the 3-cube graph, Q3, we have ad−2(P × Q3) = 4 = ad−1(P )ad−1(Q3).

An example where we cannot apply Theorem 2.17 is the graph K1,4×K2, for

k1 = 2 and k2 = 0; the star graph K1,4 does not contain defensive 2-alliances,

although K1,4 × K2 contains some of them and ad2(K1,4 × K2) = 8. We

note that from the above theorem we obtain ad2k(G1 ×G2) ≤ adk(G1)adk(G2).

Another interesting consequence of Theorem 2.17 is the following.

Corollary 2.18. Let G1 and G2 be two graphs of order n1 and n2 and max-

imum degree ∆1 and ∆2, respectively. Let s ∈ Z such that max{∆1,∆2} ≤
s ≤ ∆1 + ∆2 + k. Then

ad
k−s

(G1 ×G2) ≤ min{adk(G1), adk(G2)}.

As example of equalities we take G1 = P , G2 = Q3, k = 1 and s = 3.

In such a case, 4 = ad−2(P × Q3) = min{ad1(P ), ad1(Q3)} = min{5, 4}. As a

consequence of Theorem 2.17 we obtain the following relationship between

global defensive alliances in Cartesian product graphs and global defensive

alliances in its factors.

Corollary 2.19. Let Gi be a graph of minimum degree δi and maximum

degree ∆i, i ∈ {1, 2}.

(i) If G1 contains a global defensive k1-alliance, then for every integer

k2 ∈ {−∆2, ..., δ2}, G1×G2 contains a global defensive (k1+k2)-alliance

and

γd
k1+k2

(G1 ×G2) ≤ γd
k1

(G1)n2.

(ii) If G2 contains a global defensive k2-alliance, then for every integer

k1 ∈ {−∆1, ..., δ1}, G1×G2 contains a global defensive (k1+k2)-alliance

and

γd
k1+k2

(G1 ×G2) ≤ γd
k2

(G2)n1.
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Proof. From Theorem 2.17 we obtain that for every defensive k-alliance S1

of G1 and every defensive k-alliance S2 of G2, the sets S1 × V2 and V1 × S2

are defensive (k1 + k2)-alliances in G1 ×G2. Moreover, S1 × V2 and V1 × S2

are dominating sets in G1 ×G2. Thus, the results follow.

For the graph C4 ×Q3, by taking k1 = 0 and k2 = 1, we obtain equality

in the above theorem.

2.4 Partitions into defensive k-alliances

For any graph G = (V,E), the (global) defensive k-alliance partition number

of G, (ψgdk (G)) ψdk(G), k ∈ {−∆, ..., δ}, is defined to be the maximum number

of sets in a partition of V such that each set of the partition is a (global)

defensive k-alliance.

Figure 2.5: {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}} is a partition of the graph into three

defensive (−1)-alliances.

Extreme cases are ψd−∆(G) = n, where each set composed of one vertex is

a defensive (−∆)-alliance, and ψdδ (G) = 1 for the case of a connected δ-regular

graph where V is the only defensive δ-alliance. A graph G is partitionable

into (global) defensive k-alliances if (ψgdk (G) ≥ 2) ψdk(G) ≥ 2. Figure 2.5

shows an example of a partition of a graph into three defensive (−1)-alliances.
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Hereafter we will say that (Πgd
r (G)) Πd

r(G) is a partition of G into r (global)

defensive k-alliances.

Notice that if every vertex of G has even degree and k is odd, k = 2l−1,

then every (global) defensive (2l − 1)-alliance in G is a (global) defensive

(2l)-alliance and vice versa. Hence, in such a case, ψd2l−1(G) = ψd2l(G) and

ψgd2l−1(G) = ψgd2l (G). Analogously, if every vertex of G has odd degree and

k is even, k = 2l, then every defensive (2l)-alliance in G is a defensive

(2l + 1)-alliance and vice versa. Hence, in such a case, ψd2l(G) = ψd2l+1(G)

and ψgd2l (G) = ψgd2l+1(G).

2.4.1 Partitions into boundary defensive k-alliances

Let G = (V,E) be a graph and let Πd
r(G) = {S1, S2, ...Sr} be a partition

of V into r boundary defensive k-alliances. Suppose x = max
1≤i≤r

{|Si|} and

y = min
1≤i≤r

{|Si|}. Thus, n
x
≤ r ≤ n

y
. Examples of bounds of r are the following

two corollaries.

Figure 2.6: {{1, 2}, {3, 4}, {5, 6}, {7, 8}} is a partition of the graph into four

boundary defensive (−1)-alliances.

As a consequence of Remark 2.6 we obtain the following bounds.

Corollary 2.20. If G can be partitioned into r boundary defensive k-alliances,
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then
2n

2n− δ + k
≤ r ≤ 2n

δ + k + 2
.

The above bounds are tight. For instance, from the above result we

obtain that the complete graph G = Kn can be partitioned into r = 2n
n+k+1

boundary defensive k-alliances. In particular, if n is even, each pair of ver-

tices of Kn forms a boundary defensive (3 − n)-alliance. Thus, Kn can be

partitioned into n
2

of these alliances. Moreover, the upper bound is attained,

for instance, in the case of G = Kt1 ×Ct2 , where Ct2 denotes a cycle of order

t2. In such a case, G is a (t1 + 1)-regular graph of order n = t1t2. Thus, for

k = t1 − 3 we obtain r = t2. Notice that each one of the t2 copies of Kt1 is a

boundary defensive (t1 − 3)-alliance in G.

Remark 2.21. The complete graph of order n, G = Kn, can be partitioned

into r boundary defensive k-alliances if and only if n ≡ 0(r) and k = 2n
r
−

n− 1.

As a consequence of Theorem 2.8 we obtain the following result.

Corollary 2.22. If G can be partitioned into r boundary defensive k-alliances,

then
2µ∗

2µ∗ − δ + k
≤ r ≤ 2µ

2µ−∆ + k
.

The above bounds are tight. An example where the bounds are attained

is the complete graph G = Kn. Moreover, by Corollary 2.22 we conclude, for

instance, that if the Petersen graph (Figure 2.7) can be partitioned into r

boundary defensive k-alliances, then k = 1 and r = 2 (in this case ∆ = δ = 3,

µ = 2 and µ∗ = 5).

Theorem 2.23. Let G = (V,E) be a graph and let M ⊂ E be a cut set

partitioning V into two boundary defensive k-alliances S and S, where k 6= ∆

and k 6= δ. Then⌈
2m− kn
2(∆− k)

⌉
≤ |S| ≤

⌊
2m− kn
2(δ − k)

⌋
and |M | = 2m− kn

4
.
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Proof. Since S is a boundary defensive k-alliance in G, for every v ∈ S we

have that δ(v) = 2δS(v) + k. Hence∑
v∈S

δ(v) = 2
∑
v∈S

δS(v) + k|S|.

Similarly, as S is a boundary defensive k-alliance in G,∑
v∈S

δ(v) = 2
∑
v∈S

δS(v) + k(n− |S|).

Therefore, from these two equalities we obtain

2m = 4
∑
v∈S

δS(v) + kn. (2.14)

So, we have |M | =
∑

v∈S δS(v) = 2m−nk
4

. Moreover, by using (2.6) and (2.9)

in (2.14), we obtain the bounds on |S|.

Corollary 2.24. Let G = (V,E) be a δ-regular graph and let M ⊂ E be

a cut set partitioning V into two boundary defensive k-alliances S and S.

Then |S| = n
2

and |M | = n(δ−k)
4

.

Theorem 2.25. If {X, Y } is a partition of V into two boundary defensive

k-alliances in G = (V,E), then, without loss of generality,⌈√
n(kn− 2m+ nµ)

4µ
+
n

2

⌉
≤ |X| ≤

⌊√
n(kn− 2m+ nµ∗)

4µ∗
+
n

2

⌋
and ⌈

n

2
−

√
n(kn− 2m+ nµ∗)

4µ∗

⌉
≤ |Y | ≤

⌊
n

2
−

√
n(kn− 2m+ nµ)

4µ

⌋
.

Proof. By Theorem 2.23, ∑
v∈X

δY (v) =
2m− kn

4
. (2.15)
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Moreover, as we have shown in the proof of Theorem 2.8

µ ≤
n
∑
v∈X

δY (v)

|X|(n− |X|)
≤ µ∗. (2.16)

Therefore, by using (2.15) in both sides of (2.16) we obtain the bounds on

|X| and |Y | = n− |X|.

The above bounds are tight. For instance, in the case of the complete

graph G = Kn, the above theorem leads to |X| = n
2

+
√

n(k+1)
4

and |Y | =

n
2
−
√

n(k+1)
4

. By using Remark 2.21 we have k = −1 and, as a consequence,

|X| = |Y | = n
2
.

By Corollary 2.24 and Theorem 2.25 we obtain the following interesting

consequence.

Theorem 2.26. Let G = (V,E) be a δ-regular graph. If G is partitionable

into two boundary defensive k-alliances, then the algebraic connectivity of G

is µ = δ − k (an even number).

By the above necessary condition of existence of a partition of V into two

boundary defensive k-alliances we obtain, for instance, that the icosahedron

cannot be partitioned into two boundary defensive k-alliances, because its

algebraic connectivity is µ = 5−
√

5 6∈ Z. Moreover, the Petersen graph (See

Figure 2.7) can only be partitioned into two boundary defensive k-alliances

for the case of k = 1, because δ = 3 and µ = 2.

2.4.2 Partitions into r defensive k-alliances

Example 2.27. Let k and r be integers such that r > 1 and r + k > 0

and let H be a family of graphs whose vertex set is V = ∪ri=1Vi where,

for every Vi, 〈Vi〉 ∼= Kr+k and δVj(v) = 1, for every v ∈ Vi and j 6= i.

Notice that {V1, V2, ..., Vr} is a partition of the graphs belonging to H into r
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global defensive k-alliances. A particular family of graphs included in H is

Kr+k ×Kr.

Hereafter, H will denote the family of graphs defined in the above ex-

ample.

Figure 2.7: The sets {1, 2, 3, 4, 5} and {6, 7, 8, 9, 10} form a partition of the

Petersen graph into two defensive 1-alliances.

From the following relation between the defensive k-alliance number,

adk(G), and ψdk(G) we obtain that lower bounds on adk(G) lead to upper bounds

on ψdk(G):

adk(G)ψdk(G) ≤ n. (2.17)

For instance, from Theorem 20 we have that

adk(G) ≥
⌈
δ + k + 2

2

⌉
. (2.18)

An example of equality in the above bound is provided by the graphs

belonging to the family H, for which we obtain adk(G) = r + k.

By (2.17) and (2.18) we obtain the following bound,

ψdk(G) ≤


⌊

2n
δ+k+2

⌋
, δ + k even

⌊
2n

δ+k+3

⌋
, δ + k odd.
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This bound gives the exact value of ψdk(G), for instance, for every G ∈ H,

where ψdk(G) = r, and in the following cases: ψd−1(K4 × C4) = 5, ψd0(K3 ×
C4) = ψd−1(K2 × C4) = 4 and ψd1(K2 × C4) = 2.

Analogously, for global alliances we have

γdk(G)ψgdk (G) ≤ n. (2.19)

One example of bound on γdk(G) is the following from Theorem 23.

γdk(G) ≥

⌈
n⌊

∆−k
2

⌋
+ 1

⌉
. (2.20)

For the graphs in H, the above bound gives the exact value γdk(G) = r + k.

Thus, the bound obtained by combining (2.19) and (2.20),

ψgdk (G) ≤
⌊

∆− k
2

⌋
+ 1,

leads to the exact value of ψgdk (G) = r for every G ∈ H. Even so, this bound

can be improved.

Theorem 2.28. For every graph G partitionable into global defensive k-

alliances,

(i) ψgdk (G) ≤ b
√
k2+4n−k

2
c,

(ii) ψgdk (G) ≤ b δ−k+2
2
c.

Proof. Let Πgd
r (G) = {S1, S2, ..., Sr} be a partition ofG into r global defensive

k-alliances. Since, every Si ∈ Πgd
r (G) is a dominating set, we have that for

every v ∈ Si, δSi(v) ≥ r − 1. Thus, the bounds are obtained as follow.

(i) |Si|−1 ≥ δSi(v) ≥ δSi(v)+k ≥ r−1+k, so n =
∑r

i=1 |Si| ≥ r(r+k).

By solving the inequality r2 + kr − n ≤ 0 we obtain the result.

(ii) Taking v ∈ Si as a vertex of minimum degree we obtain the result

from δ = δ(v) ≥ 2δSi(v) + k ≥ 2(r − 1) + k.
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The above bounds are attained, for instance, in the following cases:

ψgd−1(K4 × C4) = 4, ψgd0 (K3 × C4) = 3, ψgd1 (K2 × C4) = 2 and ψgd1 (P ) = 2,

where P denotes the Petersen graph.

Remark 2.29. For every k ∈ {1− δ, ..., δ}, if ψgdk (G) ≥ 2, then

γdk(G) + ψgdk (G) ≤ n+ 4

2
.

Proof. By equation (2.19), we have γdk(G) + ψgdk (G) ≤ n+(ψgdk (G))
2

ψgdk (G)
. On the

other hand, if k ∈ {1 − δ, ..., δ}, then γdk(G) ≥ 2. Moreover, if ψgdk (G) ≥ 2,

then γdk(G) ≤ n
2
. So, 2 ≤ ψgdk (G) ≤ n

γdk(G)
≤ n

2
. As a consequence, the result

is obtained as follow,

max
2≤x≤ n

γd
k

(G)

{
n+ x2

x

}
= max

{
n+ 4

2
,
n+ (γdk(G))2

γdk(G)

}
=
n+ 4

2
.

Example of equality in the above relation is γd−1(C4 × K2) + ψgd−1(C4 ×
K2) = 6.

Theorem 2.30. If ψgdk (G) > 2, then, for every l ∈ {1, ..., ψgdk (G) − 2},
there exists a subgraph, Gl, of G of order n(Gl) ≤ n(G) − lγdk(G) such that

ψgdl+k(Gl) + l ≥ ψgdk (G).

Proof. Let Πgd
r (G) = {S1, S2, ..., Sr} be a partition of V into r > 2 global

defensive k-alliances. Let Si ∈ Πgd
r (G). As Si is a dominating set in G, it is

also a dominating set in 〈∪tj=1Sj〉. In addition, for every v ∈ Si, we have

δSi(v) ≥ δSi(v) + k

=
t∑

j=1,j 6=i

δSj(v) +
r∑

j=t+1

δSj(v) + k

≥
t∑

j=1,j 6=i

δSj(v) + r − t+ k.
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Hence, Si is a global defensive (r − t + k)-alliance in 〈∪tj=1Sj〉. Thus, for

every t ∈ {2, ..., r − 1}, {S1, S2, ..., St} ⊂ Πgd
r (G) is a partition of 〈∪tj=1Sj〉

into t global defensive (r − t+ k)-alliances.

