Journal for Geometry and Graphics Volume 19 (2015), No. 2, 257–268.

Definition and Calculation of an Eight-Centered Oval which is Quasi-Equivalent to the Ellipse

Blas Herrera¹, Albert Samper²

¹Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili Avinguda Països Catalans 26, 43007, Tarragona, Spain email: blas.herrera@urv.net

²Unitat predepartamental d'Arquitectura, Universitat Rovira i Virgili email: albert.samper@urv.net

Abstract. Let \mathcal{E}_b be an ellipse $(b = \frac{minor \ axis}{major \ axis})$. In this paper we consider different approximations by ovals, which are composed from circular arcs and have also two axes of symmetry. We study a) three four-centered ovals (quadrarcs) $O_{4,b}^a$, $O_{4,b}^c$, and $O_{4,b}^l$, which share the vertices with the ellipse \mathcal{E}_b . In addition, $O_{4,b}^a$ has the same surface area, $O_{4,b}^c$ has the minimum error of curvature at the vertices, and $O_{4,b}^l$ has the same perimeter length. b) Further, we investigate three eightcentered ovals $O_{8,b}^c$, $O_{8,b}^{c-a}$ and $O_{8,b}^{c-l}$, which also share the vertices with \mathcal{E}_b . The ovals $O_{8,b}^c$ have the same curvature at the vertices, and in addition, $O_{8,b}^{c-a}$ has the same surface area, and $O_{8,b}^{c-l}$ has the same perimeter length as \mathcal{E}_b .

As a conclusion, the eight-centered oval $O_{8,b}^{c-l}$ seems to be optimal and can therefore be called 'quasi-equivalent' to \mathcal{E}_b . We show that the difference of surface areas $\mathcal{A}_b = \mathcal{A}(O_{8,b}^{c-l}) - \mathcal{A}(\mathcal{E}_b)$ is rather small; the maximum value $\mathcal{A}_{0.1969} = 0.007085$ is achieved at b = 0.1969. The deformation error $E_b = E(\mathcal{E}_b, O_{8,b}^{c-l})$ has the maximum value 0.008970 which is achieved at b = 0.2379.

Key Words: Eight-centered oval, quadrarc, quasi-equivalent oval, ellipse. *MSC 2010:* 51M04, 51N20

1. The ellipse and the eight-centered oval

Approximating ellipses by circular arcs has been a classic subject of study by geometers. This has long been used for a wide range of applications, for instance in geometry, astronomy, art, architecture. The reader can easily find a great deal of classical literature on these topics, in special for eight-centered ovals and four-centered ovals (also named *quadrarcs*). This kind of approximation, using eight-centered ovals, has recently been used to analyze architectural constructions as amphitheaters and military forts [5, 6, 7, 15]; also in astronomy, for analyzing