Therefore, we can take Gl = 〈∪tj=1Sj〉, where l = r − t. Then the order

of G and Gl are related as follow, n(G) =
∑r

i=1 |Si| = n(Gl) +
∑r

i=t+1 |Si| ≥
n(Gl) + lγdk(G).

One example where ψgdl+k(Gl) + l = ψgdk (G) and n(Gl) = n(G) − lγdk(G)

is the following. Let G = K4 × C4, the Cartesian product of the complete

graph K4 by the cycle graph C4. ψgd−1(K4×C4) = 4 and we can take each set

of Πgd
4 (K4×C4) as the vertex set of a copy of C4, so G1 = K3×C4 and G2 =

K2×C4 (the 3-cube graph). Hence, 4 = ψgd−1(K4×C4) = ψgd0 (K3×C4) + 1 =

ψgd1 (K2×C4)+2 and 8 = n(K2×C4) = n(K3×C4)−γd−1(K3×C4) = [n(K4×
C4)−γd−1(K4×C4)]−γd−1(K3×C4) = n(K4×C4)−2γd−1(K4×C4) = 16−2 ·4.

Theorem 2.31. Let Cgd
(r,k)(G) be the minimum number of edges having its

endpoints in different sets of a partition of G into r ≥ 2 global defensive

k-alliances. Then

(i) Cgd
(r,k)(G) ≥ 1

2
r(r − 1)γdk(G),

(ii) Cgd
(r,k)(G) ≥ 1

2
r(r − 1)(r + k),

(iii) Cgd
(r,k)(G) ≤ 2m−nk

4
.

(iv) Cgd
(r,k)(G) = 1

2
r(r − 1)γdk(G) = 1

2
r(r − 1)(r + k) = 2m−nk

4
if and only if

G ∈ H.

Proof. Let Πgd
r (G) = {S1, S2, ..., Sr} be a partition of V into r global defensive

k-alliances and Let x = min
Si∈Πgdr (G)

|Si|. From the fact that every set of Πgd
r (G) is

a dominating set, we obtain that the number of edges adjacent to v ∈ Si with
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one endpoint in ∪rj=i+1Sj is bounded by
∑r

j=i+1 δSj(v) ≥ r − i. Therefore,

Cgd
(r,k)(G) ≥

r−1∑
i=1

(r − i)|Si| ≥ x

r−1∑
i=1

(r − i) =
x

2
r(r − 1). (2.21)

Since every Si ∈ Πgd
r (G) is a global defensive k-alliance, we have x ≥ r + k

and x ≥ γdk(G), as a consequence, (i) and (ii) follow.

In order to obtain the upper bound (iii) we note that the number of edges

in G with one endpoint in Si and the other endpoint in Sj is C(Si, Sj) =∑
v∈Si

δSj(v) =
∑
v∈Sj

δSi(v). Hence,

2m =
r∑
i=1

∑
v∈Si

δ(v) ≥ 2
r∑
i=1

∑
v∈Si

δSi(v) + k

r∑
i=1

|Si|

= 2
r∑
i=1

∑
v∈Si

r∑
j=1,j 6=i

δSj(v) + kn

= 2
r∑
i=1

r∑
j=1,j 6=i

∑
v∈Si

δSj(v) + kn

= 2
r∑
i=1

r∑
j=1,j 6=i

C(Si, Sj) + nk

= 4Cgd
(r,k)(G) + nk.

Therefore, (iii) follows.

If for some Si ∈ Πgd
r (G) there exists v ∈ Si such that δSi(v) > δSi(v) + k,

then, by analogy to the proof of (iii) we obtain Cgd
(r,k)(G) < 2m−nk

4
. Therefore,

if Cgd
(r,k)(G) = 2m−nk

4
, then for every Si ∈ Πgd

r (G), and for every v ∈ Si, we

have

δSi(v) = δSi(v) + k. (2.22)

Moreover, if for some Si ∈ Πgd
r (G) there exists a vertex v ∈ Si such that∑

j 6=i

δSi(v) > r − 1, then, by analogy to the proof of (i) and (ii) we obtain
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Cgd
(r,k)(G) > 1

2
r(r − 1)γdk(G) and Cgd

(r,k)(G) > 1
2
r(r − 1)(r + k). Therefore, if

Cgd
(r,k)(G) = 1

2
r(r − 1)γdk(G) = 1

2
r(r − 1)(r + k), then for every Si ∈ Πgd

r (G),

and for every v ∈ Si, we have

δSi(v) =
∑
j 6=i

δSi(v) = r − 1. (2.23)

So, by (2.22) and (2.23) we obtain that for every Si ∈ Πgd
r (G), 〈Si〉 is regular

of degree r + k − 1. Thus, G is a regular graph of degree 2(r − 1) + k and,

by 1
2
r(r − 1)γdk(G) = 1

2
r(r − 1)(r + k) = 2m−nk

4
we have n = r(r + k) and

γdk(G) = r + k. Hence, |Si| = r + k, so 〈Si〉 ∼= Kr+k. Moreover, as every

Sj ∈ Πgd
r (G) is a dominating set, by (2.23) we have δSj(v) = 1, for every

v ∈ Si, i 6= j. Therefore, G ∈ H. The opposite implication is immediate.

By (2.21) and Theorem 2.31 (iii) we obtain the following result.

Corollary 2.32. For every graph G partitionable into r global defensive k-

alliances of equal cardinality, r ≤ 2(m+n)−kn
2n

.

A family of graphs that achieve equality for Corollary 2.32 is the family

H defined in Example 2.27.

By Theorem 2.31 and equation (2.18) we obtain the following two nec-

essary conditions for the existence of a partition of a graph into r global

defensive k-alliances.

Corollary 2.33. If for a graph G, k > 2m−r(r−1)(δ+2)
n+r(r−1)

or k > 2(m−r2(r−1))
n+2r(r−1)

,

then G cannot be partitioned into r global defensive k-alliances.

By the above corollary we conclude, for instance, that the 3-cube graph

cannot be partitioned into r > 2 global defensive k-alliances.

Remark 2.34. The size of the subgraph induced by a set belonging to a par-

tition of G into r global defensive k-alliances is bounded below by 1
2
γdk(G)(r+

k − 1).
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Proof. The result follows from the fact that for every S ∈ Πgd
r (G),∑

v∈S

δS(v) ≥ ((r − 1) + k)|S| ≥ (r − 1 + k)γdk(G).

The above bound is tight as we can check by taking G ∈ H.

2.4.3 Isoperimetric number, bisection and k-alliances

The isoperimetric number of a graph G = (V,E), defined as

i(G) := min
S⊂V (G):|S|≤n

2

{∑
v∈S δS(v)

|S|

}
has been extensively studied. For instance, we cite the papers by Mohar

[56], Kahale [49] and Kwak et. al. [53]. This graph invariant is very hard to

compute, and even obtaining bounds on i(G) is not straightforward. Here we

consider the case of graphs which are partitionable into defensive k-alliances

and, for these graphs, we obtain a tight bound on i(G).

As a consequence of Theorem 2.31 (iii) we obtain the following result.

Corollary 2.35. If there exists a partition Πgd
r (G) into r ≥ 2 global defensive

k-alliances such that, for every Si ∈ Πgd
r (G), |Si| ≤ n

2
, then

i(G) ≤ 2m− nk
2n

.

Proof. For every Si ∈ Πgd
r (G) we have |Si|i(G) ≤

∑
v∈Si

δSi(v) =
∑
v∈Si

r∑
j=1,j 6=i

δSj(v).

Hence,

ni(G) = i(G)
r∑
i=1

|Si| ≤
r∑
i=1

∑
v∈Si

r∑
j=1,j 6=i

δSj(v) = 2Cgd
(r,k)(G) ≤ 2m− nk

2
.
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Example of equality in above bound is the graph G = C3×C3 for k = 0.

That is, C3×C3 can be partitioned into r = 3 global defensive 0-alliances of

cardinality 3, moreover, i(C3 × C3) = 2. Other example is the 3-cube graph

G = C4 × K2, for k = 1. In this case each copy of the cycle C4 is a global

defensive 1-alliance and i(C4 ×K2) = 1.

Notice that if i(G) > 2m−nk
2n

, then G cannot be partitioned into r ≥ 2

global defensive k-alliances with the condition that the cardinality of every

set in the partition is at most n
2
. One example of this is the graph G = C3×C3

for k ≥ 1.

Theorem 2.36. For any graph G,

(i) if G is partitionable into global defensive k-alliances, then

ψgdk (G) ≤ ∆ + 1− i(G)− k,

(ii) if G is partitionable into defensive k-alliances, then

adk(G) ≥ i(G) + k + 1.

Proof. (i) Let Πgd
r (G) = {S1, S2, ..., Sr} be a partition of G into r ≥ 2 global

defensive k-alliances. Then, there exists Si ∈ Πgd
r (G) such that |Si| ≤ n

2
.

Hence,

|Si|i(G) ≤
∑
v∈Si

δSi(v)

≤
∑
v∈Si

(δSi(v)− k)

≤
∑
v∈Si

(δ(v)− r + 1− k)

≤ |Si|(∆− r + 1− k).

Thus, r ≤ ∆ + 1− i(G)− k.
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(ii) If ψdk(G) ≥ 2, then there exists a defensive k-alliance S such that

|S| ≤ n
2
. Therefore,

|S|i(G) ≤
∑
v∈S

δS(v) ≤
∑
v∈S

(δS(v)− k) ≤ |S|(|S| − 1)− k|S|.

Thus, the result follows.

The following relation between the algebraic connectivity and the isoperi-

metric number of a graph was shown by Mohar in [56]: i(G) ≥ µ
2
.

Corollary 2.37. For any graph G,

(i) if G is partitionable into global defensive k-alliances, then

ψgdk (G) ≤
⌊
∆ + 1− µ

2
− k
⌋
,

(ii) if G is partitionable into defensive k-alliances, then

adk(G) ≥
⌈
µ+ 2(k + 1)

2

⌉
.

Example of equality in the above bounds is the graph G = C3 × C3 for

k = 0, in this case µ = 3.

From the above corollary, we emphasize that if µ > 2(∆ − 1 − k), then

G cannot be partitioned into global defensive k-alliances. For instance, we

conclude that G = C3 × C3 cannot be partitioned into global defensive k-

alliances for k > 1. Moreover, by Corollary 2.37 (ii) we conclude that if

adk(G) <
⌈
µ+2(k+1)

2

⌉
, then G cannot be partitioned into defensive k-alliances.

A bisection of G is a 2-partition {X, Y } of the vertex set V in which

|X| = |Y | or |X| = |Y | + 1. The bisection problem is to find a bisection for

which
∑

v∈X δY (v) is as small as possible. The bipartition width, bw(G), is

defined as

bw(G) := min
X⊂V (G),|X|=bn2 c

{∑
v∈X

δX(v)

}
.



I. G. Yero 73

It was shown by Merris [55] and Mohar [56] that

bw(G) ≥


⌈
nµ
4

⌉
if n is even;

⌈
(n2−1)µ

4n

⌉
if n is odd.

We are interested in the bisection of a graph into global defensive k-

alliances, i.e., the bisection {X, Y } of V such that X and Y are global defen-

sive k-alliances. An example of bisection into global defensive (t-1)-alliances

is obtained for the family of hypercube graphs Qt+1 = Qt × K2, by taking

{X, Y } such that 〈X〉 ∼= Qt
∼= 〈Y 〉.

By Theorem 2.31 (iii) and the above bound we obtain the following

result.

Corollary 2.38. If
⌊

2m−nk
4

⌋
<
⌈
nµ
4

⌉
, for n even, or

⌊
2m−nk

4

⌋
<
⌈

(n2−1)µ
4n

⌉
,

for n odd, then G cannot be bisectioned into global defensive k-alliances.

For example, according to Corollary 2.38 we can conclude that, for k > 0,

the graph C3 × C3 cannot be bisectioned into global defensive k-alliances.

2.4.4 Partitioning G1 ×G2 into defensive k-alliances

In this subsection we will discuss the close relationships that exists between

ψdk1+k2
(G1 × G2) and ψdki(Gi), i ∈ {1, 2}. From Theorem 2.17 we have that

if Gi contains a defensive ki-alliance, i ∈ {1, 2}, then G1 × G2 contains a

defensive (k1 + k2)-alliance. Therefore, we obtain the following result.

Theorem 2.39. For any graphs G1 and G2, if there exists a partition of Gi

into defensive ki-alliances, i ∈ {1, 2}, then there exists a partition of G1×G2

into defensive (k1 + k2)-alliances and

ψdk1+k2
(G1 ×G2) ≥ ψdk1

(G1)ψdk2
(G2).
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Proof. Every partition

Πd
ri

(Gi) = {S(i)
1 , S

(i)
2 , ..., S(i)

ri
}

of Gi into ri defensive ki-alliances, i ∈ {1, 2}, induces a partition of G1 ×G2

into r1r2 defensive (k1 + k2)-alliances:

Πd
r1r2

(G1 ×G2) =


S

(1)
1 × S

(2)
1 · · · S

(1)
1 × S

(2)
r2

S
(1)
2 × S

(2)
1 · · · S

(1)
2 × S

(2)
r2

...
...

...

S
(1)
r1 × S

(2)
1 · · · S

(1)
r1 × S

(2)
r2


.

Therefore, the result follows.

In the particular case of the Petersen graph, P , and the 3-cube graph,

Q3, we have ψd−2(P × Q3) = 20 = ψd−1(P )ψd−1(Q3) and 5 = ψd2(P × Q3) >

ψd1(P )ψd1(Q3) = 4. We note that from Theorem 2.39 we obtain that ψd2k(G1×
G2) ≥ ψdk(G1)ψdk(G2). Another interesting consequence of Theorem 2.39 is

the following.

Corollary 2.40. Let Gi be a graph of order ni maximum degree ∆i, i ∈
{1, 2}. Let s ∈ Z such that max{∆1,∆2} ≤ s ≤ ∆1 + ∆2 + k. Then

ψdk−s(G1 ×G2) ≥ max{n2ψ
d
k(G1), n1ψ

d
k(G2)}.

As example of equality we take G1 = P , G2 = Q3, k = 1 and s = 3. In

such a case, 20 = ψd−2(P ×Q3) = max{8ψd1(P ), 10ψd1(Q3)} = max{16, 20}.
At next we study the case of global defensive k-alliances.

Theorem 2.41. Let Πgd
ri

(Gi) be a partition of a graph Gi, of order ni,

into ri ≥ 1 global defensive ki-alliances, i ∈ {1, 2}, r1 ≤ r2. Let xi =

min
X∈Πgdri (Gi)

{|X|}. Then,
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(i) γd
k1+k2

(G1 ×G2) ≤ min {x1n2, x2n1} ,

(ii) ψgdk1+k2
(G1 ×G2) ≥ max

{
ψgdk1

(G1), ψgdk2
(G2)

}
.

Proof. From the procedure showed in the proof of Theorem 2.17 we obtain

that for every S
(1)
j ∈ Πgd

r1
(G1) and every S

(2)
l ∈ Πgd

r2
(G2), the sets Mj =

S
(1)
j × V2 and Nl = V1 × S

(2)
l are defensive (k1 + k2)-alliances in G1 × G2.

Moreover Mj and Nl are dominating sets in G1 × G2. Thus, by taking S
(1)
j

and S
(2)
l of cardinality x1 and x2, respectively, we obtain |Mj| = x1n2 and

|Nl| = x2n1, so (i) follows. Moreover, as {M1, ...,Mr1} and {N1, ..., Nr2} are

partitions of G1×G2 into global defensive (k1 +k2)-alliances, (ii) follows.

Corollary 2.42. If Gi is a graph of order ni such that ψgdki (Gi) ≥ 1, i ∈
{1, 2}, then

γd
k1+k2

(G1 ×G2) ≤ n1n2

maxi∈{1,2}

{
ψgdki (Gi)

} .
For the graph C4×Q3, by taking k1 = 0 and k2 = 1, we obtain equalities

in Theorem 2.41 and Corollary 2.42.
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Chapter 3

Powerful Alliances

Abstract

We introduce the concept of boundary powerful k-alliances and we investigate

some of its mathematical properties. We study the relationships that exist

between powerful k-alliances in Cartesian product graphs and powerful k-

alliances in its factors. Moreover, we study the partitions of a graph into

powerful k-alliances.

77
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3.1 Introduction

A nonempty set of vertices S ⊆ V is a powerful k-alliance1 in a graph G =

(V,E), k ∈ {−∆, ...,∆ − 2}, if S is a defensive k-alliance and an offensive

(k + 2)-alliance. A powerful k-alliance is called global if it is a dominating

set. Figure 3.1 shows two examples of powerful k-alliances.

Figure 3.1: {2, 6} is a powerful (−2)-alliance and {2, 3, 4, 6} is a global pow-

erful (−1)-alliance.

For k ∈ {−∆, ...,∆ − 2}, the (global) powerful k-alliance number of G,

denoted by (γpk(G)) apk(G), is defined as the minimum cardinality of a (global)

powerful k-alliance in G.

The concept of powerful alliance was introduced first in [52] and after

that just a few works have been developed, like those in [6, 8, 9, 31, 59, 61, 69].

The complexity of computing minimum cardinality of powerful k-alliances in

graphs was studied in [31], where it was proved that this is a NP-complete

problem. Here we present some of the principal known results about powerful

alliances.

Based on the NP-completeness of computing minimum cardinality of

powerful k-alliances in graphs, some of the principal results about powerful

alliances are centered into obtaining some bounds for the (global) powerful

1Also called dual alliance.
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alliance number of a graph. For instance, in [9] was proved that for any graph

G of order n and minimum degree δ > 0, γp−1(G) ≤ n−
⌈
δ
2

⌉
. This result was

generalized in [31] to powerful k-alliances.

Theorem 49. [31] Let G be a graph of order n, size m and minimum degree

δ. If G contains global powerful k-alliances, then⌈√
8m+ 4n(k + 2) + (k + 1)2 + k + 1

4

⌉
≤ γpk(G) ≤ n−

⌊
δ − k

2

⌋
.

Moreover, among other interesting results, in [9] were shown some re-

lationships between the (global) powerful alliance number and the domina-

tion number of a graph. For instance, there were characterized those trees

having equal domination number and global powerful (−1)-alliance number,

and equal powerful (−1)-alliance number and global powerful (−1)-alliance

number. Diverse kind of bounds for the powerful (−1)-alliance number of

arbitrary graphs or specific families of graphs, like trees for instance, were

also obtained in [9].

Theorem 50. [9] For any graph G of order n, γgp−1(G) ≥ n(δ+1)
∆+δ+2

.

Theorem 51. [9] If T is a tree of order n and T 6= Pn, then ap−1(T ) ≤
⌊
n+3

2

⌋
and this bound is sharp.

Theorem 52. [9] Let T be any tree and t any integer such that 1 ≤ t ≤
ap−1(T ). Then T has a subtree T ′ with ap−1(T ′) = t.

Theorem 53. [9] A graph G = (V,E) has γ(G) = γd−1(G) if and only if N [v]

contains at least
⌈
N [v]

2

⌉
support vertices for every vertex v ∈ V .

Now, in order to present other results from [9] we need to introduce some

notation. A vertex w in a tree T is said to have a tail if there is a leaf v

for which all vertices in the v − w path have degree two. The length of a

tail is the distance from v to w. Let T be the tree formed from a star by
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subdividing any number of its edges any number of times, that is, T has at

most one vertex of degree three or more. We call such a tree T a spider. A

path, for example, is a special case of a spider. The subdivided edges are the

tails of the central vertex x. Suppose x has r tails of length one, s tails of

length two, and t = ∆− r− s tails of length at least three. Let T1 be the set

of spiders T such that either T is a path or ∆ ≥ 3 and:

• r + s = ∆, or

• ∆ is even, r ≤ ∆
2

, r + s = ∆− 1, and there is one tail of length three,

or

• ∆ is even, r ≤ ∆−2
2

, r+ s = ∆− 1, and there is one tail of length four,

or

• ∆ = 4, s = 2, and there are two tails of length four.

On the other hand, let T2 be the two trees shown in Figure 3.2.

Figure 3.2: The two trees of T2.

Theorem 54. [9] A tree T has ad−1(G) = γd−1(G) if and only if T ∈ T1 ∪ T2.

There are also some results, like the following one, about the relationship

between powerful k-alliance number and spectral radius of the graph [31].
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Theorem 55. [31] Let G be a graph of order n, size m and spectral radius

λ. If G contains global powerful k-alliances, then

γpk(G) ≥
⌈

2m+ n(k − 2)

4λ− 2k + 2

⌉
.

The particular cases k = −1 and k = 0 in Theorems 49 and 55 were

studied previously in [59]. Also, in [31] were investigated some relationships

between the total r-domination number2, γrt(G), and the global powerful

k-alliance number of a graph. For instance, there were proved the following

results.

Theorem 56. [31]

(i) Each global powerful k-alliance, k ≥ 1, is a total k-dominating set.

(ii) Each total r-dominating set is a global powerful k-alliance, where −∆ <

k ≤ 2(r − 1)−∆.

(iii) For −∆ < k ≤ 2(r − 1)−∆, γrt(G) ≥ γpk(G).

(iv) For k ≥ 1, γpk(G) ≥ γkt(G).

Also, in [31] have been investigated the global powerful k-alliances in

planar graphs.

Theorem 57. [31] Let G be a graph of order n and size m. Let S be a global

powerful k-alliance in G such that 〈S〉 is a planar graph.

(i) If n > 2(2− k), then |S| ≥
⌈

2(m+24)+n(k+2)
2(13−k)

⌉
.

(ii) If n > 2(2−k) and 〈S〉 is a triangle free graph, then |S| ≥
⌈

2(m+16)+n(k+2)
2(9−k)

⌉
.

2A set of vertices S is a total r-dominating set in a graph G if for every vertex v of G,

δS(v) ≥ r.
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Theorem 58. [31] Let G be a graph of order n. Let S be a global powerful

k-alliance in G such that 〈S〉 is planar connected with f faces. Then,

|S| ≥
⌈

2(m− 4f + 8) + n(k + 2)

2(5− k)

⌉
.

The case k = −1 in the above two theorems was studied previously in

[61]. On the other hand, in [6] were studied the global powerful k-alliances

in graphs, but in this article was used other name for the same structure.

The authors of [6] defined the concept of excess-t global powerful alliance as

a set of vertices S of a graph G = (V,E) such that for every vertex v ∈ V ,

|N [v]∩S| ≥ |N [v]∩ (V −S)|+ t. Notice that this expression is equivalent to

that S is a global defensive t-alliance and a global offensive (t + 2)-alliance.

In this work were obtained several results about global powerful k-alliances

in graphs.

Theorem 59. [6] For any graph G of maximum degree ∆,

γpk(G) ≥
⌈

∆ + k + 1

2

⌉
.

Theorem 60. [6] Let G = (V,E) be a graph.

(i) If e ∈ E, then γp−1(G)− 1 ≤ γp−1(G− e) ≤ γp−1(G) + 2.

(ii) If f /∈ E, then γp−1(G)− 2 ≤ γp−1(G+ f) ≤ γp−1(G) + 1.

Theorem 61. [6] For any graph G on n vertices,

γp−1(G) ≥

{ ⌈√
n+ 0.25− 0.5

⌉
, if n is even,

d
√
ne , if n is odd,

and these bounds are sharp.

Theorem 62. [6] If γp−1(G) ≤
⌈
n
2

⌉
− 1, then γp−1(G) ≤

⌊
n
2

⌋
+ 1.
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Corollary 63. [6] For any graph G either max{γp−1(G), γp−1(G)} ≤
⌈
n+1

2

⌉
or⌊

n+1
2

⌋
≤ min{γp−1(G), γp−1(G)}.

Theorem 64. [6] Let G be a graph of minimum degree δ and maximum

degree ∆. Then

γp−1(G) + γp−1(G) ≥
⌈
n+ ∆− δ + 1

2

⌉
.

Theorem 65. [6] Let G be a graph of minimum degree δ and maximum

degree ∆. Then

γp−1(G) + γp−1(G) ≤
⌈

3n+ ∆− δ + 1

2

⌉
.

A particular case of Cartesian product graph and its powerful alliances

was studied in [8] where was obtained that for any cycles Cs and Ct, a
p
−1(Cs×

Ct) ≥ 7st
12

. We refer to the Ph. D. Thesis [69] to have a more complete idea

about the principal known results related to powerful alliances.

3.2 Boundary powerful k-alliances

In Chapter 2 we studied the boundary defensive k-alliances in graphs, i.e.,

defensive k-alliances having exactly k more neighbors inside of the alliance

than outside. Similarly, a boundary offensive k-alliance is a set of vertices

of a graph, such that every vertex of its neighborhood has exactly k-more

neighbors inside of the set than it has outside. The study of boundary offen-

sive k-alliances is completely analogous to the study of boundary defensive

k-alliances, based on the following fact.

Remark 3.1. Let G = (V,E) be a graph. S ⊂ V is a boundary defensive k-

alliance in a graph G if and only if ∂(S) is a boundary offensive (−k)-alliance

in G.
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A set S ⊆ V is a boundary powerful k-alliance in G = (V,E), k ∈
{−∆, . . . ,∆ − 2}, if S is a boundary defensive k-alliance and a boundary

offensive (k + 2)-alliance. A boundary powerful k-alliance in G is called

global if it forms a dominating set in G. Figure 3.3 shows examples of (global)

boundary powerful k-alliances.

Figure 3.3: {1, 2, 3, 4} is a boundary powerful (−2)-alliance and {5, 6, 7, 8} is

a boundary powerful 0-alliance.

3.2.1 Cardinality of boundary powerful k-alliances

It was shown in Theorem 2.6 that the cardinality of a boundary defensive

k-alliance S is bounded by⌈
δ + k + 2

2

⌉
≤ |S| ≤

⌊
2n− δ + k

2

⌋
.

Analogously, in the case of a boundary offensive k-alliance S we have⌈
δ + k

2

⌉
≤ |S| ≤

⌊
2n− δ + k − 2

2

⌋
.

Thus, by replacing k by k+ 2 in the second equation we obtain the following

result.

Remark 3.2. If S is a boundary powerful k-alliance in a graph, then⌈
δ + k + 2

2

⌉
≤ |S| ≤

⌊
2n− δ + k

2

⌋
.
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Notice that the above result gives a closed formula, for instance, in the

case of complete graphs.

Corollary 3.3. If S is a boundary powerful k-alliance in a complete graph

G = Kn, then |S| =
⌈
n+k+1

2

⌉
.

Theorem 3.4. If S is a global boundary powerful k-alliance in a graph, then⌈
2m+ n(k + 2)

2∆ + 2

⌉
≤ |S| ≤

⌊
2m+ n(k + 2)

2δ + 2

⌋
.

Proof. Since S is a global boundary powerful k-alliance in G, then, for every

v ∈ S, δ(v) = 2δS(v)+k, and for every v ∈ S, δ(v) = 2δS(v)−(k+2). Hence,∑
v∈S

δ(v) = 2
∑
v∈S

δS(v) + k|S|,

and ∑
v∈S

δ(v) = 2
∑
v∈S

δS(v)− (k + 2)(n− |S|).

Now, as
∑
v∈S

δS(v) =
∑
v∈S

δS(v), we have

2m = 4
∑
v∈S

δS(v) + |S|(2k + 2)− n(k + 2). (3.1)

On the other hand, for every v ∈ S,

δ − k
2
≤ δS(v) ≤ ∆− k

2
. (3.2)

Therefore, by using the above inequalities in equation (3.1) we obtain the

bounds on |S|.

Since for any δ-regular graph, m = δn
2

, the above theorem gives a closed

formula for the cardinality of any global boundary powerful k-alliance.
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Corollary 3.5. If S is a global boundary powerful k-alliance in a δ-regular

graph, then

|S| =
⌈
n(δ + k + 2)

2(δ + 1)

⌉
.

As we mention in Subsection 2.2.1 for every planar graph of order n, size

m and f faces, the Euler formula states that m = n + f − 2. Hence, we

obtain the following corollary of Theorem 3.4.

Corollary 3.6. Let G be a planar connected graph with f faces. If S is a

global boundary powerful k-alliance in G, then⌈
n(k + 4) + 2f − 4

2∆ + 2

⌉
≤ |S| ≤

⌊
n(k + 4) + 2f − 4

2δ + 2

⌋
and, if G is δ-regular,

|S| = n(k + 4) + 2f − 4

2(δ + 1)
.

Theorem 3.7. If S is a global boundary powerful k-alliance in a graph, then⌈
n(2δ + k + 2)− 2m

2δ + 2

⌉
≤ |S| ≤

⌊
n(2∆ + k + 2)− 2m

2∆ + 2

⌋
.

Proof. Since S is a global boundary offensive (k + 2)-alliance in G, then for

every v ∈ S,
δ + k + 2

2
≤ δS(v) ≤ ∆ + k + 2

2
. (3.3)

Now, as
∑
v∈S

δS(v) =
∑
v∈S

δS(v), by using (3.3), in equation (3.1), we obtain

both bounds on |S|.

Notice that the above theorem leads to Corollary 3.5 for the case of

regular graphs.
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Theorem 3.8. Let G = (V,E) be a graph and let S ⊂ V . Let c be the

number of edges of G with one endpoint in S and the other endpoint outside

of S. If S is a global boundary powerful k-alliance in G, with k 6= −1, then

|S| = 2(m+ n− 2c) + nk

2(k + 1)
.

Proof. Let m(〈S〉) be the size of 〈S〉. Since S is a boundary defensive k-

alliance in G,

2m(〈S〉) =
∑
v∈S

δS(v) =
∑
v∈S

δS(v) + k|S| = c+ k|S|.

Moreover, as S is a global boundary offensive (k + 2)-alliance in G,

c =
∑
v∈S

δS(v) =
∑
v∈S

δS(v) + (n− |S|)(k + 2) = 2m(〈S〉) + (n− |S|)(k + 2).

Now, as m = m(〈S〉) +m(〈S〉) + c, we obtain the value of |S|.

Corollary 3.9. Let G = (V,E) be a δ-regular graph and let S ⊂ V . Let c

be the number of edges of G with one endpoint in S and the other endpoint

outside of S. If S is a global boundary powerful k-alliance in G, with k 6= −1,

then

(i) |S| = n(δ+k+2)−4c
2k+2

,

(ii) c = n(δ2+2δ−k2−2k)
4(δ+1)

.

Proof. (i) is trivial and (ii) is a direct consequence of Corollary 3.5 and

Theorem 3.8.

3.3 Powerful k-alliances in Cartesian product

graphs

As we mention at the beginning of the present chapter, the study of pow-

erful alliances in Cartesian product of graphs was first studied by Brigham,
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Dutton and Hedetniemi in [8], where it was studied the Cartesian product of

cycle graphs. In this section we study general relationships between (global)

powerful k-alliances in Cartesian product graphs and (global) powerful k-

alliances in its factors.

Theorem 3.10. Let Gi = (Vi, Ei) be a graph of maximum degree ∆i. If

Si ⊂ Vi is a powerful ki-alliance in Gi, i ∈ {1, 2}, then S1 × S2 is a powerful

k-alliance in G1×G2, for every k ∈ {−∆1 −∆2, ...,min{k1 −∆2, k2 −∆1}}.

Proof. If Si is a defensive ki-alliance in Gi, then for every v ∈ Si we have,

δSi(v) ≥ δSi(v) + ki, i ∈ {1, 2}. If X = S1 × S2 and (a, b) ∈ X, then

δX(a, b) = δS1(a) + δS2(b)

≥ δS1
(a) + δS2

(b) + k1 + k2

= δX(a, b) + k1 + k2.

So, we obtain

δX(a, b) ≥ δX(a, b) + k1 −∆2,

and

δX(a, b) ≥ δX(a, b) + k2 −∆1.

Thus, for every k ∈ {−∆1 −∆2, ...,min{k1 −∆2, k2 −∆1}}, X is a defensive

k-alliance in G1 ×G2.

On the other hand, if Si is an offensive (ki + 2)-alliance in Gi, then for

every u ∈ ∂(Si) we have, δSi(u) ≥ δSi(u) + ki + 2, i ∈ {1, 2}. Now, let

(a, b) ∈ ∂(X), then either, a ∈ S1 and b ∈ ∂(S2) or a ∈ ∂(S1) and b ∈ S2.

Let us suppose, for instance, a ∈ S1 and b ∈ ∂(S2), hence we have

δX(a, b) = δS2(b)

≥ δS2
(b) + k2 + 2

= δX(a, b)− δ(a) + k2 + 2

≥ δX(a, b) + k2 −∆1 + 2.
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The case a ∈ ∂(S1) and b ∈ S2 is analogous to the previous one, and we

obtain δX(a, b) ≥ δX(a, b) + k1 −∆2 + 2.

Therefore, for every k ∈ {−∆1 −∆2, ...,min{k1 −∆2, k2 −∆1}}, X is an

offensive (k + 2)-alliance in G1 ×G2 and, as a consequence, X is a powerful

k-alliance in G1 ×G2.

Corollary 3.11. Let Gi = (Vi, Ei) be a graph of maximum degree ∆i, i ∈
{1, 2}. If Gi contains powerful ki-alliances, then

apk(G1 ×G2) ≤ apk1
(G1)apk2

(G2),

for every k ∈ {−∆1 −∆2, ...,min{k1 −∆2, k2 −∆1}}.

Theorem 3.12. Let Gi = (Vi, Ei) be a graph of maximum degree ∆i, i ∈
{1, 2}. If S1 ⊂ V1 is a global powerful k1-alliance in G1, then S1 × V2 is a

global powerful k-alliance in G1×G2, for every k ∈ {−∆1 −∆2, ..., k1 −∆2}.

Proof. If S1 is a dominating set in G1, then S1 × V2 is a dominating set in

G1 × G2. On the other hand, if S1 is a defensive k1-alliance in G1, then for

every v ∈ S1, δS1(v) ≥ δS1
(v) + k1. Now, let X = S1 × V2 and let (a, b) ∈ X.

Hence,

δX(a, b) = δS1(a) + δ(b)

≥ δS1
(a) + δ(b) + k1

= δX(a, b) + k1 + δ(b)

≥ δX(a, b) + k1 −∆2.

Therefore, X is a global defensive (k1 −∆2)-alliance in G1 ×G2.

Now, if S1 is a global offensive (k1 + 2)-alliance in G1, for every u ∈ S1,
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δS1(u) ≥ δS1
(u) + k + 2. If (a, b) ∈ X, then

δX(a, b) = δS1(a)

≥ δS1
(a) + k1 + 2

= δX(a, b)− δ(b) + k1 + 2

≥ δX(a, b)−∆2 + k1 + 2.

Therefore, X is a global offensive (k1 − ∆2 + 2)-alliance in G1 × G2. As a

consequence, X is a global powerful (k1 −∆2)-alliance in G1 ×G2.

Corollary 3.13. Let Gi = (Vi, Ei) be a graph of order ni and maximum

degree ∆i, i ∈ {1, 2}. If G1 contains global powerful k1-alliances, then for

every k ∈ {−∆1 −∆2, ..., k1 −∆2},

γpk(G1 ×G2) ≤ γpk1
(G1)n2.

3.4 Partitions into powerful k-alliances

For any graph G = (V,E), the (global) powerful k-alliance partition number

of G, (ψgpk (G)) ψpk(G), is defined to be the maximum number of sets in a

partition of V such that each set is (global) powerful k-alliance. We say that

a graph G is partitionable into (global) powerful k-alliances if (ψgpk (G) ≥ 2)

ψpk(G) ≥ 2.

3.4.1 Partitions into boundary powerful k-alliances

Remark 3.14. Let G = (V,E) be a graph.

(i) S ⊂ V is a global boundary powerful (−1)-alliance in G, if and only if,

S is a global boundary powerful (−1)-alliance in G.

(ii) If G can be partitioned into two global boundary powerful k-alliances,

then k = −1.
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Figure 3.4: {{1, 3, 5, 7}, {2, 4, 6, 8}} is a partition of the graph into two pow-

erful (−1)-alliances.

Proof. If S is a global boundary powerful k-alliance in G, then

δS(v) = δS(v) + k, ∀ v ∈ S (3.4)

and

δS(v) = δS(v) + k + 2, ∀ v ∈ S. (3.5)

So, (i) follows immediately from (3.4) and (3.5). If S is a global boundary

powerful k-alliance in G, then

δS(v) = δS(v) + k, ∀ v ∈ S (3.6)

and

δS(v) = δS(v) + k + 2, ∀ v ∈ S. (3.7)

Hence, by (3.4) and (3.7) (or by (3.5) and (3.6)), we obtain that k = −1.

Theorem 3.15. Let G = (V,E) be a graph, if S is a global boundary powerful

(−1)-alliance in G, then⌈
n(δ + 1)

∆ + δ + 2

⌉
≤ |S| ≤

⌊
n(∆ + 1)

∆ + δ + 2

⌋
.
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Figure 3.5: S = {1, ..., 8} and S are global boundary powerful (−1)-alliances.

Proof. From equations (3.4) and (3.5) we have,∑
v∈S

δS(v) =
∑
v∈S

δS(v)− |S| (3.8)

and ∑
v∈S

δS(v) =
∑
v∈S

δS(v) + n− |S|. (3.9)

Hence, as
∑
v∈S

δS(v) =
∑
v∈S

δS(v), we have

∑
v∈S

δS(v) =
∑
v∈S

δS(v) + n− 2|S|. (3.10)

Thus, by (3.10) we obtain the following inequalities,

|S|∆− 1

2
≥ (n− |S|)δ − 1

2
+ n− 2|S| (3.11)

and

|S|δ − 1

2
≤ (n− |S|)∆− 1

2
+ n− 2|S|. (3.12)

By solving the above inequalities for |S| we obtain the bounds.

Notice that the bounds obtained in the above theorem are attained, for

instance, in the case of the graph in Figure 3.5.
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Figure 3.6: S = {1, 2, 3, 4} and S are global boundary powerful (−1)-

alliances.

Corollary 3.16. If S is a global boundary powerful (−1)-alliance in a δ-

regular graph, then |S| = n
2
.

Figure 3.6 shows an example of a 5-regular graph, which can be parti-

tioned into two global boundary powerful (−1)-alliances.

Theorem 3.17. Let S ⊂ V be a global boundary powerful (−1)-alliance in a

graph G = (V,E) and let M ⊂ E be a cut set with one endpoint in S and the

other endpoint outside of S. Then
⌈

2m+n
2∆+2

⌉
≤ |S| ≤

⌊
2m+n
2δ+2

⌋
and |M | = 2m+n

4
.

Proof. Since S is a global boundary defensive (−1)-alliance in G, for every

v ∈ S, δ(v) = 2δS(v)− 1, therefore,∑
v∈S

δ(v) = 2|M | − |S|.

Moreover, as S is a global boundary offensive 1-alliance in G, for every v ∈ S,

δ(v) = 2δS(v)− 1, therefore,∑
v∈S

δ(v) = 2|M | − n+ |S|.

Hence, 2m = 4|M | − n. So, the value of |M | follows. The bounds on |S|
are obtained from the above equation by using that, for every v ∈ S, δ+1

2
≤

δS(v) ≤ ∆+1
2

.
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Notice that the above result leads to the Corollary 3.16 for the case of

regular graphs.

The following result shows the relationship between the algebraic con-

nectivity (and the Laplacian spectral radius) of a graph and the cardinality

of its global boundary powerful (−1)-alliances.

Theorem 3.18. If X ⊂ V is a global boundary powerful (−1)-alliance in

G = (V,E), then, without loss of generality,

n

2
+

⌈√
n2(µ− 1)− 2nm

4µ

⌉
≤ |X| ≤ n

2
+

⌊√
n2(µ∗ − 1)− 2nm

4µ∗

⌋
and

n

2
−

⌊√
n2(µ∗ − 1)− 2nm

4µ∗

⌋
≤ |X| ≤ n

2
−

⌈√
n2(µ− 1)− 2nm

4µ

⌉
.

Proof. On one hand, by Theorem 3.17 we have,∑
v∈X

δX(v) =
2m+ n

4
. (3.13)

On the other hand, by equations (2.5) and (1.4), taken w ∈ Rn defined as in

(1.6) we have

µ ≤
n
∑
v∈X

δX(v)

|X|(n− |X|)
≤ µ∗. (3.14)

Now, by using equation (3.13) in (3.14) we obtain both bounds on |X|.
Moreover, as |X| = n− |X|, the bounds on |X| follows.

By Corollary 3.16 and the above theorem we obtain the following conse-

quence.

Theorem 3.19. Let G = (V,E) be a δ-regular graph. If G contains a global

boundary powerful (−1)-alliance, then the algebraic connectivity of G is µ =

δ + 1.
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The above theorem gives a necessary condition for the existence global

boundary powerful (−1)-alliances. Thus we obtain, for instance, that the

Icosahedron does not contain global boundary powerful (−1)-alliances; be-

cause its algebraic connectivity is µ = 5−
√

5. Notice that the same occurs

for the Petersen graph because, in this case, δ = 3 and µ = 2.

3.4.2 Partitions into r powerful k-alliances

In this subsection we will study the partitions of an arbitrary graph into

powerful k-alliances. To begin with, we consider the following example3. Let

{v1, v2, ..., v3t} the vertex set of CR(3t, 3). Then the sets {v1, v4, ..., v3t−2},
{v2, v5, ..., v3t−1} and {v3, v6, ..., v3t} form a maximum partition of CR(3t, 3)

into three global powerful (−4)-alliances, therefore ψgp−4(CR(3t, 3)) = 3.

Figure 3.7: {{1, 4, 7, 10}, {2, 5, 8, 11}, {3, 6, 9, 12}} is a partition of CR(12, 3)

into three global powerful (−4)-alliances.

Theorem 3.20. Let Πr(G) be a partition of a graph G into r dominating

sets. If there are two different sets in Πr(G) such that one of them is a

defensive k-alliance and the other one is an offensive (k + 2)-alliance, then

k ≤ 1− r.
3See page 1.4.1 for the definition of circulant graph.
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Proof. Let Πr(G) = {S1, S2, ...Sr} and let Si, Sj ∈ Πr(G), i 6= j, such that

Si is an offensive (k + 2)-alliance and Sj is a defensive k-alliance. For every

v ∈ Sj ⊆ Si we have δSi(v) ≥ δSi(v) + k + 2 and δSj(v) ≥ δSj(v) + k. Hence,

δSi(v) ≥ δSi(v) + k + 2

=
r∑

l=1,l 6=i

δSl(v) + k + 2

=
r∑

l=1,l 6=i,j

δSl(v) + δSj(v) + k + 2

≥
r∑

l=1,l 6=i,j

δSl(v) + δSj(v) + 2k + 2

Moreover, since every set Sl ∈ Πr(G) is a dominating set, we have that
r∑

l=1,l 6=i,j

δSl(v) ≥ r − 2. Thus,

δSi(v) ≥ δSj(v) + 2k + r

=
r∑

l=1,l 6=j

δSl(v) + 2k + r

=
r∑

l=1,l 6=j,i

δSl(v) + δSi(v) + 2k + r

≥ δSi(v) + 2k + 2r − 2.

Therefore, k + r − 1 ≤ 0.

The above result has the following direct and useful consequences.

Corollary 3.21. For k ≥ 0, no graph is partitionable into global powerful

k-alliances.

Corollary 3.22. If a graph G is partitionable into global powerful k-alliances,

then ψgpk (G) ≤ 1− k.
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Notice that this bound is achieved, for instance, for the complete graph,

which can be partitioned into two global powerful (−1)-alliances.

Lemma 3.23. Let G be a graph of maximum degree ∆ and minimum degree

δ. If S is a global powerful k-alliance in G, then

(δ + k + 2)|S| ≤ (∆− k)|S|.

Proof. If S is a defensive k-alliance, by equation (2.2) we have∑
v∈S

δS(v) ≤
∑

v∈S δ(v)− k|S|
2

≤ (∆− k)|S|
2

.

Moreover, if S is a global offensive (k+2)-alliance, by equation (1.2) we have∑
v∈S

δS(v) ≥
∑

v∈S δ(v) + (k + 2)|S|
2

≥ (δ + k + 2)|S|
2

.

Now, as
∑
v∈S

δS(v) =
∑
v∈S

δS(v), we obtain (δ + k + 2)|S| ≤ (∆− k)|S|.

Theorem 3.24. Let G be a graph of minimum degree δ and maximum degree

∆. If G is partitionable into global powerful k-alliances, then

ψgpk (G) ≤
⌊

∆ + δ + 2

δ + k + 2

⌋
.

Proof. Let Πgp
r (G) = {S1, S2, ..., Sr} be a partition of G into r global powerful

k-alliances. By Lemma 3.23 we have that for every Si ∈ Πgp
r (G), (δ + k +

2)|Si| ≤ (∆− k)|Si|. Hence,

(δ + k + 2)n(r − 1) = (δ + k + 2)
r∑
i=1

(n− |Si|)

= (δ + k + 2)
r∑
i=1

|Si|

≤ (∆− k)
r∑
i=1

|Si|

= (∆− k)n.

Thus, the bound follows.
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The above bound is achieved, for instance, for the complete graph G =

Kn, for which ψgp−1(G) = 2. Other example is the circulant graph G =

CR(3t, 3) where ψgp−4(G) = 3 and the above bound leads to ψgp−4(G) ≤
⌊

14
4

⌋
=

3.

Next we obtain other bound on ψgpk (G) in terms of n and k.

Theorem 3.25. Let G be a graph of order n. If G is partitionable into global

powerful k-alliances, then

ψgpk (G) ≤

⌊√
8n+ (2k − 1)2 − 2k + 1

4

⌋
.

Proof. Let Πgp
r (G) = {S1, ...Sr} be a partition of G into r global powerful

k-alliances, and let Si ∈ Πgp
r (G) such that |Si| = min{|Sl| : Sl ∈ Πgp

r (G)}.
If v ∈ Sj, j 6= i, then, analogously to the proof of Theorem 3.20 we obtain

δSi(v) ≥ δSj(v) + 2k + r. Thus,

n

r
≥ |Si| ≥ δSi(v) ≥ δSj(v) + 2k + r =

r∑
l=1,l 6=j

δSl(v) + 2k + r ≥ 2r + 2k − 1.

Therefore, the bound follows by solving the inequality
n

r
≥ 2r + 2k − 1 for

r.

The above bound is achieved, for instance, for the circulant graph G =

CR(10, 2), for which ψgp−4(G) = 5. Now on we will study the relationship that

exists between the powerful k-alliance partition number of Cartesian product

graph and the powerful k-alliance partition number of its factors.

If Πp
ri

(Gi) is a partition of Gi into ri powerful ki-alliances, i ∈ {1, 2}, then

by Theorem 3.10 we obtain a partition of G1 × G2 into r = r1r2 powerful

k-alliances, with k ∈ {−∆1 −∆2, ...,min{k1 −∆2, k2 −∆1}}. So, we obtain

the following result.
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Corollary 3.26. Let Gi = (Vi, Ei) be a graph of maximum degree ∆i, i ∈
{1, 2}. If Gi is partitionable into ri powerful ki-alliances, then the graph

G1 × G2 is partitionable into r = r1r2 powerful k-alliances, for every k ∈
{−∆1 −∆2, ...,min{k1 −∆2, k2 −∆1}}. Moreover,

ψpk(G1 ×G2) ≥ ψpk1
(G1)ψpk2

(G2).

Now, if Πgp
ri

(Gi) is a partition of Gi into ri global powerful ki-alliances,

i ∈ {1, 2}, then by Theorem 3.12 we obtain the following result.

Corollary 3.27. Let Gi = (Vi, Ei) be a graph of order ni and maximum

degree ∆i, i ∈ {1, 2}. If G1 is partitionable into global powerful k1-alliances,

then for every k ∈ {−∆1 −∆2, ..., k1 −∆2},

ψgpk (G1 ×G2) ≥ ψgpk1
(G1).

For instance, if G1 = CR(3t, 3) and G2 = K2, then we have ψgp−5(G1 ×
G2) = 3 = ψgp−4(G1).
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Chapter 4

Alliance Free Sets and Alliance

Cover Sets

Abstract

We investigate some mathematical properties of alliance free sets and alliance

cover sets of a graph and its relationship with other structures of the graph

like alliances and dominating set. Moreover, we study the closed relationships

that exist between the (defensive, offensive, powerful) k-alliance free sets of

Cartesian product graph and the (defensive, offensive, powerful) k-alliance

free sets of its factors.

101
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4.1 Introduction

A nonempty set X ⊆ V is a defensive (respectively, offensive or powerful) k-

alliance free set, k-daf (respectively, k-oaf or k-paf) of a graph G = (V,E), if

for all defensive (respectively, offensive or powerful) k-alliance S, S \X 6= ∅,
i.e., X does not contain any defensive (respectively, offensive or powerful)

k-alliance as a subset. A (defensive offensive, powerful) k-alliance free set X

is maximal if for every (defensive, offensive, powerful) k-alliance free set Y ,

X 6⊂ Y . A maximum (k-daf, k-oaf, k-paf) set is a maximal (k-daf, k-oaf,

k-paf) set of largest cardinality.

Figure 4.1: S1 = {1, 3, 6, 8} is a (−1)-daf, S1 is a (−1)-dac, S2 = {1, 2, 3, 4}
is a (0)-oaf and S2 is a (0)-oac.

A nonempty set Y ⊆ V is a defensive (respectively, offensive or powerful)

k-alliance cover, k-dac (respectively, k-oac or k-pac) of G, if for all defensive

(respectively, offensive or powerful) k-alliances S, S ∩Y 6= ∅, i.e., Y contains

at least one vertex from each defensive (respectively, offensive or powerful)

k-alliance in G. A (k-dac, k-oac, k-pac) set Y is minimal if no proper subset

of Y is a (defensive, offensive, powerful) k-alliance cover set. A minimum (k-

dac, k-oac, k-pac) set is a minimal cover set of smallest cardinality. For short,

in the case of a global (offensive, powerful) k-alliance cover (respectively, free)

set we will write (k-goac, k-gpac) (respectively, k-goaf, k-gpaf). Associated
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with the characteristic sets defined above we have the following invariants:

φdk(G): cardinality of a maximum k-daf set in G.

φok(G): cardinality of a maximum k-oaf set in G.

φpk(G): cardinality of a maximum k-paf set in G.

φgok (G): cardinality of a maximum k-goaf set in G.

φgpk (G): cardinality of a maximum k-gpaf set in G.

ζdk(G): cardinality of a minimum k-dac set in G.

ζok(G): cardinality of a minimum k-oac set in G.

ζpk(G): cardinality of a minimum k-pac set in G.

ζgok (G): cardinality of a minimum k-goac set in G.

ζgpk (G): cardinality of a minimum k-gpac set in G.

Here we present some of the principal known results about alliance free

sets and alliance cover sets. We begin by presenting the following straight-

forward duality between alliance cover sets and alliance free sets showed in

[64, 68].

Theorem 66. [64, 68] X is a (defensive, offensive) k-alliance cover set if

and only if X is (defensive, offensive) k-alliance free set.

Corollary 67. [64, 68] φdk(G) + ζdk(G) = φok(G) + ζok(G) = n.

Corollary 68. [64, 68]

(i) If X is a minimal (k-dac, k-oac) set, then, for all v ∈ X, there exists

a (defensive, offensive) k-alliance Sv for which Sv ∩X = {v}.
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(ii) If X is a maximal (k-daf, k-oaf) set, then, for all v ∈ X, there exists

Sv ⊆ X such that Sv ∪ {v} is a (defensive, offensive) k-alliance.

About alliance free sets and alliance cover sets there are just a few in-

vestigations and, in general, the principal results in this topic are frequently

centered into obtaining lower and upper bound for the maximum alliance

free sets or minimum alliance cover sets. In this sense, in [65] was showed

the following upper bound for the maximum k-daf set of a graph.

Theorem 69. [65] For every connected graph G and 0 ≤ k ≤ ∆,

φdk(G) ≥
⌊n

2

⌋
+

⌊
k

2

⌋
.

On the other hand, in [66] was studied the case of partitioning a graph

into two defensive k-alliance free sets and there were characterized those

graphs having such a partition. In this sense, in [66] the authors defined

a graph G to be partitionable if it contains a partition into two defensive

k-alliance free sets and there were obtained the following result.

Theorem 70. [66] A connected graph G is partitionable if and only if G has

a block that is other than an odd clique or an odd cycle.

Moreover, in [66] it is defined the concept of defensive 0-alliance free

cover as a set of vertices S, which is both a defensive 0-alliance free set and

a defensive 0-alliance cover set. Equivalently, S is a defensive 0-alliance free

cover if for all alliances X, X ∩ S 6= ∅ and X ∩ (V − S) 6= ∅. Thus, it is

satisfied the following:

Lemma 71. [66] A set S is a defensive 0-alliance free cover if and only if

V − S is a defensive 0-alliance free cover.

Thus, from the above lemma and Theorem 66, in [66] was obtained the

following result.
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Theorem 72. [66] A graph G is partitionable if and only if G has a defensive

0-alliance free cover.

Other investigations in this topic have been centered into obtaining rela-

tionships between k-alliance free sets (k-alliance cover sets) and other struc-

tures of a graph. For instance, in [69] appeared some results about the rela-

tionship that exist among k-alliance free sets, k-alliance cover sets, defensive

k-alliances, offensive k-alliances and dominating sets in a graph. Moreover,

there were obtained the following bounds for the cardinality of maximum

k-daf sets and maximum k-oaf sets of graphs in terms of order, minimum

degree, algebraic connectivity and Laplacian spectral radius.

Theorem 73. [69] For any connected graph G of order n, minimum degree

δ and algebraic connectivity µ,⌈
n(k + µ)− µ

n+ µ

⌉
≤ φdk(G) ≤

⌊
2n+ k − δ − 1

2

⌋
.

Theorem 74. [69] For any connected graph G of order n, minimum degree

δ and Laplacian spectral radius µ∗,

ζdk(G) ≤ n

µ∗

(
µ∗ −

⌈
δ + k

2

⌉)
.

Theorem 75. [69] For any graph G of order n and minimum degree δ,⌈
δ + k − 2

2

⌉
≤ φok(G) ≤

⌊
2n− δ + k − 3

2

⌋
.

For a more detailed study about alliance free sets and alliance cover sets

and its application to data clustering we refer to the Ph. D. Thesis [67] and

[69].

4.2 Alliance free sets and alliance cover sets

We begin by presenting the following relationship between the defensive k-

alliance cover sets and dominating sets of a graph.
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Theorem 4.1. If X is a minimal k-dac set, then X is a dominating set.

Proof. By Theorem 66, if X is a minimal k-dac set, then X is a maximal

k-daf set. Therefore, for all v ∈ X, there exists Xv ⊆ X such that Xv∪{v} is

a defensive k-alliance. So, for every u ∈ Xv, δXv(u) + δ{v}(u) = δXv∪{v}(u) ≥
δXv∪{v}(u) + k = δXv(u) − δ{v}(u) + k. On the other hand, as Xv is not

a defensive k-alliance, there exists w ∈ Xv such that δXv(w) < δXv(w) + k.

Hence, by the above inequalities, δXv(w)+k+δ{v}(w) > δXv(w)−δ{v}(w)+k.

Thus, 2δ{v}(w) > 0 and, as a consequence, v is adjacent to w.

Corollary 4.2. Let G be a graph of order n. Then γ(G) ≤ n− ζdk(G).

Notice that there exist minimal k-oac sets such that their complement

sets are not dominating sets. For instance we consider the graph obtained

from the cycle graph C8 = v1v2, ..., v8v1 by adding the edge {v1, v3} and the

edge {v5, v7}. In this graph the set S = {v2, v3, v5, v6, v7} is a minimal 0-oac

but S̄ is not a dominating set.

Now, if one vertex v ∈ V belongs to any offensive k-alliance, then V \{v}
is a k-oaf set. Hence, δ(v) < k. So, if k ≤ δ and X is a minimal k-oac set,

then |X| ≥ 2.

Theorem 4.3. For every k ∈ {2 −∆, ...,∆}, if X is a minimal k-goac set

such that |X| ≥ 2, then X is an offensive (k − 2)-alliance. Moreover, if

k ∈ {3, ...,∆}, then X is a global offensive (k − 2)-alliance.

Proof. If X ⊂ V is a minimal k-goac set, then for all v ∈ X there exists

a global offensive k-alliance, Sv, such that Sv ∩ X = {v}. Hence, for every

u ∈ Sv, 1 + δX(u) ≥ δSv(u) ≥ δSv(u) + k ≥ δX(u) + k − 1. As X \ {v} ⊂ Sv,

we have δX(u) ≥ δX(u) + k− 2 for every u ∈ X \ {v}. Now we take a vertex

w ∈ X \ {v} and by the above procedure, taking the vertex w instead of v,

we obtain that δX(v) ≥ δX(v) + k − 2. Therefore, X is an offensive (k − 2)-

alliance. Moreover, if k > 2, X is a dominating set. So, in such a case, it is

a global offensive (k − 2)-alliance.
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Corollary 4.4. For every k ∈ {3, ..., δ}, φgok (G) ≥ γok−2(G) and ζgok (G) ≤
n− γok−2(G).

Now we will present a result characterizing some classes of graphs which

are defensive k-alliance free, i.e., the set of vertices of these graphs do not

contain any defensive k-alliance.

Proposition 4.5. Let G be a graph of order n and maximum degree ∆. Then

φdk(G) = n, for each of the following cases:

(i) G is a tree of maximum degree ∆ ≥ 2 and k ∈ {2, ...,∆}.

(ii) G is a planar graph of maximum degree ∆ ≥ 6 and k ∈ {6, ...,∆}.

(iii) G is a planar triangle-free graph of maximum degree ∆ ≥ 4 and k ∈
{4, ...,∆}.

Proof. Suppose S is a defensive k-alliance in G = (V,E). That is, for every

v ∈ S, it follows

2δS(v) ≥ δ(v) + k. (4.1)

If some vertex v ∈ S satisfies δ(v) < k, then equation (4.1) leads to δS(v) >

δ(v), a contradiction. Hence, for every v ∈ S we have δ(v) ≥ k and, as a

consequence, equation (4.1) leads to δS(v) ≥ k. Now, let ms be the size of

the subgraph induced by S. Then we have

2ms =
∑
v∈S

δS(v) ≥ k|S|. (4.2)

Case (i). Since G is a tree, we obtain 2(|S| − 1) ≥ 2ms ≥ k|S| ≥ 2|S|, a

contradiction.

For the cases (ii) and (iii) we have |S| ≥ 3, due to that if |S| ≤ 2, then

equation (4.1) leads to 2 ≥ δ(v) + k, a contradiction. It is well-known that

the size of a planar graph of order n′ ≥ 3 is bounded above by 3(n′ − 2).
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Moreover, in the case of triangle-free graphs the bound is 2(n′−2). Therefore,

in case (ii) we have ms ≤ 3(|S| − 2) and, as a consequence, equation (4.2)

leads to 6(|S| − 2) ≥ k|S| ≥ 6|S|, a contradiction. Analogously, in case

(iii) we have ms ≤ 2(|S| − 2) and, as a consequence, equation (4.2) leads to

4(|S| − 2) ≥ k|S| ≥ 4|S|, a contradiction.

Theorem 4.6. If X is a k-goaf set, k ∈ {1, ...,∆−2}, such that |X| ≤ n−2,

then there exists v ∈ X such that X ∪ {v} is a (k + 2)-goaf set.

Proof. Let us suppose that for every x ∈ X, X ∪ {x} is not a (k + 2)-goaf

set. Let v ∈ X and let Sv ⊂ X, such that Sv ∪ {v} is a global offensive

(k + 2)-alliance in G. Then for every u ∈ Sv ∪ {v} = Sv \ {v} we have

δSv(u) = δSv∪{v}(u) − δ{v}(u) ≥ δSv∪{v}(u) − δ{v}(u) + k + 2 = δSv(u) −
2δ{v}(u) + k + 2 ≥ δSv(u) + k. So, for every u ∈ X \ {v} ⊂ Sv \ {v}, δX(u) ≥
δSv(u) ≥ δSv(u) + k ≥ δX(u) + k. Now we take a vertex w ∈ X \ {v} and

by the above procedure, taking the vertex w instead of v, we obtain that

δX(v) ≥ δX(v)+k. So, X is a global offensive k-alliance, a contradiction.

If X is a k-goaf for k ≤ δ, then |X| ≤ n− 2, as a consequence, the above

result can be simplified as follows.

Corollary 4.7. If X is a k-goaf set, k ∈ {1, ..., δ}, then there exists v ∈ X
such that X ∪ {v} is a (k + 2)-goaf set.

It is easy to check the monotony of φgok , i.e., φgok (G) ≤ φgok+1(G). As

we can see below, Theorem 4.6 leads to an interesting property about the

monotony of φgok .

Corollary 4.8. For every k ∈ {1, ...,min{δ,∆− 2}} and r ∈
{

1, ..., b∆−k
2
c
}

,

φgok (G) + r ≤ φgok+2r(G).

Theorem 4.9. If X is a k-daf set and v ∈ X, then X ∪{v} is (k+2)−daf .
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Proof. Let us suppose that there exists a defensive (k + 2)-alliance A such

that A ⊆ X ∪ {v}. If v /∈ A, then A ⊂ X, a contradiction because every

defensive (k+2)-alliance is a defensive k-alliance. If v ∈ A, let B = A \ {v}.
For every u ∈ B we have, δB(u) = δA(u)−δ{v}(u) ≥ δA(u)+k+2−δ{v}(u) ≥
δB(u) + k+ 2

(
1− δ{v}(u)

)
≥ δB(u) + k. So, B ⊆ X is a defensive k-alliance,

a contradiction.

Corollary 4.10. For every k ∈ {−∆, ...,∆− 2} and r ∈
{

1, ..., b∆−k
2
c
}

,

φdk(G) + r ≤ φdk+2r(G).

From Theorem 69 we have a lower bound for the maximum defensive

k-alliance free sets of a graph in terms of the order. In order to obtain a

similar result for maximum global offensive k-alliance free sets of a graph we

present at next the following lemma.

Lemma 4.11. If {X, Y } is a vertex partition of a graph G into two global

boundary offensive 0-alliances, then X and Y are minimal global offensive

0-alliances in G.

Proof. Let us suppose, for instance, that X is not a minimal global offensive

0-alliances. Hence, there exists A ⊂ X, such that, X\A 6= ∅ and A is a global

offensive 0-alliance. Thus, for every v ∈ A, δX(v) ≥ δA(v) ≥ δA(v) ≥ δY (v).

As Y ⊂ A and {X, Y } is a vertex partition of the graph into two global

boundary offensive 0-alliances, then for every v ∈ Y , δY (v) = δX(v) ≥
δA(v) ≥ δA(v) ≥ δY (v). Thus, for every v ∈ Y we have δA(v) = δA(v) =

δY (v) + δX\A(v) = δX(v) + δX\A(v) = δA(v) + 2δX\A(v). Hence, we have that

Y is a dominating set and for every v ∈ Y , δX\A(v) = 0, a contradiction. So,

X and Y are minimal global offensive 0-alliances.

Theorem 4.12. For every k ∈ {0, ...,∆}, φgok (G) ≥
⌊n

2

⌋
+

⌊
k

2

⌋
− 1.
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Proof. First, we will prove the case k = 0. Let {X, Y } be a partition of the

vertex set, such that |X| = bn
2
c, |Y | = dn

2
e and there is a minimum number

of edges between X and Y . If X (or Y ) is a 0-goaf set, then φgo0 (G) ≥ bn
2
c−1.

We suppose there exist A ⊆ X and B ⊆ Y , such that A and B are global

offensive 0-alliances. Hence δX(v) ≥ δA(v) ≥ δA(v) ≥ δY (v), ∀v ∈ A, and

δY (v) ≥ δB(v) ≥ δB(v) ≥ δX(v), ∀v ∈ B. As Y ⊂ A and X ⊂ B we have,

for every v ∈ Y , δX(v) ≥ δY (v) and for every v ∈ X, δY (v) ≥ δX(v).

For any y ∈ Y and x ∈ X, let us take X ′ = X \ {x} ∪ {y} and Y ′ = Y \
{y} ∪ {x}. If δX(y) > δY (y) or δY (x) > δX(x) then, the edge cutset between

X ′ and Y ′ is lesser than the other one between X and Y , a contradiction.

Therefore δX(y) = δY (y) and δY (x) = δX(x) and, as a consequence, {X, Y }
is a partition of the vertex set into two global boundary offensive 0-alliances.

Now, by using Lemma 4.11 we obtain that X and Y are minimal global

offensive 0-alliances. As a consequence, φgo0 (G) ≥ bn
2
c − 1.

Now, let us prove the case k > 0. Case 1: φgok (G) ≥ n − 2. Since

n−1 ≥ b2n−1
2
c ≥ bn+∆

2
c ≥ bn+k

2
c ≥ bn

2
c+bk

2
c, we have φgok (G) ≥ bn

2
c+bk

2
c−1.

Case 2: φgok (G) < n − 2. As every k-goaf set is also a (k + 1)-goaf set,

φgo1 (G) ≥ φgo0 (G) ≥ bn
2
c + b1

2
c − 1, then the statement is true for k = 1.

Hence, we will proceed by induction on k. Let us assume that the statement

is true for an arbitrary k ∈ {2, ...,∆ − 2}, that is, there exists a maximal

k-goaf set X in G such that, |X| = φgok (G) ≥ bn
2
c+bk

2
c−1. Now, by Theorem

4.6 there exists v ∈ X, such that X ∪ {v} is a (k + 2)-goaf set. Therefore,

φgok+2(G) ≥ |X ∪ {v}| ≥ bn
2
c + bk

2
c = bn

2
c + bk+2

2
c − 1. So, the proof is

complete.

The above bound is attained, for instance, in the case of the complete

graph if n and k are both even or if n and k have different parity: φgok (Kn) =⌊
n+k−2

2

⌋
. At next we obtain a general bound for the global powerful k-alliance

free (cover) sets of a graph in terms of its order.
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Theorem 4.13. For any graph G = (V,E) of order n,

ζgpk (G) ≤
⌊
n2 − n(k − 1)− 2

n+ 2

⌋
and φgpk (G) ≥

⌈
n(k − 3) + 2

n+ 2

⌉
.

Proof. Let S be a minimal k-gpac in a graph. Hence, for every v ∈ S there

exists a global powerful k-alliance Sv, such that Sv∩S = {v}. Thus, for every

u ∈ Sv, δSv(u) ≥ δSv(u) + k and for every u ∈ Sv, δSv(u) ≥ δSv(u) + k + 2

and we have ∑
u∈Sv

δSv(u) ≥
∑
u∈Sv

δSv(u) +
∑
u∈Sv

k,

∑
u∈Sv

δSv(u) ≥
∑
u∈Sv

δSv(u) +
∑
u∈Sv

(k + 2).

So, we obtain that

n(n− |S|+ 1) ≥ n|Sv|

≥
∑
u∈V

δSv(u)

≥
∑
u∈V

δSv(u) +
∑
u∈V

k +
∑
u∈Sv

2

≥ nk + 2(n− |Sv|)

≥ nk + 2(n− (|S|+ 1))

= nk + 2(|S| − 1).

Therefore, n(n− |S|+ 1) ≥ nk+ 2(|S| − 1) and by solving this inequality for

|S| we obtain the bound for ζgpk (Γ). Since φgpk (Γ) = n− ζgpk (Γ) we obtain the

other bound.

4.3 k-daf sets in Cartesian product graphs

To begin with the study we present the following straightforward result,

where α(G) represents the independence number of G.
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Remark 4.14. Let Gi be a graph of order ni, minimum degree δi and max-

imum degree ∆i, i ∈ {1, 2}. Then, for every k ∈ {1− δ1 − δ2, ...,∆1 + ∆2},

φd
k
(G1 ×G2) ≥ α(G1)α(G2) + min{n1 − α(G1), n2 − α(G2)}.

Proof. For every graph G of minimum degree δ and maximum degree ∆, any

independent set inG is a k-daf set for k ∈ {1−δ, ...,∆}. Hence, φd
k
(G1×G2) ≥

α(G1 × G2), for every k ∈ {1 − δ1 − δ2, ...,∆1 + ∆2}, and by the Vizing’s

inequality, α(G1 × G2) ≥ α(G1)α(G2) + min{n1 − α(G1), n2 − α(G2)}, we

obtain the result.

Let G1 be the star graph of order t+ 1 and let G2 be the path graph of

order 3. In this case, φdk(G1 × G2) = 2t + 1 for k ∈ {−1, 0}. Therefore, the

above bound is tight. Even so, Corollary 4.16 (ii) improves the above bound

for the cases where φd
ki

(Gi) > α(Gi), for some i ∈ {1, 2}.

Theorem 4.15. Let Gi = (Vi, Ei) be a simple graph of maximum degree ∆i,

i ∈ {1, 2}, and let S ⊆ V1 × V2. Then the following assertions hold.

(i) If PVi(S) is a ki-daf set in Gi, then S is a (ki + ∆j)-daf set in G1×G2,

where j ∈ {1, 2}, j 6= i.

(ii) If for every i ∈ {1, 2}, PVi(S) is a ki-daf set in Gi, then S is a (k1 +

k2 − 1)-daf set in G1 ×G2.

Proof. Let A ⊆ S and we suppose PV1(S) is a k1-daf set in G1. Since

PV1(A) ⊆ PV1(S), there exists a ∈ PV1(A) such that δPV1
(A)(a) < δPV1

(A)(a) +

k1. If we take b ∈ V2 such that (a, b) ∈ A, then

δA(a, b) ≤ δPV1
(A)(a)+δPV2

(A)(b) < δPV1
(A)(a)+k1+δ(b) ≤ δPV1

(A)(a)+k1+∆2.

Thus, A is not a defensive (k1 + ∆2)-alliance in G1 × G2. Therefore, (i)

follows.
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In order to prove (ii), let x ∈ X = PV1(A) such that δX(x) < δX(x) + k1.

Let Ax ⊆ A be the set composed by the elements of A whose first component

is x. On the other hand, since PV2(S) is a k2-daf set and Y = PV2(Ax) ⊆
PV2(S), there exists y ∈ Y such that δY (y) < δY (y)+k2. Notice that (x, y) ∈
A. Let Ay ⊆ A be the set composed by the elements of A whose second

component is y. Hence,

δA(x, y) = δAx(x, y) + δAy(x, y)

≤ δY (y) + δX(x)

< δY (y) + δX(x) + k1 + k2 − 1

≤ δAx(x, y)− δ(x) + δAy(x, y)− δ(y) + k1 + k2 − 1

≤ δAx(x, y) + δAy(x, y) + k1 + k2 − 1

= δA(x, y) + k1 + k2 − 1.

Thus, A is not a defensive (k1 + k2 − 1)-alliance in G1 ×G2 and, as a conse-

quence, (ii) follows.

Corollary 4.16. Let Gl be a graph of order nl, maximum degree ∆l and

minimum degree δl, with l ∈ {1, 2}. Then the following assertions hold.

(i) For every k ∈ {∆j −∆i, ...,∆i + ∆j} (i, j ∈ {1, 2}, i 6= j),

φdk(G1 ×G2) ≥ njφ
d
k−∆j

(Gi).

(ii) For every ki ∈ {1− δi, ...,∆i}, i ∈ {1, 2},

φd
k1+k2−1

(G1×G2) ≥ φd
k1

(G1)φd
k2

(G2)+min{n1−φdk1
(G1), n2−φdk2

(G2)}.

Proof. By Theorem 4.15 (i) we conclude that for every ki-daf set Si in Gi,

i ∈ {1, 2}, the sets S1 × V2 and V1 × S2 are (k1 + ∆2)-daf and (k2 + ∆1)-daf,

respectively, in G1 ×G2. Therefore, (i) follows.
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In order to prove (ii), let V1 = {u1, u2, ..., un1} and V2 = {v1, v2, ..., vn2}.
Moreover, let Si be a ki-daf set of maximum cardinality in Gi, i ∈ {1, 2}.
We suppose S1 = {u1, ..., ur} and S2 = {v1, ..., vs}. By Theorem 4.15 (ii)

we deduce that S1 × S2 is a (k1 + k2 − 1)-daf set in G1 × G2. Now let

X = {(ur+i, vs+i), i = 1, ..., t}, where t = min{n1 − r, n2 − s} and let S =

X ∪ (S1×S2). Since, for every x ∈ X, δS(x) = 0 and ki > −δi, i ∈ {1, 2}, we

obtain that S is a (k1 +k2−1)-daf set in G1×G2. Thus, φd
k1+k2−1

(G1×G2) ≥
|S| = φd

k1
(G1)φd

k2
(G2) + min{n1 − φdk1

(G1), n2 − φdk2
(G2)}.

We emphasize that Corollary 4.16 and Proposition 4.5 lead to infinite

families of graphs whose Cartesian product satisfies φdk(G1×G2) = n1n2. For

instance, if G1 is a tree of order n1 and maximum degree ∆1 ≥ 2, G2 is a

graph of order n2 and maximum degree ∆2, and k ∈ {2 + ∆2, ...,∆1 + ∆2},
we have φdk(G1 × G2) = φdk−∆2

(G1)n2 = n1n2. In particular, if G2 is a cycle

graph, then φd4(G1 ×G2) = n1n2.

Another example of equality in Corollary 4.16 (ii) is obtained, for in-

stance, taking the Cartesian product of the star graph St of order t+1 and the

path graph Pr of order r. In that case, for G1 = St we have δ1 = 1, n1 = t+1

and φd0(G1) = t, and, for G2 = Pr we have δ2 = 1, n2 = r and φd1(G2) = r−1.

Therefore, φd0(G1)φd1(G2) + min{n1−φd0(G1), n2−φd1(G2)} = t(r− 1) + 1. On

the other hand, it is not difficult to check that, if we take all leaves belonging

to the copies of St corresponding to the first r− 1 vertices of G2 and we add

the vertex of degree t belonging to the last copy of St, we obtain a maximum

defensive 0-alliance free set of cardinality t(r− 1) + 1 in the graph G1 ×G2,

that is, φd0(G1×G2) = t(r−1) + 1. This example also shows that this bound

is better than the bound obtained in Remark 4.14 which is t
⌈
r
2

⌉
+ 1. In this

particular case, both bounds are equal if and only if r = 2 or r = 3.

Theorem 4.17. Let Gi = (Vi, Ei) be a graph and let Si ⊆ Vi, i ∈ {1, 2}. If

S1 × S2 is a k-daf set in G1 × G2 and S2 is a defensive k′-alliance in G2,
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Figure 4.2: This graph is the Cartesian product S3 × P4 where

{(1, 1), (2, 1), (4, 1), (1, 2), (2, 2), (4, 2), (1, 3), (2, 3), (4, 3), (3, 4)} is a maxi-

mum defensive 0-alliance free set.

then S1 is a (k − k′)-daf set in G1.

Proof. If S ⊆ S1, then S × S2 ⊆ S1 × S2 is a k-daf set in G1 ×G2. So, there

exists (a, b) ∈ S × S2 such that δS×S2(a, b) < δS×S2
(a, b) + k. Thus, we have

δS(a) + δS2(b) = δS×S2(a, b) < δS×S2
(a, b) + k = δS(a) + δS2

(b) + k. (4.3)

As S2 is a defensive k′-alliance in G2, for every b ∈ S2 we have, δS2(b) ≥
δS2

(b) + k′. Hence, from equation (4.3) we obtain δS(a) < δS(a) + k − k′.

Therefore, S is not a defensive (k− k′)-alliance in G1 and, as a consequence,

S1 is a (k − k′)-daf set.

Taking into account that V2 is a defensive δ2-alliance in G2 we obtain

the following result.

Corollary 4.18. Let Gi = (Vi, Ei) be a graph, i ∈ {1, 2}. Let δ2 be the

minimum degree of G2 and let S1 ⊆ V1. If S1× V2 is a k-daf set in G1×G2,

then S1 is a (k − δ2)-daf set in G1.

By Theorem 4.15 (i) and Corollary 4.18 we obtain the following result.
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Proposition 4.19. Let G1 be a graph of maximum degree ∆1 and let G2 be

a δ2-regular graph. For every k ∈ {δ2 −∆1, ...,∆1 + δ2}, S1 × V2 is a k-daf

set in G1 ×G2 if and only if S1 is a (k − δ2)-daf set in G1.

4.4 k-oaf sets in Cartesian product graphs

Theorem 4.20. Let Gi = (Vi, Ei) be a graph, i ∈ {1, 2}, and let S ⊂ V1×V2.

If PVi(S) is a k-oaf set in Gi, then S is a (k − δj)-oaf set in G1 ×G2, where

δj denotes the minimum degree of Gj and j ∈ {1, 2}, i 6= j.

Proof. If PV1(S) is a k-oaf set in G1 and A ⊆ S, then PV1(A) ⊆ PV1(S) is

a k-oaf set in G1. So, there exists a ∈ ∂(PV1(A)), such that δPV1
(A)(a) <

δPV1
(A)(a)+k. Let a′ ∈ PV1(A) such that a and a′ are adjacent, and let Ya′ be

the set of elements of A whose first component is a′. Thus, if b ∈ PV2(Ya′),

then (a, b) ∈ ∂(A), so we have

δA(a, b) ≤ δPV1
(A)(a) < δPV1

(A)(a) +k ≤ δA(a, b)− δ(b) +k ≤ δA(a, b) +k− δ2.

Therefore, A is not an offensive (k − δ2)-alliance in G1 × G2. The proof of

the other case is completely analogous.

From Theorem 4.20 we conclude that for every ki-oaf set Si in Gi, i ∈
{1, 2}, the sets S1 × V2 and V1 × S2 are (k1 − δ2)-oaf and (k2 − δ1)-oaf,

respectively, in G1 ×G2. Therefore, we obtain the following result.

Corollary 4.21. Let Gl be a graph of order nl, maximum degree ∆l and

minimum degree δl, l ∈ {1, 2}. Then, for every k ∈ {2− δj−∆i, ...,∆i− δj},
φok(G1 ×G2) ≥ njφ

o
k+δj

(Gi), where i, j ∈ {1, 2}, i 6= j.

Example of equality in the above result is the following. If we take

G1 = C4, G2 = P3 and k2 = 2, then φo0(C4 × P3) = 8 = 4φo2(P3).
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Theorem 4.22. Let Gi = (Vi, Ei) be a graph of minimum degree δi and

maximum degree ∆i. If Si is a ki-oaf set in Gi, i ∈ {1, 2}, then for every

k ∈ {k′, ...,∆1 + ∆2}, (S1 × V2) ∪ (V1 × S2) is a k-oaf set in G1 ×G2, where

k′ = max {k1 − δ2, k2 − δ1,min{k2 + ∆1, k1 + ∆2}}.

Proof. Let A ⊆ (S1 × V2) ∪ (V1 × S2). By Theorem 4.20 we deduce that,

if A ⊆ S1 × V2, then A is a (k1 − δ2)-oaf set in G1 × G2. Analogously, if

A ⊆ V1 × S2, then A is a (k2 − δ1)-oaf set in G1 ×G2.

Now we suppose A * S1 × V2 and A * V1 × S2. Let B = A \ (S1 × V2).

For every a ∈ PV1(B), the set Ya, composed by the elements of B whose

first component is a, satisfies that PV2(Ya) is a k2-oaf set in G2. Then, there

exists b ∈ ∂(PV2(Ya)) such that δPV2
(Ya)(b) < δPV2

(Ya)(b) + k2. Also, notice

that (a, b) ∈ ∂(A). Thus,

δA(a, b) ≤ δPV2
(Ya)(b) + δ(a) < δPV2

(Ya)(b) + k2 + δ(a) ≤ δA(a, b) + k2 + ∆1.

We conclude that A is not an offensive (k2 + ∆1)-alliance in G1 ×G2. Anal-

ogously, A is not an offensive (k1 + ∆2)-alliance in G1 × G2. Therefore, the

result follows.

Corollary 4.23. Let Gi be a graph of order ni, minimum degree δi and maxi-

mum degree ∆i, i ∈ {1, 2}. Let k′ = max {k1 − δ2, k2 − δ1,min{k2 + ∆1, k1 + ∆2}},
where ki ∈ {2−∆i, ...,∆i}. Then, for every k ∈ {k′, ...,∆1 + ∆2},

φok(G1 ×G2) ≥ n1φ
o
k2

(G2) + n2φ
o
k1

(G1)− φok1
(G1)φok2

(G2).

For instance, if we take G1 = C3, G2 = P3, k1 = 1 and k2 = 2, then

φo3(C3 × P3) = 7 = 3φo2(P3) + 3φo1(C3)− φo1(C3)φo2(P3).

4.5 k-paf sets in Cartesian product graphs

Since for every graph G, φpk(G) ≥ max{φdk(G), φok+2(G)}, we have that lower

bounds on φdk(G) and φok+2(G) lead to lower bounds on φpk(G). So, by the
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Figure 4.3: The graph G = (V,E) is the Cartesian product of the cycle graph

C3 by the path graph P3 where S = V \{(1, 3), (2, 3)} is a maximum offensive

3-alliance free set.

results obtained in the above sections on φdk(G1×G2) and φok+2(G1×G2) we

deduce lower bounds on φpk(G1 ×G2).

Figure 4.4: A graph G = (V,E) where V is a powerful 2-alliance free set,

although {2, 3, 4, 5, 6, 8} is a defensive 2-alliance and {3, 4, 5, 6, 7} is an offen-

sive 4-alliance.

We emphasize that there are graphs where φpk(G) > max{φdk(G), φok+2(G)}.
For instance, the graph of Figure 4.4 satisfies φp2(G) = 9 while φd2(G) = 8

and φo4(G) = 7.

Theorem 4.24. Let Gi = (Vi, Ei) be a simple graph of maximum degree ∆i
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and minimum degree δi, i ∈ {1, 2}, and let S ⊆ V1 × V2. Then the following

assertions hold.

(i) If PVi(S) is a ki-paf set in Gi, then, for every k ∈ {ki + ∆j, ...,∆i +

∆j − 2}, S is a k-paf set in G1 ×G2, where j ∈ {1, 2}, j 6= i.

(ii) If for every i ∈ {1, 2}, PVi(S) is a ki-paf set in Gi, then, for every

k ∈ {k′, ...,∆1 + ∆2 − 2}, S is a k-paf set in G1 × G2, where k′ =

max{k1 + k2 − 1,min{k2 − δ1, k1 − δ2}}.

Proof. Let A ⊆ S. We suppose PVi(S) is a ki-paf set in Gi for some i ∈ {1, 2}.
Since PVi(A) ⊆ PVi(S), it follows that PVi(A) is not a powerful ki-alliance

in Gi. If PVi(A) is not a defensive ki-alliance, by analogy to the proof of

Theorem 4.15 (i) we obtain that A is not a defensive (ki + ∆j)-alliance in

G1 ×G2, j 6= i. If PVi(A) is not an offensive (ki + 2)-alliance in Gi, then by

analogy to the proof of Theorem 4.20 we obtain that A is not an offensive

(ki − δj + 2)-alliance in G1 × G2, j 6= i. Since, ki + ∆j > ki − δj, we obtain

that A is not a powerful (ki + ∆j)-alliance in G1×G2. Therefore, (i) follows.

If for every l ∈ {1, 2}, PVl(S) is a kl-paf set in Gl, then PVl(A) is not a

powerful kl-alliance in Gl. Hence, we differentiate two cases.

Case 1: For some l ∈ {1, 2}, PVl(A) is not a defensive kl-alliance. We

suppose PV1(A) is not a defensive k1-alliance. Hence, there exists x ∈ PV1(A)

such that δPV1
(A)(x) < δPV1

(A)(x) + k1. Let Ax ⊆ A be the set composed

by the elements of A whose first component is x. If PV2(Ax) ⊂ PV2(S) is

not a defensive k2-alliance, then by analogy to the proof of Theorem 4.15

(ii) we obtain that A is not a defensive (k1 + k2 − 1)-alliance in G1 × G2.

On the other hand, if PV2(Ax) is a defensive k2-alliance, then it is not an

offensive (k2 + 2)-alliance. Thus, there exists y ∈ ∂(PV2(Ax)) such that
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δPV2
(Ax)(y) < δPV2

(Ax)(y) + (k2 + 2). We note that (x, y) ∈ ∂(A). Hence,

δA(x, y) ≤ δPV1
(A)(x) + δPV2

(Ax)(y)

< δPV1
(A)(x) + δPV2

(Ax)(y) + k1 + k2 + 1

≤ δA(x, y) + k1 + k2 + 1.

As a consequence, A is not an offensive (k1 + k2 + 1)-alliance in G1 × G2.

Thus, in this case, A is not a powerful (k1 + k2 − 1)-alliance in G1 ×G2.

Case 2: For every i ∈ {1, 2}, PVi(A) is not an offensive (ki + 2)-alliance

in Gi. In this case, as we have shown in the proof of (i), A is not an offensive

(ki − δj + 2)-alliance in G1 ×G2, j ∈ {1, 2}, j 6= i.

As a consequence, for k = max{k1 + k2 − 1, k1 − δ2, k2 − δ1}, A is not a

powerful k-alliance in G1×G2. Hence, S is a k-paf set in G1×G2. Therefore,

(ii) follows.

Corollary 4.25. Let Gl be a graph of order nl, maximum degree ∆l and

minimum degree δl, l ∈ {1, 2}. Let kl ∈ {1 − δl, ...,∆l − 2}. Then the

following assertions hold.

(i) For every k ∈ {∆j −∆i, ...,∆i + ∆j − 2}, (i, j ∈ {1, 2}, i 6= j)

φpk(G1 ×G2) ≥ njφ
p
k−∆j

(Gi).

(ii) For every k ∈ {k1 + k2 − 1, ...,∆1 + ∆2 − 2},

φp
k
(G1 ×G2) ≥ φp

k1
(G1)φp

k2
(G2) + min{n1 − φpk1

(G1), n2 − φpk2
(G2)}.

Proof. By Theorem 4.24 (i) we conclude that for every ki-paf set Si in Gi,

i ∈ {1, 2}, the sets S1 × V2 and V1 × S2 are, respectively, (k1 + ∆2)-paf and

(k2 + ∆1)-paf in G1 ×G2. Therefore, (i) follows.

In order to prove (ii), let V1 = {u1, u2, ..., un1} and V2 = {v1, v2, ..., vn2}.
Let Si be a ki-paf set of maximum cardinality in Gi, i ∈ {1, 2}. We suppose
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S1 = {u1, ..., ur} and S2 = {v1, ..., vs}. By Theorem 4.24 (ii) we deduce

that, for k ≥ k1 + k2 − 1, S1 × S2 is a k-paf set in G1 × G2. Now let

X = {(ur+i, vs+i), i = 1, ..., t}, where t = min{n1 − r, n2 − s} and let S =

X ∪ (S1 × S2). Since, for every x ∈ X, δS(x) = 0 and ki > −δi, i ∈ {1, 2},
we obtain that for every A ⊆ S, such that A ∩X 6= ∅, A is not a defensive

(k1+k2−1)-alliance in G1×G2. Hence, S is a k-paf set for k ≥ k1+k2−1. As

a consequence, φpk(G1×G2) ≥ |S| = φp
k1

(G1)φp
k2

(G2)+min{n1−φpk1
(G1), n2−

φp
k2

(G2)}.

If G1 = Cn1
is the cycle graph of order n1 and G2 is the graph in Figure

4.4, then, by Corollary 4.25 (i), we deduce φp4(G1 × G2) = n1n2, that is,

φp4(G1 × G2) ≥ n1φ
p
2(G2) = n1n2. Moreover, if G1 = Tn1 is a tree of order

n1 and maximum degree ∆1 ≥ 4 and G2 is the graph in Figure 4.4, then

φp2(G1) = n1 and φp2(G2) = n2 = 9. Therefore, by Corollary 4.25 (ii) we

deduce φp3(G1 ×G2) = 9n1.
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Conclusion

In this work we studied mathematical properties of alliances in graphs. Par-

ticularly, we have studied the following subjects:

• The relationships that exist between the alliances in Cartesian product

graphs and the alliances in its factors. In this sense we proved that

the existence of alliances (alliance free sets) in two graphs leads to the

existence of alliances (alliance free sets) in the Cartesian product graph

of these two graphs and viceversa.

• Partitions of a graphs into alliances. Particularly, we obtained some

estimations for the maximum number of sets in a partition of a graph

into k-alliances. Also, we studied the relationships that exist between

this maximum number and other invariants of the graph like chromatic

number, isoperimetric number and bipartition width.

• Alliance free sets and alliance cover sets. We obtained some bounds

for the cardinality of alliance free sets and alliance cover sets and a

relationship between alliance free sets and dominating sets. We also

characterized some classes of graphs which are defensive alliance free.

• Mathematical properties of boundary alliances. In particular, we ob-

tained several bounds on the cardinality of every boundary alliance

and we gave a necessary condition for the existence of a partition of a

regular graph into two boundary alliances.
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• Relationships between global offensive k-alliances and some characte-

ristic sets of a graph including r-dependent sets, τ -dominating sets and

standard dominating sets. Also, we obtained a closed formula for the

global offensive k-alliance number of complete bipartite graphs.

Contributions of the Thesis

The volume and quantity of results obtained in this work have been possible

to elaborate some papers, which have been either published or submitted to

ISI-JCR journals. Moreover, some results have been presented in a specia-

lized conference or presented in an invited talk.

Publications into ISI-JCR journals

• I. G. Yero, J. A. Rodŕıguez-Velázquez, Boundary defensive k-alliances

in graphs, Discrete Applied Mathematics 158 (2010) 1205–1211.

• I. G. Yero, S. Bermudo, J. A. Rodŕıguez-Velázquez, J. M. Sigarreta,

Partitioning a graph into defensive k-alliances. Acta Mathematica Sini-

ca-English Series 26 (11) (2010) DOI: 10.1007/s10114-010-9075-6.

• S. Bermudo, J. A. Rodŕıguez-Velázquez, J. M. Sigarreta, I. G. Yero,

On global offensive k-alliances in graphs, Applied Mathematics Letters

23 (2010) 1454–1458.

• I. G. Yero, J. A. Rodŕıguez-Velázquez, Boundary powerful k-alliances

in graphs, Ars Combinatoria. In press.

• J. A. Rodŕıguez Velázquez, J. M. Sigarreta, I. G. Yero, S. Bermudo,

Alliance free and alliance cover sets, Acta Mathematica Sinica-English

Series 27 (6) (2011). In press.
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Papers submitted to ISI-JCR journals

• I. G. Yero, J. A. Rodŕıguez-Velázquez, S. Bermudo, Alliance free in

Cartesian product graphs, submitted to Applied Mathematics and Com-

putation (2010).

• J. M. Sigarreta, I. G. Yero, S. Bermudo, J. A. Rodŕıguez-Velázquez,

Partitioning a graphs into offensive k-alliances, submitted to Discrete

Applied Mathematics (2009).

• I. G. Yero, J. A. Rodŕıguez-Velázquez, Partitioning a graph into pow-

erful k-alliances, submitted to Graphs and Combinatorics (2009).

Contribution to a specialized conference

• J. M. Sigarreta, I. G. Yero, S. Bermudo, J. A. Rodŕıguez Velázquez,

On decomposition of graphs into offensive k-alliances. Cologne-Twente

Workshop on Graphs and Combinatorial Optimization. (CTW-09),

Paris, France. Abstracts 297–300.

Invited talk

• Alliances in graphs. Mathematics, Physics and Informatics Depart-

ment, University of Gdańsk, Gdańsk, Poland. January 20th, 2010.

Future works

In order to continue developing the topic of alliances in graphs we propose

the following subjects.

• Alliances in product graphs.

Graphs are basic combinatorial structures, and product of structures is
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a fundamental construction in mathematics, for which results abound

in several areas of research like category theory, set theory and algebra.

Product of graphs occur naturally in discrete mathematics as tools in

combinatorial constructions. They give rise to important classes of

graphs and deep structural problems. The most popular product of

graphs is the Cartesian product, which we have studied here. The study

of relationships between invariants of Cartesian product graphs and

invariants of its factors appears frequently in researches about graph

theory [44]. In this sense, there are important open problems which

are being investigated now. For instance, the Vizing’s conjecture [74],

which is one of the most known open problems in graph theory. Our

main objective is to contribute to the study of mathematical properties

of alliances in product graphs. We pretend to focus our attention in

the properties of corona product graphs and strong product graphs.

• Secure sets.

Since it was defined in [52], defensive alliances are related to the defense

of a single vertex. But, in a general realistic settings, alliances should

be formed so that any attack on the entire alliance or any subset of the

alliance can be defended. In this sense, the authors of [7] presented an

attempt to develop a model of this situation.

– For any S = {v1, v2, ..., vr} ⊂ V , an attack A on S is formed by any

r mutually disjoint sets {A1, A2, ..., Ar}, for which Ai ⊂ NS[vi],

with i ∈ {1, ..., r}.

– A defense D of the set S is formed by any r mutually disjoint sets

{D1, D2, ..., Dr} for which Di ⊂ NS[vi], with i ∈ {1, ..., r}.

– Attack A is defendable if there exists a defense D such that for

every i ∈ {1, ..., r} it follows, |Di| ≥ |Ai|.

– Set S is secure if and only if every attack on S is defendable.



I. G. Yero 127

Until now, there are just a few works about secure sets of a graph

[21, 22, 51]. Our main objective is to obtain mathematical properties

of secure sets in graphs.

• Extremal graphs.

Extremal graph theory studies extremal graphs which satisfy a certain

property. Extremality can be taken with respect to different graph

invariants, such as girth, chromatic number, domination number, etc.

In this work we have obtained several properties of alliances in graphs.

Thus, our main goal in future is to try to characterize the families of

graphs in which its alliances satisfy the obtained properties.
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[63] J. A. Rodŕıguez-Velázquez, I. G. Yero, J. M. Sigarreta, Defensive k-

alliances in graphs, Applied Mathematics Letters 22 (2009) 96–100.

[64] K. H. Shafique, R. D. Dutton, Maximum alliance-free and minimum

alliance-cover sets, Congressus Numerantium 162 (2003) 139–146.

[65] K. H. Shafique, R. Dutton, A tight bound on the cardinalities of max-

imun alliance-free and minimun alliance-cover sets, Journal of Combina-

torial Mathematics and Combinatorial Compututing 56 (2006) 139–145.

[66] K. H. Shafique, R. D. Dutton, Partitioning a graph into alliance free

sets, Discrete Mathematics 309 (2009) 3102-3105.

[67] K. H. Shafique, Partitioning a Graph in Alliances and its Applica-

tion to Data Clustering. Ph. D. Thesis, 2004. http://etd.fcla.edu/CF/

CFE0000263/Hassan Shafique Khurram 200412 PhD.pdf

http://etd.fcla.edu/CF/ CFE0000263/Hassan_Shafique_Khurram_200412_PhD.pdf
http://etd.fcla.edu/CF/ CFE0000263/Hassan_Shafique_Khurram_200412_PhD.pdf


136

[68] K. H. Shafique, R. D. Dutton, On satisfactory partitioning of graphs,

Congressus Numerantium 154 (2002) 183–194.

[69] J. M. Sigarreta, Alianzas en grafos, Ph. D. Tesis, Universidad Car-

los III, Madrid, Spain. 2007. http://e-archivo.uc3m.es/bitstream/10016

/2455/1/Tesis Jose M Sigarreta.pdf

[70] J. M. Sigarreta, S. Bermudo, H. Fernau. On the complement graph

and defensive k-alliances, Discrete Applied Mathematics 157 (8) (2009)

1687–1695.
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Glossary

G, Simple graph, 1.

V , Set of vertices of G, 1.

E, Set of edges of G, 1.

n(G), Order of the graph G, 1.

m(G), Size of the graph G, 1.

f , Number of faces of a planar graph G, 1.

u ∼ v, Vertex u is adjacent to v.

G ∼= H Graphs G and H are isomorphic.

∆, Maximum degree of a graph, 1.

δ, Minimum degree of a graph, 1.

N(v), Open neighborhood of a vertex v, 1.

NS(v), Open neighborhood of a vertex v in a set S, 1.

N [v], Closed neighborhood of a vertex v, 1.

NS [v], Closed neighborhood of a vertex v in a set S, 1.

S, Complement of the set S, 1.

G, Complement of the graph G, 1.

δ(v), Degree of a vertex v, 1.

δS(v), Degree of a vertex v in a set S, 1.

µ, Algebraic connectivity, 40, 42, 52, 62, 72, 94.

µ∗, Laplacian spectral radius, 11, 33, 40, 52, 61, 62, 94.

λ, Spectral radius, 40, 43, 52.
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138 Glossary

∂(S), Neighborhood of the set S, 1.

〈S〉, Subgraph induced by the set S, 1.

L(G), Line graph of a graph G, 1.

Kn, Complete graph on n vertices.

Pn, Path graph on n vertices.

Cn, Cycle graph on n vertices.

Qt, Hipercube graph on 2t−1 vertices.

CR(n, t), Circulant graph on n vertices and 2t generators.

Kr,t, Complete bipartite graph on r + t vertices.

Pr × Pt Grid graph on rt vertices.

G1 ×G2, Cartesian product graph of G1 and G2, 1, 19, 56, 87, 111, 116, 117.

PG1(S) Projection of the set S over G1 in G1 ×G2.

adk(G), Defensive k-alliance number of G, 39.

aok(G), Offensive k-alliance number of G, 7.

apk(G), Powerful k-alliance number of G, 77.

γdk(G), Global defensive k-alliance number of G, 39.

γok(G), Global offensive k-alliance number of G, 7.

γpk(G), Global powerful k-alliance number of G, 77.

γio1 (G), Global independent offensive 1-alliance number of G, 12.

ψdk(G), Defensive k-alliance partition number of G, 59.

ψok(G), Offensive k-alliance partition number of G, 22.

ψpk(G), Powerful k-alliance partition number of G, 90.

ψdk(G), Global defensive k-alliance partition number of G, 59.

ψok(G), Global offensive k-alliance partition number of G, 22.

ψpk(G), Global powerful k-alliance partition number of G, 90.

φdk(G), Cardinality of a maximum k-daf set of G, 102

φok(G), Cardinality of a maximum k-oaf set of G, 102.

φpk(G), Cardinality of a maximum k-paf set of G, 102.

φgok (G), Cardinality of a maximum k-goaf set of G, 102.

φgpk (G), Cardinality of a maximum k-gpaf set of G, 102.

ζdk(G), Cardinality of a minimum k-dac set of G, 102.
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ζok(G), Cardinality of a minimum k-oac set of G, 102.

ζpk(G), Cardinality of a minimum k-pac set of G, 102.

ζgok (G), Cardinality of a minimum k-goac set of G, 102.

ζgpk (G), Cardinality of a minimum k-gpac set of G, 102.

Πd
r(G), Partition of G into r defensive k-alliances, 59.

Πo
r(G), Partition of G into r offensive k-alliances, 22.

Πp
r(G), Partition of G into r powerful k-alliances, 99.

Πgd
r (G), Partition of G into r global defensive k-alliances, 59.

Πgo
r (G), Partition of G into r global offensive k-alliances, 22.

Πgp
r (G), Partition of G into r global powerful k-alliances, 97.

Πr(G), Partition of G into r dominating sets, 95.

Cgo(r,k)(G), Minimum number of edges having its endpoints in different sets of a

partition of G into r global offensive k-alliances, 35.

Cgd(r,k)(G), Minimum number of edges having its endpoints in different sets of a

partition of G into r global defensive k-alliances, 35.

γ(G), Domination number of G, 1, 9,106.

γk(G), k-domination number of G, 10.

γrt(G), Total r-domination number of G, 81.

i(G), Independence domination number of G, 11 12, 47,.

β0(T ), Independence number of G, 11, 12, 46.

αr(G), r-dependence number of G, 15.

bw(G), Bipartition width of G, 70.

χ(G), Chromatic number of G, 28.

i(G), Isoperimetric number of G, 70.
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